灰色预测方法
灰色模型算术公式

灰色模型算术公式灰色模型是一种用于预测和分析数据的方法,其基本思想是将数据分为两类:已知数据和未知数据。
已知数据是指已经确定并可以用来建模的数据,而未知数据则是需要预测或者分析的数据。
为了对未知数据进行预测或分析,灰色模型使用了灰色系统理论中的灰色预测方法。
灰色模型的算术公式包括:灰色微分方程、灰色模型GM(1,1)、灰色关联度等。
其中,灰色微分方程是灰色预测方法的核心公式,它的形式为:$$ frac{dx}{dt} + a x = u $$其中,$x$ 表示原始数据序列,$t$ 表示时间,$a$ 表示灰色微分方程的参数,$u$ 表示灰色微分方程的非齐次项。
通过对该方程进行求解,可以得到灰色模型的预测结果。
另外,灰色模型GM(1,1)是一种常用的灰色预测模型,它的基本形式为:$$ x(k+1) = (x(1)-frac{u}{a})e^{-ak} + frac{u}{a} $$ 其中,$x(k+1)$ 表示预测值,$x(1)$ 表示初始值,$a$ 和$u$ 分别表示灰色微分方程的参数。
通过对历史数据进行处理,可以得到灰色模型GM(1,1)的预测结果。
此外,灰色关联度是用于分析数据间关系的一种方法,在灰色系统理论中被广泛应用。
灰色关联度的计算公式为:$$ r_{ij} = frac{sum_{k=1}^nmin(x_i(k),x_j(k))}{sum_{k=1}^n x_i(k)} $$其中,$x_i(k)$ 和 $x_j(k)$ 分别表示第 $i$ 个和第 $j$ 个数据在第 $k$ 个时刻的值,$n$ 表示时刻数。
通过计算灰色关联度,可以了解数据之间的关系,从而对其进行进一步的分析和预测。
总之,灰色模型的算术公式包括灰色微分方程、灰色模型GM(1,1)、灰色关联度等,这些公式是灰色预测和分析方法的核心内容。
在实际应用中,可以根据具体情况选择合适的公式进行计算和分析。
灰色预测法

灰色预测法1.介绍灰色预测就是灰色系统所做的预测,灰色系统理论是我国著名学者邓聚龙教授创立的一种兼具软硬科学特性的新理论。
灰色系统的具体含义就是:部分信息已知,部分信息未知的某一系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素有很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
2.适用问题灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
比如说人口预测、气象预报、初霜预测、灾变预测(如地震时间的预测)、数列预测(如对消费物价指数的预测)。
灰色预测模型所需要的数据量比较少,预测比较准确,精确度比较高。
样本分布不需要有规律性,计算简便,检验方便。
灰色GM(1,1) 模型是指运用曲线拟合和灰色系统理论进行预测的方法,对历史数据有很强的依赖性,没有考虑各个因素之间的联系,所以误差偏大,只适合做中长期的预测,不适合长期预测。
3.数学方法核心步骤3.1数据的检验与处理首先,为了确保建模方法的可行性,需要对抑制数据作必要的检验处理,设参考数据为(0)(0)(0)(0)((1),(2),...,())x x x x n =,计算数列的级比(0)(0)(1)().2,3,...,()x k k k n x k λ-==如果所有的级比()k λ 都在可容覆盖2212(,)n n ee-++ 内,则数列(0)x 可以作为模型GM(1,1)的数据进行灰色预测,否则,需要对(0)x 做必要地变换处理,使其落入可容覆盖内,即取适当的c ,做平移变换(0)(0)()(),1,2,...,y k x k c k n =+=则是数列(0)(0)(0)(0)()((1),(2),...,())y k y y y n =的级比(0)(0)(1)(),2,3,...,()y y k k X k n y k λ-=∈=3.2 建立模型按照下面的办法建立模型GM (1,1)(1) 由上面的叙述知道参考数据列为(0)(0)(0)(0)((1),(2),...,())x x x x n =,对其做一次累加(AGO )生成数列(1)x(1)(1)(1)(1)(1)(1)(0)(1)(0)((1),(2),...,())((1),(1)(2),...,(1)())x x x x n x x x x n x n ==+-+其中(1)(0)1()()(1,2,...,)ki x k x i k n ===∑ 。
灰色预测模型公式

灰色预测模型公式灰色预测模型是一种基于历史数据和现有数据的预测方法,它可以用来预测未来某个事件或指标的发展趋势。
灰色预测模型的核心思想是利用系统自身的信息和规律,通过建立灰色微分方程来进行预测。
灰色预测模型的公式可以表示为:$$\hat{X}_{0}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i}^{(k)} = (X_{0}^{(1)} + X_{0}^{(2)} + ... + X_{0}^{(k)}) / k$$$$\hat{X}_{i+1}^{(1)} = aX_{i}^{(1)} + b$$$$\hat{X}_{i+1}^{(k+1)} = aX_{i}^{(k+1)} + b$$其中,$X_{0}^{(k)}$表示观测数据的累加生成序列,$\hat{X}_{i}^{(k)}$表示预测值,$a$和$b$为待确定的系数。
灰色预测模型的核心思想是将数据分为两个部分:系统的发展规律部分和随机波动部分。
系统的发展规律部分可以通过灰色微分方程进行建模和预测,而随机波动部分则通过随机项来表示。
灰色预测模型的建模步骤如下:1. 数据预处理:对原始数据进行平滑处理,消除随机波动的影响,得到累加生成序列。
2. 确定发展规律:根据累加生成序列,建立灰色微分方程,估计系统的发展规律。
3. 模型参数估计:通过最小二乘法估计模型的参数,确定$a$和$b$的值。
4. 模型检验和优化:对模型进行检验和优化,确保预测结果的准确性和可靠性。
5. 模型预测:利用建立好的灰色预测模型,对未来的数据进行预测。
灰色预测模型在实际应用中具有广泛的应用价值。
它可以用来预测各种经济指标、环境数据、自然灾害等,为决策提供科学依据。
同时,灰色预测模型还可以用于评估和分析系统的可持续发展能力,帮助企业和机构合理规划和管理资源。
灰色预测模型是一种基于历史数据和现有数据的预测方法,它通过利用系统自身的信息和规律,建立灰色微分方程来进行预测。
灰色预测和时间序列预测的优缺点和应用场景比较

灰色预测和时间序列预测的优缺点和应用场景比较灰色预测和时间序列预测是常用的预测分析方法,它们在很多领域都具有广泛的应用。
本文将比较这两个方法的优缺点和应用场景,以期帮助读者更好地理解和使用它们。
一、灰色预测方法灰色预测方法是一种基于信息不完备的小样本预测方法,它可以在数据量较小时对未来趋势进行预测。
它的优点包括:1、适用范围广:灰色预测方法适用于各种经济、社会和科技等领域的短期和中长期预测,对于复杂多变的系统也有较好的适应性。
2、效果显著:灰色预测方法可以针对不平衡数据或缺少有效信息的数据进行预测,准确率较高,在实际应用中表现出较好的效果。
3、计算简单:灰色预测方法原理简单,计算量小,对计算资源的要求较低。
但是,灰色预测方法也存在一些缺点:1、数据需求严格:灰色预测方法对数据要求较高,在数据量不充足的情况下容易出现预测偏差。
2、理论基础不足:灰色预测方法的理论体系相对较弱,缺乏统一的数学架构支撑。
3、易受外部因素影响:灰色预测方法很容易受到外部因素的影响,对于具有较强周期性的数据预测,其效果可能不太理想。
二、时间序列预测方法时间序列预测方法是指将某一现象随时间变化的过程所形成的数值序列作为研究对象,通过对序列的统计特征进行分析来预测未来的趋势。
它的优点有:1、适用性广泛:时间序列预测方法适用于各种领域的数据,并可应用于多种时间序列模型,如ARIMA、ARCH、GARCH等。
2、模型复杂,预测精度高:时间序列预测方法可使用多种复杂模型进行预测,模型优化后可以得到较为精确的预测结果。
3、预测稳定可靠:时间序列预测方法通常采用样本内和样本外检验来验证预测模型的稳定性和可靠性。
但是,时间序列预测方法也存在一些缺点:1、数据需求严格:时间序列预测方法对基础数据的准确性和完整性要求非常高,只有数据质量较高时才能得到准确的结果。
2、影响因素复杂:由于各种外部和内部因素的影响,某些时间序列的预测较为困难。
3、计算资源要求高:时间序列预测方法涉及多个模型、参数和算法,因此需要更高的计算资源和算法优化,计算成本较高。
01灰色预测

算法简介1、灰色预测模型(必掌握) 灰色预测模型使用范围:①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式③只适合做中短期预测,不适合长期预测。
灰色预测原理比较简单,详细的可以参考司守奎《数学建模算法与应用》。
需要注意的几点是:(1)灰色预测的使用范围(2)灰色预测中的“级比”如果级比不在范围要对数据进行处理。
(3)司老师书中的代码,并没有运行出后面的运行结果,如果想运行出预测的结果,看下面的说明。
(4)在使用灰色预测的时候要考虑残差等(见代码的最后三行) (5)代码直接复制粘贴文本文档的文件就可以了。
(6)文本文档是给出了两种代码,不要复制错了,第一个是司老师书中的。
第二个是学员提交的作业,可以直接得出预测结果,但是没有检验结果。
例 北方某城市 1986~1992 年道路交通噪声平均声级数据见1。
表1 城市交通噪声数据/dB(A)序号 年份 eq L序号 年份 eq L1 1986 71.1 5 1990 71.42 1987 72.4 6 1991 72.03 1988 72.4 7 1992 71.6 4198972.1该例题源代码如下: clc,clearx0=[71.1 72.4 72.4 72.1 71.4 72.0 71.6]';%注意这里为列向量 n=length(x0);lamda=x0(1:n-1)./x0(2:n) %计算级比 range=minmax(lamda') %计算级比的范围 x1=cumsum(x0); %累加运算B=[-0.5*(x1(1:n-1)+x1(2:n)),ones(n-1,1)]; Y=x0(2:n); u=B\Y syms x(t)x=dsolve(diff(x)+u(1)*x==u(2),x(0)==x0(1));%求微分方程的符号解xt=vpa(x,6)%以小数格式显示微分方程的解yuce1=subs(x,t,[0:n-1]);%为提高预测精度,先计算预测值,再显示微分方程的解。
灰色预测法

min min Xˆ 0k X 0k max max Xˆ 0k X 0k
(k)
Xˆ 0k X 0k max max Xˆ 0k X 0k
式中:
Xˆ 0k X 0k 为第k个点 X 0 和 Xˆ 0 的绝对误差; min min Xˆ 0k X 0k 为两级最小差; max max Xˆ 0k X 0k为两级最大差;
二、生成列
为了弱化原始时间序列的随机性,在 建立灰色预测模型之前,需先对原始时间 序列进行数据处理,经过数据处理后的时 间序列即称为生成列。
(1)数据处理方式 灰色系统常用的数据处理方式有累加
和累减两种。
累加 累加是将原始序列通过累加得到生成列。
累加的规则: 将原始序列的第一个数据作为生成 列的第一个数据,将原始序列的第二个 数据加到原始序列的第一个数据上,其 和作为生成列的第二个数据,将原始序 列的第三个数据加到生成列的第二个数 据上,其和作为生成列的第三个数据, 按此规则进行下去,便可得到生成列。
• 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不 确定的关系。
(2)灰色预测法 • 灰色预测法是一种对含有不确定因素的系
统进行预测的方法。
• 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内 变化的、与时间有关的灰色过程进行预测。
• 灰色系统理论提出了一种新的分析方法—— 关联度分析方法。灰色预测通过鉴别系统因素 之间发展趋势的相异程度,即进行关联分析, 并对原始数据进行生成处理来寻找系统变动的 规律,生成有较强规律性的数据序列,然后建 立相应的微分方程模型,从而预测事物未来发 展趋势的状况。
ρ称为分辨率,0<ρ<1,一般取ρ=0.5; 对单位不一,初值不同的序列,在计算相关系 数前应首先进行初始化,即将该序列所有数据 分别除以第一个数据。
灰色预测法

解答: 以 X 1 为参考序列求关联度。 第一步:初始化,即将该序列所有数据分别 除以第一个数据。得到:
1,0.9475,0.9235,0.9138 X1 1,1.063,1.1227,1.1483 X2 1,.097,1.0294,1.0294 X3 1,1.0149,0.805 X m1 i
i 1
k
•对非负数据,累加次数越多则随机性弱化越多, 累加次数足够大后,可认为时间序列已由随机序 列变为非随机序列。
•一般随机序列的多次累加序列,大多可用指数曲 线逼近。
累减 将原始序列前后两个数据相减得到累减生成列
累减是累加的逆运算,累减可将累加生成列还原 为非生成列,在建模中获得增量信息。 一次累减的公式为:
X
1
k X k X k 1
0 0
三、关联度 关联度分析是分析系统中各因素关联程度的方 法,在计算关联度之前需先计算关联系数。 (1)关联系数
设
ˆ 0 k X ˆ 0 1, X ˆ 0 2,..., X ˆ 0 n X
X1 45.8, 43.4, 42.3, 41.9
X 2 (39.1, 41.6, 43.9, 44.9)
农业
商业 试求关联度。
运输业 X 3 3.4, 3.3, 3.5, 3.5
X 4 6.7, 6.8, 5.4, 4.7
X4 参考序列分别为 X 1 , ,被比较序列为 X 2 , X 3 ,,
第二步:求序列差
2 0,0.1155,0.1992,0.2335
4 0,0.0674,0.1185,0.2148
第三步:求两极差
3 0,0.0225,0.1059,0.1146
第8章+灰色预测方法

(6)本征灰数与非本征灰数
本征灰数是指不能或暂时还不能找到一个白数作 为其“代表”的灰数;
非本征灰数是凭借某种手段,可以找到一个白数作 为其“代表”的灰数。
则称此白数为相应灰数的白化值,记为
并用 (a) 表示以a为白化值的灰数。
如:托人代买一件价格为100元左右的衣服,可将100作
为预测衣服价格(100)的白化数,记为
(100) 100
从本质上看,灰数可分为信息型、概念型和层次 型灰数。
(7)信息型灰数
因暂时缺乏信息而不能肯定其取值的数。但到一定 的时间,通过信息补充,灰数可以完全变白。
a
(8)概念型灰数,也称意愿型灰数
指由人们的某种概念、意愿形成的灰数。
(9)层次型灰数
指由层次的改变形成的灰数。(宏观白,微观灰)
4.灰数白化与灰度 (1)有一类灰数是在某个基本值附近变动的,这类灰数白 化比较容易,可将其基本值为主要白化值。可记为
(a) a a 其中 a 为忧动灰元。此灰数的白化值为 (a) a
(2)对一般的区间灰数 [a, b] ,将白化取值为 ~ a (1)b [0,1]
息是未知 的,系统内各因素间有不确定的关系。
(2)灰色系统特点
• 用灰色数学来处理不确定量,使之量化。
• 充分利用已知信息寻求系统的运动规律。
关键:如何使灰色系统白化、模型化、优化 灰色系统视不确定量为灰色量,提出了灰色系统
建模的具体数学方法,它能用时间序列来确定微分方 程的参数。
•灰色系统理论能处理贫信息系统。
商业
X 4 6.7,6.8,5.4,4.7
参考序列分别为 X1, X 2 ,被比较序列为 X 3, X 4,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•灰色系统理论能处理贫信息系统。
(只要求较短的观测资料即可)
(3)灰色预测法 • 灰色预测法是一种对含有不确定因素的系统 进行预测的方法。 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内变 化的、与时间有关的灰色过程进行预测。
(5)黑数与白数
当 ∈(- ∞, ∞)或 ∈(1, 2),(即当 的上界、 下界皆为无穷或上、下界都是灰数时,称为黑数, 当 ∈ [a,a]且a=a,时,称为白数。
(6)本征灰数与非本征灰数
本征灰数是指不能或暂时还不能找到一个白数作 为其“代表”的灰数; 非本征灰数是凭借某种手段,可以找到一个白数作 为其“代表”的灰数。 则称此白数为相应灰数的白化值,记为 并用 (a) 表示以a为白化值的灰数。 如:托人代买一件价格为100元左右的衣服,可将100作 为预测衣服价格(100)的白化数,记为
a 取数一致
∈[2/5,5/2] 取数不一致
灰度:是灰数的测度。 灰度在一定程度上反映了人们对灰色系统之行为 特征的未知程度。它与相应定义信息域的长度及其 基本值有关。
8.2 灰 色 预 测 概 念
一、灰色预测的概念
(1)灰色系统、白色系统和黑色系统
• 白色系统是指一个系统的内部特征是完全已知的,
值白化。
在区间灰数取值的分布信息缺乏时,常采用等权均值白化。
在灰数的分布信息已知时,常采用非等权均值白化。如: 如:某人2000年的年龄可能是40岁到60岁, [40, 60] 根据了解,此人受初中级教育12年,且20世纪60年代中期 考入大学,故此人的年龄到2000年为58左右的可能性较大。 或者在56岁到60岁的可能性较大。 注:白权化函数被用来描述一个灰数对其取值范围内不同 数值的“偏爱”程度。
即系统的信息是完全充分的。
• 黑色系统是指一个系统的内部信息对外界来说是
一无所知的,只能通过它与外界的联系来加以观测 研究。
• 灰色系统内的一部分信息是已知的,另一 部分信
息是未知 的,系统内各因素间有不确定的关系。
(2)灰色系统特点 • 用灰色数学来处理不确定量,使之量化。 • 充分利用已知信息寻求系统的运动规律。
3、区间灰数的运算 设灰数1 ∈ [a, b], 2 ∈ [c,d] (a<b,c<d)
(1) 1 + 2 ∈[a+c,b+d]
(2) -1 ∈ [-a, -b]
(3) 1 - 2 =1 +(- 2) ∈[a-d,b-c]
a
(4) 1 ·2 ∈ [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]
二、灰数及其运算
1、灰数:只知道大概范围而不知道其确切的数, 通常记为:“”。
例如: (1)多少层的楼房算高楼,中高楼,低楼。 (2)多么大的苹果算大苹果,小苹果。
2、灰数的种类
(1)仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞]、 ∈(a)
(2)仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,a ] (3)区间灰数 既有上界又有下界的灰数: ∈ [a, a] (4)连续灰数与离散灰数 a 在某一区间内取有限个值的灰数为离散灰数, 取值连续地取满整个区间的灰数为连续灰数。
定义:起点,终点确定的左升、右降连续函数称为典型的 白化权函数。 f(x) 1
L(x) R(x)
x 0 x1 x2 x3 x4 定义:设区间灰数1 ∈ [a, b], 2 ∈ [c,d] (a<b,c<d)
1 a (1 )b [0,1], 2 a (1 )b [0,1]
其中
a 为忧动灰元。此灰数的白化值为 (a) a
ห้องสมุดไป่ตู้
(2)对一般的区间灰数 [ a, b] ,将白化取值为
a (1 )b
~
~
[0,1]
定义:形如
a (1 )b [0,1] 的白化称为等权白化。
1 定义:在等权白化中 2 而得到的白化值称为等权均
8.1 灰色系统基本原理与灰数
一、原理 1、差异信息原理: 差异即信息,凡信息必有差异。 2、解的非唯一性原理:信息不完全、不确定的解是非唯 一的。该原理是灰色系统理论解决实际问题所遵循的 基本法则。 3、最少信息原理:灰色系统理论的特点是充分利用已占 有的“最少信息”。 4、认知根据原理:信息是认知的根据。 5、新信息优先原理:新信息对认知的作用大于老信息。 6、灰性不灭原理: “信息不完全”是绝对的。
(100) 100
从本质上看,灰数可分为信息型、概念型和层次 型灰数。 (7)信息型灰数
因暂时缺乏信息而不能肯定其取值的数。但到一定 的时间,通过信息补充,灰数可以完全变白。
a
(8)概念型灰数,也称意愿型灰数
指由人们的某种概念、意愿形成的灰数。
(9)层次型灰数
指由层次的改变形成的灰数。(宏观白,微观灰)
当
~
~
时,称 1与2取数一致;
当 时,称1与2取数不一致。
定理1:区间灰数不能相消、相约。 即:灰数自差一般不能等于0,仅当减数与被减数 的取数一致时,灰数的自差才等于0。 如: ∈[2,5], - =1 如: / =0 取数一致
∈[-3,3] 取数不一致
• 灰色预测通过鉴别系统因素之间发展趋势的 相异程度,即进行关联分析,并对原始数据进 行生成处理来寻找系统变动的规律,生成有较 强规律性的数据序列,然后建立相应的微分方 程模型,从而预测事物未来发展趋势的状况。
(5) 1/ 2 ∈[min{a/c,a/d,b/c,b/d},max{a/c,a/d,b/c,b/a}]
(6)若k为正实数, 则: k1 ∈[ka, kb]
4.灰数白化与灰度
(1)有一类灰数是在某个基本值附近变动的,这类灰数白 化比较容易,可将其基本值为主要白化值。可记为
(a) a a