常见串行总线
TWI,IIC总线

采用串行总线技术可以使系统的硬件设计大大简
化、系统的体积减小、可靠性提高。同时,系统 的更改和扩充极为容易。 常用的串行扩展总线有: I2C (Inter IC BUS) 总线、单总线(1-WIRE BUS)、SPI(Serial Peripheral Interface)总线及Microwire/PLUS 等。
c、在传送过程中,当需要改变传送方向时, 起始信号和从机地址都被重复产生一次,但两 次读/写方向位正好反相。
4、总线的寻址
I2C总线协议有明确的规定:采用7位的寻址字节 (寻址字节是起始信号后的第一个字节)。 (1)寻址字节的位定义
D7~D1位组成从机的地址。D0位是数据传送方向位, 为“0”时表示主机向从机写数据,为“1”时表示主机由从 机读数据。
每一个字节必须保证是8位长度。数据传送时,先传 送最高位(MSB),每一个被传送的字节后面都必须跟 随一位应答位(即一帧共有9位)。
由于某种原因从机不对主机寻址信号应答时(如从机 正在进行实时性的处理工作而无法接收总线上的数据), 它必须将数据线置于高电平,而由主机产生一个终止信号 以结束总线的数据传送。 如果从机对主机进行了应答,但在数据传送一段时间后 无法继续接收更多的数据时,从机可以通过对无法接收的 第一个数据字节的“非应答”通知主机,主机则应发出终 止信号以结束数据的继续传送。 当主机接收数据时,它收到最后一个数据字节后,必须 向从机发出一个结束传送的信号。这个信号是由对从机的 “非应答”来实现的。然后,从机释放SDA线,以允许主 机产生终止信号。
两线串行总线概述
两线串行总线采用TWI协议。对外只有两根线。一根数据线SDA,一根时 钟线SCL。可与128个从设备连接。连接方式如图所示:
串行通信接口及总线标准

RS-4
定义
RS-485是一种改进的串行 通信接口标准,由EIA制定。
特点
采用差分信号传输方式, 具有多站能力、高抗干扰 能力和长距离传输能力。
应用
广泛应用于工业自动化、 楼宇自动化和智能家居等 领域。
SPI
定义
应用
SPI是一种同步串行通信协议,由摩托 罗拉公司制定。
常用于微控制器和外围设备之间的通 信。
感谢观看
详细描述
在工业自动化控制系统中,各种设备如传感器、执行器、控制器等需要实时地进行数据交换和通信。 串行通信接口能够提供稳定、可靠的连接,使得设备间能够高效地传输数据,实现自动化控制和监测 。这有助于提高生产效率、降低成本、减少故障发生率。
智能家居系统
总结词
串行通信接口在智能家居系统中发挥关键作用,能够实现家庭设备的互联互通,提升家居生活的便利性和舒适度。
VS
详细描述
物联网设备间需要进行大量的数据交换和 通信,以实现设备的远程监控和管理。串 行通信接口能够提供高效、可靠的数据传 输服务,使得设备间能够稳定地进行通信 。这有助于促进物联网的发展和应用,提 高设备的可维护性和可管理性,降低运营 成本。
汽车电子系统
总结词
串行通信接口在汽车电子系统中具有重要价 值,能够实现汽车各系统间的信息共享和协 同工作,提高汽车的安全性和可靠性。
数据传输速率较慢。
03
02
特点
04
数据传输距离较远。
数据传输线少,成本低。
05
06
适用于不同设备之间的通信。
串行通信接口的重要性
01
02
03
04
实现设备之间的数据交换和通 信。
简化电路设计,降低成本。
通用串行总线

编辑词条通用串行总线目录[隐藏]通用串行总线概念和目的通用串行总线特点通用串行总线版本通用串行总线技术指标通用串行总线优劣和运用通用串行总线USB设备类规范通用串行总线概念和目的通用串行总线特点通用串行总线版本通用串行总线技术指标通用串行总线优劣和运用通用串行总线USB设备类规范[编辑本段]通用串行总线概念和目的概念通用串行总线(Universal Serial Bus, USB)是连接外部设备的一个串口总线标准,在计算机上使用广泛,但也可以用在机顶盒和游戏机上,补充标准(On-The-Go)使其能够用于在便携设备之间直接交换数据。
目的Intel公司开发的通用串行总线架构(USB)的目的主要基于以下三方面考虑:(一)计算机与电话之间的连接:显然用计算机来进行计算机通信将是下一代计算机基本的应用。
机器和人们的数据交互流动需要一个广泛而又便宜的连通网络。
然而,由于目前产业间的相互独立发展,尚未建立统一标准,而USB则可以广泛的连接计算机和电话。
(二)易用性:众所周知,PC机的改装是极不灵活的。
对用户友好的图形化接口和一些软硬件机制的结合,加上新一代总线结构使得计算机的冲突大量减少,且易于改装。
但以终端用户的眼光来看,PC机的输入/输出,如串行/并行端口、键盘、鼠标、操纵杆接口等,均还没有达到即插即用的特性,USB正是在这种情况下问世的。
(三)端口扩充:外围设备的添加总是被相当有限的端口数目限制着。
缺少一个双向、价廉、与外设连接的中低速的总线,限制了外围设备(诸如电话/电传/调制解调器的适配器、扫描仪、键盘、PDA)的开发。
现有的连接只可对极少设备进行优化,对于PC机的新的功能部件的添加需定义一个新的接口来满足上述需要,USB就应运而生。
它是快速、双向、同步、动态连接且价格低廉的串行接口,可以满足PC机发展的现在和未来的需要。
[编辑本段]通用串行总线特点USB最初是由英特尔与微软公司倡导发起,其最大的特点是支持热插拔(Hot p lug)和即插即用(Plug&Play)。
串行总线

PCF8563是PHILIPS公司推出的一款工业级内含I2C总线接口 功能的具有极低功耗的多功能时钟/日历芯片。 PCF8563的多种报警功能、定时器功能、时钟输出功能以及 中断输出功能。 内部时钟电路、内部振荡电路、内部低电压检测电路1.0V 以及两线制I2C总线通讯方式,不但使外围电路极其简洁, 而且也增加了芯片的可靠性。 每次读写数据后内嵌的字地址寄存器会自动产生增量。 是一款性价比极高的时钟芯片,它已被广泛用于电表、水 表、气表、电话、传真机、便携式仪器以及电池供电的仪 器仪表等产品领域。
I2C总线工作特点
SDA、SCL 启动条件 终止条件 应答信号 典型应用系统图(可挂接不同功能的芯片,不同类型的芯片 有不同的器件地址)
串行E 一 串行E2PROM 24C**
I2C总线工作特点
启动条件 终止条件 应答信号
串行E 一 串行E2PROM 24C**
24C**典型芯片管脚
串行E 一 串行E2PROM 24C**
POT非易失性数字电位器 五 E2POT非易失性数字电位器 X9313 管脚
POT非易失性数字电位器 五 E2POT非易失性数字电位器
内部结构
X9313
POT非易失性数字电位器 五 E2POT非易失性数字电位器 X9313
管脚描述
POT非易失性数字电位器 五 E2POT非易失性数字电位器 X9313 典型应用:程控放大器
典型应用图
POT非易失性数字电位器 五 E2POT非易失性数字电位器 X9313 概述
E2POT X9313非易失性数控电位器,端电压±5V,32 个抽头,X9313是固态非易失性电位器,把它用作数 字控制的微调电阻器是理想的。 X9313是一个包含有31个电阻单元的电阻阵列。在 每个单元之间和二个端点都有可以被滑动单元访问的 抽头点。滑动单元的位置由CS 、U/D和INC 三个输入 端控制。滑动端的位置可以被贮存在一个非易失性存 贮器中,因而在下一次上电工作时可以被重新调用。 X9313的分辨率等于最大的电阻值被31除。例如 X9313W(10kΩ)的每个抽头间的阻值为323Ω。 所有的Xicor非易失性存贮器都设计成并经过测试 能够用于持久地保存数据的应用场合。
SPII2CUART三种串行总线的原理区别及应用

简单描述:SPI 与I2C这两种通信方式都就是短距离的,芯片与芯片之间或者其她元器件如传感器与芯片之间的通信。
SPI与IIC就是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路与功能模块。
I2C就是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。
总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。
多路微控制器能在同一个I2C总线上共存这两种线属于低速传输;而UART就是应用于两个设备之间的通信,如用单片机做好的设备与计算机的通信。
这样的通信可以做长距离的。
UART与,UART就就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机与计算之间通信,但有效范围不会很长,约10米左右,UART优点就是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡;SmBus有点类似于USB设备跟计算机那样的短距离通信。
简单的狭义的说SPI与I2C就是做在电路板上的。
而UART与SMBUS就是在机器外面连接两个机器的。
详细描述:1、UART(TX,RX)就就是两线,一根发送一根接收,可以全双工通信,线数也比较少。
数据就是异步传输的,对双方的时序要求比较严格,通信速度也不就是很快。
在多机通信上面用的最多。
2、SPI(CLK,I/O,O,CS)接口与上面UART相比,多了一条同步时钟线,上面UART的缺点也就就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。
一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。
3、I2C(SCL,SDA)接口也就是两线接口,它就是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。
一般单片机系统里主要用来与24C02等小容易存储器连接。
串行总线详解

单总线的时序
One-Wire协议定义了复位脉冲、应答 脉冲、写0、读0和读1时序等几种信号类型 。所有的单总线命令序列(初始化,ROM 命令,功能命令)都是由这些基本的信号 类型组成的。在这些信号中,除了应答脉 冲外,其他均由主机发出同步信号,并且 发送的所有命令和数据都是字节的低位在 前。
数字化温度传感器DS18B20
One-Wire总线(单总线)
One-Wire总线是DALLAS公司研制开发的协议。 它由一个总线主节点、一个或多个从节点组成系统, 通过一根信号线对从芯片进行数据的读取。每一个 符合 One-Wire协议的从芯片都有一个唯一的地址, 包括48位的序列号、8位的家族代码和8位的CRC代 码。主芯片对各个从芯片的寻址依据这64位的不同 来进行。One-Wire总线利用一根线实现双向通信。 因此其协议对时序的要求较严格,如应答等时序都 有明确的时间要求。基本的时序包括复位及应答时 序、写一位时序、读一位时序。 在复位及应答时序 中,主器件发出复位信号后,要求从器件在规定的 时间内送回应答信号;在位读和位写时序中,主器 件要在规定的时间内读回或写出数据。
-10.125
-25.0625 -55
1111 1111 0101 1110
1111 1110 0110 1111 1111 1100 1001 0000
FF5EH
FE6FH FC90H
2 I C-BUS
I2C总线是PHLIPS公司推出的一种串行总线,是具备多 主机系统所需的包括总线裁决和高低速器件同步功能的高 性能串行总线。
基本的数据传输格式
在图 4 和图 5 中,各种符号的意义为
:
S:起始位(START) SA:从机地址(Slave Address) ,7 位从机地址 W:写标志位(Write) ,1 位写标志 R:读标志位(Read) ,1位读标志 A:应答位(Acknowledge) ,1 位应答 /A:非应答位(Not Acknowledge) ,1位非应答 D:数据(Data) ,每个数据都必须是 8 位 P:停止位(STOP) 阴影:主机产生的信号 无阴影:从机产生的信号
SPI、I2C、UART三种串行总线的区别

SPI、I2C、UART三种串行总线的区别第一个区别当然是名字:SPI(Serial Peripheral Interface:串行外设接口);I2C(INTER IC BUS:意为IC之间总线)UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)第二,区别在电气信号线上:SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。
如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。
在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。
如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。
(注:I2C资料了解得比较少,这里的描述可能很不完备)UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。
显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行;第四,看看牛人们的意见吧!wudanyu:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且I2C使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。
总线分类

总线技术按总线所在位置分类,可以把总线分为外部总线、内部总线和片内总线:一、外部总线:1、RS-232-C总线;2、RS-485总线;3、IEEE-488总线;4、SCSI总线;5、IDE总线;6、USB总线;7、Fire wire串行总线(IEEE-1394);8、Centronics总线;二、内部总线(PC内部总线1-3)1、FSB总线;2、HT总线;HT总线是AMD 为K8平台专门设计的高速串行总线,它的发展历史可回溯到1999年,原名为“LDT总线”(Lightning Data Transport),闪电数据传输。
3、QPI总线;5、SPI总线;6、SCI总线;三、系统总线1、VESA总线;2、数据总线(DB)、控制总线(CB)、地址总线(AB);3、IBM PC总线;4、ISA总线;5、EISA总线;6、PCI总线;PCI(peripheral component interconnect)总线是当前最流行的总线之一,它是由Intel公司推出的一种局部总线。
它定义了32位数据总线,且可扩展为64位。
7、APG总线;8、2IC(intel integrated circuit bus)管理总线该总线是有飞利浦公司于80年代为音频和视频设备开发的串行总线,主要运用于服务器。
9、MCA总线;(微通道结构总线)在计算机系统总线中,还有另一大类为适应工业现场环境而设计的系统总线10、STD总线;12、PC/104总线;13、Compact PCI;Compact PCI的意思是“坚实的PCI”,是当今第一个采用无源总线底板结构的PCI系统,是PCI总线的电气和软件标准加欧式卡的工业组装标准,是当今最新的一种工业计算机标准。
14、PCI-E总线PCI Express采用的也是目前业内流行这种点对点串行连接,比起PCI以及更早期的计算机总线的共享并行架构,每个设备都有自己的专用连接,不需要向整个总线请求带宽,而且可以把数据传输率提高到一个很高的频率,达到PCI所不能提供的高带宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCL OUT SCLK IN
DATA OUT DATA IN 器 件 1#
SCL OUT SCLK IN
DATA OUT DATA IN 器 件 2#
图13-1 I2C总线的基本结构
2总线信息传送 3. I C
图13-2 I2C总线信息传送图 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 开始信号和结束信号之间传送的是信息,信息的字节数没有限制,但每个 字节必须为8位,高位在前,低位在后。数据线SDA上每一位信息状态的 改变只能发生在时钟线SCL为低电平的期间
VCC LED9 LED10
1 2 3 4 5 6 7 8 9
VCC U1
39 38 37 36 35 34 33 32
P20 P21 P22 P23 P24 P25 P26 P27
RP2ቤተ መጻሕፍቲ ባይዱ
LED11 LED12 LED13 LED14
P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
SDA:串行数据/地址线。它是一个双向传输线,用于传送地址和所有数据的发送或 接收。它是一个漏极开路端,因此要求接一个上拉电阻到Vcc端(速率为100KHz时 电阻为10K,400KHz时为1K)。对于一般的数据传输,仅在SCL为低电平期间 SDA才允许变化。SCL为高电平期间,留给开始信号(START)和停止信号(STOP) A0、A1、A2:器件地址输入端。这些输入端用于多个器件级联时设置器件地址, 当这些脚悬空时默认值为0(CAT24WC01除外)。 WP:写保护。如果WP管脚连接到VCC,所有的内容都被写保护(只能读)。 当WP管脚连接到VSS或悬空,允许对器件进行正常的读/写操作。
XTAL1 XTAL2
19 1 18
P20
RP4 LED25 LED26 LED27 LED28 LED29 LED30 LED31 LED32
2 3 4 5 6 7 8 9
P21
RST
9
P22
1K*8
RESPACK-8
LED15 LED16 U2
1 2 3 A0 A1 A2 SCK SDA WP 6 5 7
(3)同步时钟允许器件以不同的波特率进行通信。 (4)同步时钟可以作为停止或重新启动串行口发送的握手信号。
(5)串行的数据传输位速率在标准模式下可达100kbps,快速模式下可达400kbps 高速模式下可达3.4Mbps。
2 2.I C 总线的基本结构
+VCC RP SDA SCL SCL SDA SCL SDA RP
器件地址码格式
D7 D6 D5 D4 D3 片选 D2 D1 D0 R/W 器件类型码
I2C总线器件AT24CXX系列器件的地址为1010 4. I2C总线读、写操作 (1)当前地址读
(2)指定单元读
(3)指定单元写
二、AT24C02存储器的软硬件设计
1. AT24C02简介
AT24C02是美国ATMEL公司的低功耗CMOS串行EEPROM, 它内含256×8位存储空间 图13-3 AT24C02 SCL:串行时钟线。这是一个输入管脚,用于形成器件所有数据发送或接收的时钟。
第十三章 常见串行总线
河工科技
瓮嘉民制作
第十三章 常见串行总线
第一节 I2 C总线及其应用 第二节 SPI总线及其应用
第三节 单总线温度传感器DS18B20
本章主要讲述了I2C、SPI和单总线三种单片机串行接口总线 及其典型芯片24C02、DS1302和DS18B20的应用。
第一节 I C总线及其应用
P25
P26
P27
图13-9 AT24C02读写原理图和仿真效果图
第二节 SPI总线及其应用
一、SPI总线简介
SPI总线又称为同步串行外设接口,是一种符合工业标准、全双工、三线或 四线通信方式的总线系统。它允许MCU与各种外围设备以串行方式进行通信。 在SPI接口中,数据的传输需要一条时钟线,一条数据线和一条控制线 (有些芯片需要两条控制线)。SPI可以工作在主模式下或从模式下。 在主模式下每位数据发送/接收需要一个时钟周期。 二、DS1302实时时钟芯片 1.DS1302的主要性能指标 (1)DS1302实时时钟具有能计算2100年之前的秒、分、时、日、日期、星期、 月、年的能力,还有闰年调整的能力。 (2)内部含有31个字节静态RAM,可提供用户访问。 (3)采用串行数据传送方式,使得管脚数量最少,简单3 线接口。 (4)工作电压范围宽:2.0~5.5V。(5)工作电流:2.0V时,小于300nA。 (6)时钟或RAM数据的读/写有两种传送方式:单字节传送和多字节传送方式。 (7)采用8脚DIP封装或SOIC封装。(8)与TTL兼容,Vcc=5V。
一、I2C总线简介 1.I2C总线的主要特点 I2C总线是由PHILIPS公司开发一种简单、双向二线制同步串行总线。 (1)总线只有两根线,即串行时钟线(SCL)和串行数据线(SDA。
2
(2)每个连接到总线上的都有一个用于识别的器件地址,器件地址由芯片 内部硬件电路和外部地址引脚同时决定,避免了片选线的连接方法,并建立简单 主从关系,每个器件既可以作为发送器,又可以作为接收器。
VCC:电源线。VSS:地线。
2. AT24C02写操作 (1)字节写
(2)页写
图13-5 页写时序
(3)应答查询 如果AT24C02/04/08/16 正在进行内部写操作,不会发送应答信号。如果 AT24C02/04/08/16 已经完成了内部自写周期,将发送一个应答信号, 主器件可以继续进行下一次读写操作。 (4)写保护 当WP管脚接高电平时,整个寄存器区全部被保护起来而变为只可读取。
3. AT24C02读操作 (1)立即地址读
(2)选择读
图13-7 选择读时序 (3)连续读。
4. 24C02应用举例 例13.1 利用单片机将数据串“0x7e,0xbd,0xdb,0xe7,0xdb,0xbd,0x7e,0xff” 写入AT24C02,然后依次将其读出并送P0口和P2进行显示。 试用C语言编写程序,并用Proteus仿真。 解: 硬件仿真设计如图13-9所示,其所需元件如表13-1所列。
21 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17
AT89C51
PSEN ALE EA 29 30 31
P23
RESPACK-8
1K*8
P24
24C02C
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
1 2 3 4 5 6 7 8