灰色预测法

合集下载

灰色预测模型公式

灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。

灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。

灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。

灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。

系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。

灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。

2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。

3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。

4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。

5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。

灰色预测模型在实际应用中具有广泛的应用价值。

它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。

同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。

灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。

灰色预测法

灰色预测法
则关联系数定义为:
min min Xˆ 0k X 0k max max Xˆ 0k X 0k
(k)
Xˆ 0k X 0k max max Xˆ 0k X 0k
式中:
Xˆ 0k X 0k 为第k个点 X 0 和 Xˆ 0 的绝对误差; min min Xˆ 0k X 0k 为两级最小差; max max Xˆ 0k X 0k为两级最大差;
二、生成列
为了弱化原始时间序列的随机性,在 建立灰色预测模型之前,需先对原始时间 序列进行数据处理,经过数据处理后的时 间序列即称为生成列。
(1)数据处理方式 灰色系统常用的数据处理方式有累加
和累减两种。
累加 累加是将原始序列通过累加得到生成列。
累加的规则: 将原始序列的第一个数据作为生成 列的第一个数据,将原始序列的第二个 数据加到原始序列的第一个数据上,其 和作为生成列的第二个数据,将原始序 列的第三个数据加到生成列的第二个数 据上,其和作为生成列的第三个数据, 按此规则进行下去,便可得到生成列。
• 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不 确定的关系。
(2)灰色预测法 • 灰色预测法是一种对含有不确定因素的系
统进行预测的方法。
• 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内 变化的、与时间有关的灰色过程进行预测。
• 灰色系统理论提出了一种新的分析方法—— 关联度分析方法。灰色预测通过鉴别系统因素 之间发展趋势的相异程度,即进行关联分析, 并对原始数据进行生成处理来寻找系统变动的 规律,生成有较强规律性的数据序列,然后建 立相应的微分方程模型,从而预测事物未来发 展趋势的状况。
ρ称为分辨率,0<ρ<1,一般取ρ=0.5; 对单位不一,初值不同的序列,在计算相关系 数前应首先进行初始化,即将该序列所有数据 分别除以第一个数据。

灰色预测理论-定义

灰色预测理论-定义

什么是灰色预测法?灰色预测是就灰色系统所做的预测。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。

灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。

GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。

灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。

生成数通过对原始数据的整理寻找数的规律,分为三类:a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。

(整理)灰色预测法-

(整理)灰色预测法-

第7章 灰色预测方法 预测就是借助于对过去的探讨去推测、了解未来。

灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。

对于一个具体的问题,究竟选择什么样的预测模型应以充分的定性分析结论为依据。

模型的选择不是一成不变的。

一个模型要经过多种检验才能判定其是否合适,是否合格。

只有通过检验的模型才能用来进行预测。

本章将简要介绍灰数、灰色预测的概念,灰色预测模型的构造、检验、应用,最后对灾变预测的原理作了介绍。

7.1 灰数简介7.1.1 灰数一棵生长着的大树,其重量便是有下界的灰数,因为大树的重量必大于零,但不可能用一般手段知道其准确的重量,若用⊗表示大树的重量,便有[)∞∈⊗,0。

是一个确定的数。

海豹的重量在20~25公斤之间,某人的身高在1.8~1.9米之间,可分别记为 []25,201∈⊗,[]9.1,8.12∈⊗ 4. 连续灰数与离散灰数在某一区间内取有限个值或可数个值的灰数称为离散灰数,取值连续地充满某一区间的灰数称为连续灰数。

某人的年龄在30到35之间,此人的年龄可能是30,31,32,33,34,35这几个数,因此年龄是离散灰数。

人的身高、体重等是连续灰数。

5. 黑数与白数当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都为讨论方便,我们将黑数与白数看成特殊的灰数。

6. 本征灰数与非本征灰数本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。

非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。

我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。

如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。

从本质上来看,灰数又可分为信息型、概念型、层次型三类。

第8章+灰色预测方法

第8章+灰色预测方法

(6)本征灰数与非本征灰数
本征灰数是指不能或暂时还不能找到一个白数作 为其“代表”的灰数;
非本征灰数是凭借某种手段,可以找到一个白数作 为其“代表”的灰数。
则称此白数为相应灰数的白化值,记为
并用 (a) 表示以a为白化值的灰数。
如:托人代买一件价格为100元左右的衣服,可将100作
为预测衣服价格(100)的白化数,记为
(100) 100
从本质上看,灰数可分为信息型、概念型和层次 型灰数。
(7)信息型灰数
因暂时缺乏信息而不能肯定其取值的数。但到一定 的时间,通过信息补充,灰数可以完全变白。

a
(8)概念型灰数,也称意愿型灰数
指由人们的某种概念、意愿形成的灰数。
(9)层次型灰数
指由层次的改变形成的灰数。(宏观白,微观灰)
4.灰数白化与灰度 (1)有一类灰数是在某个基本值附近变动的,这类灰数白 化比较容易,可将其基本值为主要白化值。可记为
(a) a a 其中 a 为忧动灰元。此灰数的白化值为 (a) a
(2)对一般的区间灰数 [a, b] ,将白化取值为 ~ a (1)b [0,1]
息是未知 的,系统内各因素间有不确定的关系。
(2)灰色系统特点
• 用灰色数学来处理不确定量,使之量化。
• 充分利用已知信息寻求系统的运动规律。
关键:如何使灰色系统白化、模型化、优化 灰色系统视不确定量为灰色量,提出了灰色系统
建模的具体数学方法,它能用时间序列来确定微分方 程的参数。
•灰色系统理论能处理贫信息系统。
商业
X 4 6.7,6.8,5.4,4.7
参考序列分别为 X1, X 2 ,被比较序列为 X 3, X 4,

指数平滑法与灰色预测的定量预测方法的应用

指数平滑法与灰色预测的定量预测方法的应用

指数平滑法与灰色预测的定量预测方法的应用指数平滑法是一种基于历史数据的预测方法,其核心思想是通过对历史数据进行加权平均来预测未来的趋势。

具体而言,指数平滑法使用一个平滑因子来给历史数据加权,平滑因子控制了过去数据的重要性。

较小的平滑因子更加注重近期数据,而较大的平滑因子更加注重远期数据。

在每个时间点上,使用当前实际值与上一个预测值的加权平均来计算当前的预测值。

指数平滑法的优点之一是适用于数据存在较大波动的情况下,可以很好地预测趋势。

例如,在经济预测中,指数平滑法可以帮助企业预测销售额、利润等指标,从而帮助企业制定合理的生产和经营计划。

此外,指数平滑法还可以用于预测股票价格、人口增长等领域。

灰色预测是一种基于数据的非线性预测方法,它通过建立灰色模型来预测未来的趋势。

灰色预测的核心思想是利用已知数据与未知数据之间的关联性,通过建立灰色微分方程来进行预测。

灰色模型通常包括灰色预测模型和灰色关联度分析模型两部分。

灰色预测的优点之一是可以在数据少的情况下进行预测。

对于缺乏大量历史数据的领域,如新兴产业、新产品预测等,灰色预测能够较好地应用。

此外,灰色预测还可以用于预测人口迁移、环境变化等领域的问题。

指数平滑法和灰色预测方法在实际应用中经常结合使用,可以得到更加准确的预测结果。

两种方法的结合应用主要有两个方面:一是辅助定位,即通过指数平滑法先对数据进行初步预测,然后通过灰色预测方法进一步提高预测精度;二是辅助判断,即通过指数平滑法对灰色预测结果进行验证和修正。

这种结合应用可以充分发挥两种方法的优势,提高预测精度,减少预测误差。

综上所述,指数平滑法与灰色预测方法是常用的定量预测方法,广泛应用于经济、物流、市场等领域。

两种方法在实际应用中经常结合使用,可以得到更加准确的预测结果。

通过合理选择预测方法和模型参数,结合实际情况进行预测分析,可以为决策者提供科学依据,帮助他们做出准确的决策。

第六章 灰色预测法

第六章 灰色预测法

灰色系统理论认为任何随机过程都是一定幅度值范围内变化的灰 色量,所以随机过程是一个灰色过程. 灰色系统理论认为,尽管系统表象复杂,数据散乱,信息不充 分,但作为系统,它必然有整体功能和内在规律,必然是有序的. 在处理手法上,对灰色量的处理不是寻求它的统计规律和概率分 布,而是通过对杂乱无章的原始数据的整理来寻找数的规律,这 叫数的生成. 对原始数据作累加处理后,便出现了明显的指数规律.通过对生 成数据建立动态模型,来挖掘系统内部信息并充分利用信息进行 分析预测. 灰色预测(grey prediction)是利用灰色系统理论就灰色系统 所作的预测.
概率统计研究的是"随机不确定"现象的历史统计规 律,考察具有多种可能发生的结果的"随机不确定"现 象中每一种结果发生的可能性的大小,其出发点是, 大样本,且对象服从某种典型分布. 灰色系统研究的是"部分信息明确,部分信息未知"的 "小样本,贫信息"不确定性系统,它通过对已知"部分" 信息的生成去开发了解,认识现实世界.着重研究"外 延明确,内涵不明确"的对象.
2050年中国人口控制在15亿到16亿之间
树高在20米至30米
项目 研究对象 基础集合 方法依据 途径手段 数据要求 侧重 目标 特色
灰色系统 贫信息不确定 灰色朦胧集 信息覆盖 灰序列生成 任意分布 内涵 现实规律 小样本
概率统计 随机不确定 康托集 映射 频率分布 典型分布 内涵 历史统计规律 大样本
X ( 0) = ( x ( 0) (1), x ( 0) (2),
令z
(1)
, x ( 0) (n))
(k ) =
(1)
1 (1) (1) ( x (k ) + x (k 1)) 2

灰色预测技术研究进展综述

灰色预测技术研究进展综述

灰色预测技术研究进展综述灰色预测是一种基于系统动力学的定量预测方法,它在预测问题中具有广泛的应用。

本文将对灰色预测技术的研究进展进行综述,以便读者对该方法有一个全面的了解。

我们将介绍灰色预测的基本原理和方法。

灰色预测是一种基于灰色系统理论的预测方法,它通过建立灰色微分方程来描述系统的发展趋势。

与传统的数学模型不同,灰色预测方法可以较好地处理样本数据量较小,且不完备的情况。

它通过对数据进行灰色化处理,将其转化为灰色微分方程,然后通过求解该方程来预测未来的发展趋势。

接下来,我们将介绍灰色预测技术在各个领域的应用。

灰色预测方法在经济、环境、医学、交通等领域都有广泛的应用。

例如,在经济领域,灰色预测可以用于预测经济增长趋势、物价走势等。

在环境领域,灰色预测可以用于预测污染物排放量、气候变化趋势等。

在医学领域,灰色预测可以用于疾病的预测和诊断。

在交通领域,灰色预测可以用于交通流量的预测和交通拥堵的预警等。

然后,我们将介绍灰色预测技术的改进和优化方法。

随着研究的深入,学者们对灰色预测方法进行了不断的改进和优化,以提高预测的准确性和可靠性。

例如,有学者提出了基于灰色关联度的灰色预测方法,通过引入关联度概念,可以更准确地描述系统的发展趋势。

还有学者提出了基于灰色神经网络的灰色预测方法,通过结合神经网络和灰色模型,可以更好地处理非线性和复杂的预测问题。

我们将展望灰色预测技术的发展方向。

虽然灰色预测方法在预测问题中具有一定的优势,但仍然存在一些问题和挑战。

未来的研究可以集中在以下几个方面:进一步改进和优化灰色预测方法,提高预测的准确性和可靠性;探索灰色预测方法与其他预测方法的结合,以提高预测的精度和稳定性;开发适用于特定领域的灰色预测模型,以满足不同领域的预测需求。

灰色预测技术是一种有效的预测方法,在各个领域都有广泛的应用。

随着研究的深入,灰色预测方法也在不断改进和优化。

未来的研究可以进一步提高预测的准确性和可靠性,以满足不同领域的预测需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答: 以 X 1 为参考序列求关联度。 第一步:初始化,即将该序列所有数据分别 除以第一个数据。得到:
1,0.9475,0.9235,0.9138 X1 1,1.063,1.1227,1.1483 X2 1,.097,1.0294,1.0294 X3 1,1.0149,0.805 X m1 i
i 1
k
•对非负数据,累加次数越多则随机性弱化越多, 累加次数足够大后,可认为时间序列已由随机序 列变为非随机序列。
•一般随机序列的多次累加序列,大多可用指数曲 线逼近。
累减 将原始序列前后两个数据相减得到累减生成列
累减是累加的逆运算,累减可将累加生成列还原 为非生成列,在建模中获得增量信息。 一次累减的公式为:
X
1
k X k X k 1
0 0
三、关联度 关联度分析是分析系统中各因素关联程度的方 法,在计算关联度之前需先计算关联系数。 (1)关联系数

ˆ 0 k X ˆ 0 1, X ˆ 0 2,..., X ˆ 0 n X
X1 45.8, 43.4, 42.3, 41.9
X 2 (39.1, 41.6, 43.9, 44.9)
农业
商业 试求关联度。
运输业 X 3 3.4, 3.3, 3.5, 3.5
X 4 6.7, 6.8, 5.4, 4.7
X4 参考序列分别为 X 1 , ,被比较序列为 X 2 , X 3 ,,
第二步:求序列差
2 0,0.1155,0.1992,0.2335
4 0,0.0674,0.1185,0.2148
第三步:求两极差
3 0,0.0225,0.1059,0.1146
m min min i k 0
M max max i k 0.2335
10.1 灰 色 预 测 理 论
一、灰色预测的概念 灰色预测法是一种对含有不确定因素的系 统进行预测的方法。
(1)灰色系统、白色系统和黑色系统
• 白色系统是指一个系统的内部特征是完全 已知的,即系统的信息是完全充分的。 • 黑色系统是指一个系统的内部信息对外界 来说是一无所知的,只能通过它与外界的联 系来加以观测研究。 • 灰色系统内的一部分信息是已知的,另一 部分信息是未知的,系统内各因素间有不确 定的关系。
第四步:计算关联系数
取ρ=0.5,有:
0.11675 1i k , i 2,3,4 i k 0.11675
对单位不一,初值不同的序列,在计算关联系数 前应首先进行初始化,即将该序列所有数据分别 除以第一个数据。
(2)关联度
X 0 k

ˆ 0 k X
的关联度为:
1 n r k n k 1
一个计算关联度的例子
工业、农业、运输业、商业各部门的行为 数据如下: 工业
(2)灰色预测法 灰色预测是对既含有已知信息又含有不确定信 息的系统进行预则,就是对在一定范围内变化的、 与时间有关的灰色过程进行预测。 灰色预测通过鉴别系统因素之间发展趋势的相 异程度,即进行关联分析,并对原始数据进行生成 处理来寻找系统变动的规律,生成有较强规律性的 数据序列,然后建立相应的微分方程模型,从而预 测事物未来发展趋势的状况。 灰色预测法用等时距观测到的反映预测对象特 征的一系列数量值构造灰色预测模型,预测未来某 一时刻的特征量,或达到某一特征量的时间。
记原始时间序列为:
X 0 X 0 1, X 0 2, X 0 3,... X 0 n


生成列为:
X 1 X 1 1, X 1 2, X 1 3,... X 1 n


上标1表示一次累加,同理,可作m次累加:



X 0 k X 0 1, X 0 2,..., X 0 n

则关联系数定义为:
(k )
ˆ 0 k X 0 k max max X ˆ 0 k X 0 k min min X ˆ 0 k X 0 k max max X ˆ 0 k X 0 k X
二、生成列 为了弱化原始时间序列的随机性,在 建立灰色预测模型之前,需先对原始 时间序列进行数据处理,经过数据处 理后的时间序列即称为生成列。
(1)数据处理方式
灰色系统常用的数据处理方式有累 加和累减两种。
累加
累加是将原始序列通过累加得到生成列。
累加的规则: 将原始序列的第一个数据作为生成列 的第一个数据,将原始序列的第二个数据 加到原始序列的第一个数据上,其和作为 生成列的第二个数据,将原始序列的第三 个数据加到生成列的第二个数据上,其和 作为生成列的第三个数据,按此规则进行 下去,便可得到生成列。
(3)灰色预测的四种常见类型
• 灰色时间序列预测
即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量, 或达到某一特征量的时间。 • 畸变预测 即通过灰色模型预测异常值出现的时刻,预测 异常值什么时候出现在特定时区内。
系统预测 通过对系统行为特征指标建立一组相互关联的 灰色预测模型,预测系统中众多变量间的相互协调 关系的变化。 拓扑预测 将原始数据做曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数 列,然后建立模型预测该定值所发生的时点。
式中:
ˆ 0 k X 0 k X
ˆ 0 的绝对误差; 为第k个点 X 0 和 X
ˆ 0 k X 0 k min min X
ˆ 0 k X 0 k max max X
为两级最小差; 为两级最大差;
ρ称为分辨率,0<ρ<1,一般取ρ=0.5;
相关文档
最新文档