(新)集合与充要条件练习题
(完整版)集合与充要条件练习题

(完整版)集合与充要条件练习题一、选择题1.下列语句能确定一个集合的是()A 浙江公路技师学院高个子的男生B 电脑上的容量小的文件全体C 不大于3的实数全体D 与1接近的所有数的全体2.下列集合中,为无限集的是()A 比1大比5小的所有数的全体B 地球上的所有生物的全体C 超级电脑上所有文件全体D 能被百度搜索到的网页全体3.下列表示方法正确的是()2.0 (3)A NB QC RD Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是()A.大于5的自然数B.一切很大的数C.路桥系优秀的学生D.班上考试得分很高的同学5.下列不能组成集合的是()A. 不大于8的自然数B. 很接近于2的数C.班上身高超过2米的同学D.班上数学考试得分在85分以上的同学6.下列语句不正确的是()A.由3,3,4,5构成一个集合,此集合共有3个元素B.所有平行四边形构成的集合是个有限集C.周长为20cm 的三角形构成的集合是无限集D.如果,,a Q b Q a b Q ∈∈+∈则7.下列集合中是有限集的是(){}{}{}{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形8.下列4个集合中是空集的是() {}{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=9.下列关系正确的是().0.0.0.0A B C D ∈≠?10.用列举法表示集合{}2|560x x x -+=,结果是()A.3B.2C.{}3,2 D.3,211.绝对值等于3的所有整数组成的集合是()A.3B.{}3,3- C.{}3 D.3,-312.用列举法表示方程24x =的解集是(){}{}{}{}2.|4.2,2.2.2A x x B C D =--13.集合{}1,2,3,4,5也可表示成(){}{}{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈14.下列不能表示偶数集的是(){}{}{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈L L 是偶数15.下列表示集合{}1,1-不正确的是(){}{}{}{}22.|1.1.|1.|1A x x B x C x x D x ====16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是()....A A B B A B C B A D A B ≠17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是()....A A B B B A C A B D B A ∈∈??18.集合{},,a b c 的子集个数为().3.7.8.9A B C D 个个个个19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是() {}{}{}.1234.3..012A B C D ?,,,,,20.已知{}{}24734,5(A B A B ==?=,,,,,则).{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D21.若N={自然数},Z={整数},则()N Z ?=A.NB.Z C{0} D.{正整数}22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =I {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =U {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 24.若全集U={整数},集合A={奇数},则()U A =eA.{偶数}B.{整数}C.{自然数} D{奇数}25.()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件26.()0"0b 0ab a ==="是“且”的A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件27.x>5是x>3的( )A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件二、填空题:1.自然数集用大写字母______表示;整数集用大写字母______表示;有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;2.用符号“∈”或“?”填空11)3.14__;3)__;4)2__;6)__2R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;5.绝对值小于6的实数组成的集合_______________;6.大于0而小于10的奇数组成的集合__________________;7.小于7的正整数组成的集合__________________;8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;,,__,,;__0;__0;______.a a b c a b c c a b ??正三角形等腰三角形;平行四边形梯形已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==I U 已知A={10以内的质数},B={偶数},则______.A B =I用“充分条件”,“必要条件”或“充要条件”填空:1)416________;x ==2是x 的2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;4)24a b >是方程20x ax b ++=有实根的 __________;5)若,,a b R ∈则220a b +=是0a b +=的_____________;解答题写出{1,2,3}的所有子集,并指出哪些不是真子集。
高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件精品练习(含解析)新人教A版必修

1.4.1 充分条件与必要条件6.若“x>1”是“x>a”的充分条件,则a的取值X围是________.关键能力综合练一、选择题1.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A.充分条件B.必要条件C.既是充分条件,也是必要条件D.既不充分又不必要条件2.设集合A={x|0≤x≤3},集合B={x|1≤x≤3},那么“m∈A”是“m∈B”的( ) A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不充分又不必要条件3.设a,b∈R,则“(a-b)·a2<0”是“a<b”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件4.设集合M={x|x≥2},P={x|x>1},则“x∈M∪P”是“x∈M∩P”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件5.设x∈R,则“|x|<1”是“x3<1”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件6.设x,y是两个实数,则“x,y中至少有一个大于1”的一个充分不必要条件是( ) A.x+y=2 B.x+y>21.4 充分条件与必要条件1.4.1 充分条件与必要条件必备知识基础练1.解析:(1)若α为锐角,α不一定等于45°,因此p 不是q 的充分条件;反之,若α=45°,则α为锐角,因此p 是q 的必要条件.(2)由x >1可以推出x 2>1,因此p 是q 的充分条件;由x 2>1,得x <-1,或x >1,不一定有x >1.因此,p 不是q 的必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3,因此p 不是q 的充分条件;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要条件.(4)二次函数y =ax 2+bx +c ,当Δ>0时,其图象与x 轴有交点,因此p 是q 的充分条件;反之若函数的图象与x 轴有交点,则Δ≥0,不一定是Δ>0,因此p 不是q 的必要条件.2.解析:当a =1时,|a |=1成立,但当|a |=1时,a =±1,所以a =1不一定成立,∴“a =1”是“|a |=1”的充分条件.故选A.答案:A3.解析:∵-2<x <1⇒x >1或x <-1,且x >1或x <-1⇒-2<x <1.∴“-2<x <1”是“x >1或x <-1”的既不充分条件,也不必要条件.答案:C4.解析:当x >1时,1x <1成立;当x <0时,也满足1x <1,故“x >1”是“1x<1”的充分不必要条件.答案:A5.解析:由于x =0⇒x 2=2x ,所以“x 2=2x ”是“x =0”的必要条件,“x =0”是“x2=2x”的充分条件.答案:必要充分6.解析:因为x>1⇒x>a,所以a≤1.答案:a≤1关键能力综合练1.解析:“便宜没好货”的意思是“好货”肯定“不便宜”,所以“不便宜”是“好货”的必要条件.答案:B2.解析:因为集合A={x|0≤x≤3},集合B={x|1≤x≤3},则由“m∈A”得不到“m∈B”,反之由“m∈B”可得到“m∈A”,故选B.答案:B3.解析:若(a-b)·a2<0,则必有a-b<0,即a<b;而当a<b时,不能推出(a-b)·a2<0,如a=0,b=1,所以“(a-b)·a2<0”是“a<b”的充分不必要条件.答案:A4.解析:因为M∪P={x|x>1},M∩P={x|x≥2},所以“x∈M∪P”是“x∈M∩P”的必要不充分条件.故选B.答案:B5.解析:由|x|<1,得-1<x<1,所以-1<x3<1;由x3<1,得x<1,不能推出-1<x<1.所以“|x|<1”是“x3<1”的充分不必要条件.故选A.答案:A6.解析:A项,x+y=2时,令x=y=1,不符合命题;而命题“x,y中至少有一个大于1”,令x=-1,y=2,x+y≠2,所以是非充分非必要条件;B项,x+y>2时,若x,y 都不大于1,则x+y≤2矛盾,可得x,y中至少有一个大于1;若“x,y中至少有一个大于1”,令x=-1,y=2,x+y<2,所以是充分不必要条件;C项,x2+y2>2时,令x=-2,y=0,不符合命题;若“x,y中至少有一个大于1”,令x=1.1,y=0,x2+y2<2,所以是非充分非必要条件;D项,xy>1时,令x=-1,y=-2,不符合命题;若“x,y中至少有一个大于1”,令x=-1,y=2,xy<1,所以是非充分非必要条件.答案:B7.解析:当a和b都是偶数时,则a+b也是偶数;当a+b为偶数时,a,b可以都为奇数.故填“充分不必要”.答案:充分不必要8.解析:令A={x|1≤x<4},B={x|x<m},因为p是q的充分条件,所以A⊆B.所以m≥4.答案:m≥49.解析:①ab=0即为a=0或b=0,即a,b中至少有一个为0;②a+b=0即a,b 互为相反数,则a,b可能均为0,也可能为一正一负;③由ab>0知a与b同号,即a,b都不为0.综上可知,“a,b都为0”能推出①②,③能推出“a,b都不为0”,所以使a,b都为0的必要条件是①②,使a,b都不为0的充分条件是③.答案:(1)①②(2)③10.解析:(1)数a能被6整除,则一定能被3整除,反之不一定成立.即p⇒q,q⇒p,∴p是q的充分不必要条件.(2)当a=-2,b=-1时,ab=2>1;当a=2,b=-1时,ab=-2<1,所以p既不是q的充分条件,也不是必要条件.(3)△ABC中,有两个角相等时为等腰三角形,不一定为正三角形,即p⇒q,且q⇒p,∴p是q的必要不充分条件.学科素养升级练1.解析:由x2-x-2<0,解得-1<x<2.又x2-x-2<0是-2<x<a的充分不必要条件,∴(-1,2)(-2,a),则a≥2.∴实数a的值可以是2,3,4.故选BCD.答案:BCD2.解析:因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒丙,如图.综上,有丙⇒甲,但甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件. 答案:A3.解析:若a =-1,b =12,则Δ=a 2-4b <0,关于x 的方程x 2+ax +b =0无实根,故p⇒q .若关于x 的方程x 2+ax +b =0有两个小于1的不等正根,不妨设这两个根为x 1,x 2,且0<x 1<x 2<1,则x 1+x 2=-a ,x 1x 2=b .于是0<-a <2,0<b <1,即-2<a <0,0<b <1,故q ⇒p . 所以p 是q 的必要条件,但不是充分条件.。
充要条件(练习及答案解析)-人教A版2019必修第一册高一数学教材配套练习

1.4.2 充要条件基础练巩固新知夯实基础1.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.在下列三个结论中,正确的有()⊆x2>4是x3<-8的必要不充分条件;⊆在⊆ABC中,AB2+AC2=BC2是⊆ABC为直角三角形的充要条件;⊆若a,b⊆R,则“a2+b2≠0”是“a,b不全为0”的充要条件.A.⊆⊆B.⊆⊆C.⊆⊆D.⊆⊆⊆3.“x,y均为奇数”是“x+y为偶数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a,b是实数,则“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2B.m=2C.m=-1D.m=16.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)7.在平面直角坐标系中,点(x+5,1-x)在第一象限的充要条件是.8.已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}.(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分不必要条件;(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要不充分条件.能力练综合应用核心素养9.设x ⊆R ,则“x >12”是“2x 2+x -1>0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.有下述说法:①a>b>0是a 2>b 2的充要条件;②a>b>0是的充要条件;③a>b>0是a 3>b 3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个11.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A.m >14B.0<m <1C.m >0D.m >112.设集合A ={x ⊆R |x -2>0},B ={x ⊆R |x <0},C ={x ⊆R |x (x -2)>0},则“x ⊆A ⊆B ”是“x ⊆C ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件13.设计如图所示的四个电路图,条件p :“开关S 闭合”;条件q :“灯泡L 亮”,则p 是q 的充分不必要条件的电路图是________.14.下列不等式:⊆x <1;⊆0<x <1;⊆-1<x <0;⊆-1<x <1.其中,可以为x 2<1的充分条件的所有序号为________.15.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.16.设x ,y ⊆R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.【参考答案】1. A 解析:a =1时,N ⊆M ,但当a 取-1时,也满足N ⊆M 。
高中数学 第一章 集合与常用逻辑用语 1.4.2 充要条件精品练习(含解析)新人教A版必修第一册-新

1.4.2 充要条件2.设条件p :|x |≤m (m >0),q :-1≤x ≤4,若p 是q 的充分条件,则m 的最大值为________,若p 是q 的必要条件,则m 的最小值为________.3.(情境命题—学术情境)设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是A =90°.1.4.2 充要条件必备知识基础练1.解析:(1)由a >0且b >0⇒a +b >0且ab >0,并且由a +b >0且ab >0⇒a >0且b >0,所以p 是q 的充要条件.(2)由⎩⎪⎨⎪⎧α>2,β>2,根据不等式的性质可得⎩⎪⎨⎪⎧α+β>4,αβ>4.即p ⇒q ,而由⎩⎪⎨⎪⎧α+β>4,αβ>4不能推出⎩⎪⎨⎪⎧α>2,β>2.如:α=1,β=5满足⎩⎪⎨⎪⎧α+β>4,αβ>4,但不满足α>2.所以p 是q 的充分不必要条件. 2.解析:作出“⇒”图,如右图所示,可知:p ⇒q ,r ⇒q ,q ⇒s ,s ⇒r .(1)p ⇒q ⇒s ⇒r ,且r ⇒q ,q 能否推出p 未知,∴p 是r 的充分条件. (2)∵s ⇒r ⇒q ,q ⇒s ,∴s 是q 的充要条件. (3)共有三对充要条件,q ⇔s ;s ⇔r ;r ⇔q . 3.证明:①充分性:如果b =0,那么y =kx . 当x =0时,y =0.所以一次函数y =kx +b (k ≠0)的图象过原点(0,0).②必要性:因为一次函数y =kx +b (k ≠0)的图象过原点(0,0), 所以0=0+b ,所以b =0.综上,一次函数y =kx +b (k ≠0)的图象过原点(0,0)的充要条件是b =0. 4.证明:必要性:由于方程ax 2+bx +c =0(a ≠0)有一正根和一负根, 所以Δ=b 2-4ac >0,x 1·x 2=ca<0, 所以ac <0.充分性:由ac <0可得b 2-4ac >0及x 1·x 2=c a<0,所以方程ax 2+bx +c =0(a ≠0)有两个不相等的实根,且两根异号, 即方程ax 2+bx +c =0(a ≠0)有一正根和一负根.综上可知,关于x 的方程ax 2+bx +c =0(a ≠0),有一正根和一负根的充要条件是ac <0. 5.解析:解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 答案:A6.解析:a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.故选D.答案:D7.解析:充分性:当a =3时,A ={1,3},B ={1,2,3},可以推出A ⊆B ,故充分性成立;必要性:若A ⊆B ,则{1,a }⊆{1,2,3},可得a =2或a =3,故必要性不成立.所以“a =3”是“A ⊆B ”的充分不必要条件.答案:A关键能力综合练1.解析:当x =1时,x 3=x 成立.若x 3=x ,x (x 2-1)=0,得x =-1,0,1;不一定得到x =1.答案:A2.解析:不等式2x 2+x -1>0,即(x +1)(2x -1)>0,解得x >12或x <-1,所以由x >12可以得到不等式2x 2+x -1>0成立,但由2x 2+x -1>0不一定得到x >12,所以“x >12”是“2x 2+x-1>0”的充分而不必要条件.答案:A3.解析:函数y =x 2+mx +1的图象关于直线x =1对称的充要条件是-m2×1=1,即m=-2,故选A.答案:A4.解析:M ∩N =N ⇔N ⊆M ⇔M ∪N =M . 答案:C5.解析:由{x |x >5}是{x |x ≤-1或x ≥3}的真子集,可知p 是q 的必要不充分条件. 答案:B6.解析:由A ∪B =C 知,x ∈A ⇒x ∈C ,x ∈C ⇒x ∈A .所以x ∈C 是x ∈A 的必要不充分条件. 答案:B 7.答案:充要8.解析:由题意可知:1≤x ≤2⇒x ≤m ,反之不成立,所以m ≥2,即m 的最小值为2. 答案:29.解析:x =4±16-4m2=2±4-m ,因为x 是整数,即2±4-m 为整数,所以4-m为整数,且m ≤4,又m ∈N *,取m =1,2,3,4.验证可得m =3,4符合题意,所以m =3,4时可以推出一元二次方程x 2-4x +m =0有整数根.答案:3或410.解析:设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1,B ={x |a ≤x ≤a +1}, 由p 是q 的充分不必要条件,可知A B ,∴⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a <12,a +1≥1,解得0≤a ≤12,故所某某数a 的取值X 围是0≤a ≤12.学科素养升级练1.解析:因为由x >2且y >3⇒x +y >5,但由x +y >5不能推出x >2且y >3,所以x >2且y >3是x +y >5的充分不必要条件.故A 错误;因为由x >1⇒|x |>0,而由|x |>0不能推出x >1,所以x >1是|x |>0的充分不必要条件.故B 正确;因为由b 2-4ac <0不能推出ax 2+bx +c <0(a ≠0)的解集为R (a >0时解集为∅),而由ax 2+bx +c <0(a ≠0)的解集为R ⇒b 2-4ac <0,所以b 2-4ac <0是ax 2+bx +c <0(a ≠0)的解集为R 的必要不充分条件.故C 错误;由三角形的三边满足勾股定理⇒此三角形为直角三角形,由三角形为直角三角形⇒该三角形的三边满足勾股定理,故D 正确.答案:BD2.解析:条件p :|x |≤m ,可得:-m ≤x ≤m .条件q :-1≤x ≤4, 若p 是q 的充分条件,则-m ≥-1,且m ≤4,解得0<m ≤1, 则m 最大值为1,p 是q 的必要条件,则-m ≤-1且m ≥4,解得m ≥4,则m 的最小值为4, 故答案为:1,4 答案:1,43.证明:①必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0, 则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0, 两式相减,可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0整理得b 2+c 2=a 2, 故A =90°.②充分性:∵A =90°,∴b 2+c 2=a 2,∴b 2=a 2-c 2. 将此式代入方程x 2+2ax +b 2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0,将b2=a2-c2代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0,故两方程有公共根x=-(a+c).∴方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是A=90°.。
新高考高中数学1.2.3充分条件、必要条件类型题

命题判断、充分条件、必要条件类型题数学思想:集合与补集,数型结合、正难则反一、判断命题的真假例1:(正面)设集合A,B,有下列四个命题。
①A⊈B⇔与对任意x∈A,都有x∉B;②A⊈B⇔A∩B=φ;③A⊈B⇔B⊆A⊆⊆A⊈B⇔⊆⊆x⊆A⊆⊆⊆x⊆B⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆ ⊆ ⊆点评:正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要。
例2:判断下列命题的真假.(反面)(1)若a>b,则ac2>bc2;(2)正项等差数列的公差大于零。
解:(1)假命题,当c=0时,ac2=b c2;(2)假命题,如数列20,17,14,11,8.点评:判断一个命题为假命题,只要举一个反例即可。
例3:(利用等价命题判断命题的真假)命题“若a>-6,则a>-3”以及它的逆命题、否命题、逆否命题中真命题的个数为A.1B.2C.3D.4因为原命题为假命题,所以其逆否命题为假命题。
因为其逆命题若“a>-3,则a>-6”为真命题,故选B。
点评:因为原命题与其逆否命题的真假性保持一致,原命题的否命题与原命题的逆命题也互为逆否命题,所以判断原命题与其逆命题、否命题、逆否命题的真假性时,只需判断两组逆否命题中的各一个命题的真假性即可。
四种命题中,真命题的个数只能是0,2或4个。
二、判断充分条件、必要条件以及充要条件的方法例4:(集合思想)已知p:|x|<1.q:x2+x-20<0,试判断┐p是┐q的什么条件。
解:设p、q对应集合P,Q,则P={x|-1<x<1),Q={x|-5<x<4).因为P⫋Q,所以p=>q,且q⇏p,所以p是q的充分不必要条件。
所以┐q➩┐p,┐p⇏┐q,所以┐p是┐q的必要不充分条件。
点评:若给出两个条件,通过数轴或者veen图得到两个条件的范围大小,从而得出结论。
新教材人教A版高中数学必修一充要条件 同步练习(含解析)

1.4.2 充要条件【新教材】人教A版(2019)高中数学必修第一册同步练习(含解析)一.单选题1.设a,b是实数,则“a+b>0”是“ab>0”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.已知a,b∈R,则“a>|b|”是“a|a|>b|b|”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.在下列结论中,正确的有()①x2>4是x3<−8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.A. ①②B. ②③C. ①③D. ①②③4.三角形全等是三角形面积相等的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.设非空集合A,B,则A∩B≠⌀是A⊆B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件6.已知命题p:四边形的一组对边平行且相等,命题q:四边形是矩形,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件7.设集合A={x∈R|x−2>0},B={x∈R|x<0},C={x∈R|x(x−2)>0},则“x∈A∪B”是“x∈C”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件8.设x∈R,则“|x−2|<1”是“x2+x−2>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=√a2+b2−a−b,则φ(a,b)=0是a与b互补的()A.必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件二.多选题11.已知实系数一元二次方程ax2+bx+c=0(a≠0),下列结论正确的是()A. Δ=b2−4ac≥0是这个方程有实根的充要条件B. Δ=b2−4ac=0是这个方程有实根的充分条件C. Δ=b2−4ac>0是这个方程有实根的必要条件D. Δ=b2−4ac<0是这个方程没有实根的充要条件12.下列各式中,是x2<1的充分条件的有()A.x<1B. 0<x<1C. −1<x<1D. −1<x<0三.填空题13.不等式x2−3x+2<0成立的充要条件是________.14.已知x∈R,若“x2>1”是“x<k”的必要不充分条件,则实数k的最大值为________.15.设集合A={1,2},B={a2},则“a=1”是“B⊆A”的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)16.已知甲、乙、丙、丁四个命题,甲是乙的充分不必要条件,丙是乙的充要条件,丁是丙的必要不充分条件,则丁是甲的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)17.已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.若p是q的充分条件,则实数m的取值范围是________.四.解答题18.指出下列各组命题中p是q的什么条件.在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”中选出一种,并说明理由.(1)设x,y是实数,p:x>y,q:|x|>|y|.(2)p:a∈N,q:a∈Z.(3)p:点D在△ABC的边BC的中线上,q:S△ABD=S△ACD.(4)p:小王的学习成绩优秀,q:小王是“三好学生”.19.指出下列命题中,p是q的什么条件.(1)p:数a能被6整除,q:数a能被3整除.(2)p:|x|>1,q:x2>1.(3)p:△ABC有两个角相等,q:△ABC是正三角形.>2,q:x2−ax+5>0.20.已知p:x+1x−2(1)若¬p为真,求x的取值范围;(2)若¬q是¬p的充分不必要条件,求实数a的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、比较大小、不等式性质的相关知识,试题难度较易【解答】解:本题采用特殊值法:当a=3,b=−1时,a+b>0,但ab<0,故不是充分条件;当a=−3,b=−1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分也不必要条件.2.【答案】A【解析】【分析】本题考查必要条件、充分条件与充要条件的判断,属于基础题型,由题意,若a>|b|,可得a|a|> b|b|成立;当a=1,b=−2时,满足a|a|>b|b|,但a>|b|不一定成立,即可求解;【解答】解:由题意,若a>|b|,则a>|b|≥0,则a>b,因为y=x|x|在R上单调递增,则a|a|>b|b|成立;当a=1,b=−2时,满足a|a|>b|b|,但a>|b|不一定成立,所以a>|b|是a|a|>b|b|的充分不必要条件.故选A.3.【答案】C【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断的相关知识,试题难度一般【解答】解:对于结论①,由x3<−8⇒x<−2⇒x2>4,但是x2>4⇒x>2或x<−2⇒x3>8或x3<−8,不一定有x3<−8,故①正确;对于结论②,当B=90∘或C=90∘时不能推出AB2+AC2=BC2,故②错;对于结论③,由a2+b2≠0⇒a,b不全为0,反之,由a,b不全为0⇒a2+b2≠0,故③正确.故选C.4.【答案】A【解析】【分析】本题考查充分条件、必要条件以及充要条件的判断,由题意根据充分必要条件的定义进行判断即可.【解答】解:若三角形全等,则三角形的面积相等,即充分性成立;若两个三角形的面积相等,则三角形不一定全等,故必要性不成立,所以三角形全等是三角形面积相等的充分不必要条件.故选A.5.【答案】B【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断,由必要条件、充分条件与充要条件的判断定义可得答案【解答】解:由非空集合A,B且A⊆B得A∩B≠⌀,但A∩B≠⌀不一定可推出A⊆B,故A∩B≠⌀是A⊆B的必要不充分条件故选B6.【答案】B【解析】【分析】本题考查充分条件、必要条件以及充要条件的判定,由题意根据充分必要条件的定义进行判断即可.解:一组对边平行且相等的四边形是平行四边形,但不一定是矩形,而矩形一定是平行四边形,所以p⇏q,q⇒p,故p是q的必要不充分条件.故选:B.7.【答案】C【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断,化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.【解答】解:A={x∈R|x−2>0}={x|x>2},A∪B={x|x>2或x<0},C={x∈R|x(x−2)>0}={x|x>2或x<0},∴A∪B=C∴“x∈A∪B”是“x∈C”的充要条件故选:C.8.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,属于基础题.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:由“|x−2|<1”得1<x<3,由x2+x−2>0得x>1或x<−2,即“|x−2|<1”是“x2+x−2>0”的充分不必要条件,故选:A.【解析】【分析】本题考查充分条件和必要条件的判断,集合的交集及集合的关系,属于基础题.根据充分条件和必要条件的判断即可求解此题.【解答】解:A,B是两个集合,则“A∩B=A”可得“A⊆B”,反之也成立,所以,“A∩B=A”是“A⊆B”充要条件.故选C.10.【答案】C【解析】【分析】本题主要考查了充分必要条件的判定,属于基础题.根据题目定义,从充分性与必要性两个方面进行判定即可.【解答】解:若φ(a,b)=√a2+b2−a−b=0,则√a2+b2=(a+b),两边平方解得ab=0,故a,b至少有一为0,不妨令a=0则可得|b|−b=0,故b≥0,即a与b互补;若a与b互补时,易得ab=0,故a,b至少有一为0,若a=0,b≥0,此时√a2+b2−a−b=√b2−b=0,同理若b=0,a≥0,此时√a2+b2−a−b=√a2−a=0,即φ(a,b)=0,故φ(a,b)=0是a与b互补的充要条件.故选C.11.【答案】ABD【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、二次函数的零点与一元二次方程解的关系的相关知识,试题难度较易【解答】解:可利用Δ=b2−4ac的值判断方程根的情况,Δ=0方程有两相等实根;Δ>0方程有两不等实根;Δ<0方程无实根.A对,Δ≥0⇔方程ax2+bx+c=0有实根;B对,Δ=0⇒方程ax2+bx+c=0有实根;C错,Δ>0⇒方程ax2+bx+c=0有实根,但ax2+bc+c=0有实根⇏Δ>0;D对,Δ<0⇔方程ax2+bx+c=0无实根.故选ABD.12.【答案】BCD【解析】【分析】本题主要考查的是充分条件的判断,属于基础题.可先解不等式x2<1,再结合充分条件进行判断.【解答】解:由x2<1得−1<x<1,由BCD都能推出x满足−1<x<1,故选BCD.13.【答案】1<x<2【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、一元二次不等式的解法的相关知识,试题难度较易【解答】解:x2−3x+2<0⇔1<x<2,故不等式x2−3x+2<0成立的充要条件是1<x<2.故答案为1<x<2.14.【答案】−1【解析】【分析】直接根据题意及必要不充分条件,知“x<k”可以推出“x2>1”,反之不成立,从而可得k的最大值.【解答】解:因x2>1得x<−1或x>1,又“x2>1”是“x<k”的必要不充分条件,知“x<k”可以推出“x2>1”,反之不成立.则k的最大值为−1.故答案为−1.15.【答案】充分不必要【解析】【分析】本题考查充分、必要条件的判定,以及集合包含关系的判定,属于基础题.直接根据题意及必要条件、充分条件的判断即可得出答案.【解答】解:根据题意集合A={1,2},B={a2},若a=1,则B={a2}={1},则“B⊆A“,故充分性成立,当集合A={1,2},B={a2},若“B⊆A“,则可得a2=1或a2=2,故必要性不成立,故“a=1”是“B⊆A”的充分不必要条件.故答案填:充分不必要.16.【答案】必要不充分【解析】【分析】本题考查充分条件、必要条件以及充要条件的判定.根据充分必要条件的定义进行求解即可.【解答】解:甲是乙的充分不必要条件,故甲⇒乙,乙⇏甲,丙是乙的充要条件,故丙⇒乙,乙⇒丙,丁是丙的必要不充分条件,故丁⇏丙,丙⇒丁,显然丁不能推出甲,而甲能推出乙,乙能推出丙,丙能推出丁,故甲能推出丁,即丁是甲的必要不充分条件.故答案填:必要不充分.17.【答案】[4,+∞)【解析】【分析】本题考查充分条件的判定、集合关系中的参数取值问题.化简p ,根据题意得出{1−m ≤−11+m ≥5,由此即可求出结果. 【解答】解:由(x +1)(x −5)≤0得−1≤x ≤5,∴p :−1≤x ≤5,∵q :1−m ≤x ≤1+m ,m >0,p 是q 的充分条件,∴满足[−1,5]⊆[1−m,1+m ],∴{1−m ≤−11+m ≥5,解得m ≥4, ∴m 的取值范围为[4,+∞).故答案为[4,+∞).18.【答案】解:(1)当x >y 时,|x|>|y|不一定成立,当|x|>|y|时,x >y 也不一定成立,故p 是q 的既不充分又不必要条件;(2)当a ∈N 时,a ∈Z 一定成立,当a ∈Z 时,a ∈N 不一定成立,故p 是q 的充分不必要条件;(3)当点D 在△ABC 的边BC 的中线上时,S △ABD =S △ACD ,当S△ABD=S△ACD时,点D不一定在△ABC的边BC的中线上,故p是q的充分不必要条件;(4)当小王的学习成绩优秀时,小王不一定是三好学生,但小王是三好学生时,小王的学习成绩一定优秀,故p是q的必要不充分条件.【解析】本题主要考查充分条件、必要条件及充要条件的判断,属于基础题.(1)根据p与q的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(2)根据a∈N与a∈Z的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(3)根据点D在△ABC的边BC的中线上与S△ABD=S△ACD的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(4)根据小王的学习成绩优秀与小王是三好学生的关系,结合充分条件、必要条件及充要条件的判断,可得结论.19.【答案】解:(1)因为p⇒q,但q不能⇒p,所以p是q的充分不必要条件.(2)因为p⇒q,但q⇒p,所以p是q的充要条件.(3)因为p不能⇒q,但q⇒p,所以p是q的必要不充分条件.【解析】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.欲判断p是q的什么条件,根据充分条件,必要条件,充要条件的方法,只须判断p与q,谁能推出谁的问题即可.20.【答案】解:(1)p:x+1x−2>2,化为:x−5x−2<0,即(x−2)(x−5)<0,解得:2<x<5,由¬p为真,可得:x≤2或x≥5,∴x的取值范围是(−∞,2]∪[5,+∞).(2)¬q是¬p的充分不必要条件,则q是p的必要不充分条件.故q:x2−ax+5>0对于任意2<x<5恒成立,故a<x+5x ,∵x+5x≥2√5,当且仅当x=√5时取等号.故a<2√5.>2,化为:(x−2)(x−5)<0,解得x范围,由¬p为真,可得x的取值范围.【解析】(1)p:x+1x−2(2)¬q是¬p的充分不必要条件,可得:q是p的必要不充分条件.于是q:x2−ax+5>0对于任意2<x<5恒成立,转化为a<x+5,利用基本不等式的性质即可得出.x本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于基础题.。
高中数学命题与充要条件练习题附答案精选全文完整版

可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
202新数学复习第一章集合与常用逻辑用语2充分条件与必要条件含解析

课时作业2 充分条件与必要条件一、选择题1.“x=1”是“x2-3x+2=0”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x=1成立,则x2-3x+2=0成立,反之不成立.2.“a3〉b3”是“ln a〉ln b"的(B)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:ln a>ln b⇒a>b>0⇒a3〉b3,所以必要性成立.a3>b3⇒a〉b>0或0〉a>b,则当0>a〉b时,充分性不成立.故选B。
3.已知a,b∈R,条件甲:a>b〉0;条件乙:错误!〈错误!。
则甲是乙的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a〉b>0时,不等式a〉b两边同时除以ab,得错误!>错误!;当错误!>错误!时,若b=1,a=-1,则有b>a。
所以条件甲是条件乙的充分不必要条件.4.p:(2-x)(x+1)〉0;q:0≤x≤1。
则p成立是q成立的(A)A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:若p成立,则x满足-1<x<2,则p成立是q成立的必要不充分条件,故选A.5.已知p:错误!〈1,q:2 019x〉2 019,则p是q的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由错误!〈1得,错误!<0,即错误!〉0,得x〈0或x〉1,故p:x〈0或x〉1;由2 019x〉2 019得x〉1,故q:x〉1。
所以p 是q的必要不充分条件.6.设A,B是两个集合,则“A∩B=A”是“A⊆B”的(C) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由A∩B=A可得A⊆B,由A⊆B可得A∩B=A。
所以“A∩B=A"是“A⊆B"的充要条件.故选C.7.设θ∈R,则“0〈θ〈错误!”是“0<sinθ<错误!"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当0<θ〈错误!时,利用正弦函数y=sin x的单调性知0〈sinθ〈错误!;当0<sinθ〈错误!时,2kπ<θ<2kπ+错误!(k∈Z)或2kπ+错误!<θ〈2kπ+π(k∈Z).综上可知“0〈θ〈错误!"是“0<sinθ〈错误!"的充分不必要条件,故选A.8.在等比数列{a n}中,“a1,a3是方程x2+3x+1=0的两根"是“a2=±1"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在等比数列{a n}中,a1·a3=a2,2.由a1,a3是方程x2+3x+1=0的两根可得a1·a3=1,所以a2,2=1,所以a2=±1,所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1”的充分条件;由a2=±1得a1·a3=1,满足此条件的一元二次方程不止一个.所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1"的充分不必要条件,故选A.9.“不等式x2-x+m〉0在R上恒成立”的一个必要不充分条件是(C)A.m>错误!B.0〈m<1C.m>0 D.m〉1解析:若不等式x2-x+m〉0在R上恒成立,则Δ=(-1)2-4m<0,解得m〉错误!,因此当不等式x2-x+m〉0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m〉0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列语句能确定一个集合的是( )
A 浙江公路技师学院高个子的男生
B 电脑上的容量小的文件全体
C 不大于3的实数全体
D 与1接近的所有数的全体
2.下列集合中,为无限集的是( )
A 比1大比5小的所有数的全体
B 地球上的所有生物的全体
C 超级电脑上所有文件全体
D 能被百度搜索到的网页全体
3.下列表示方法正确的是( )
2.0 (3)
A N
B Q
C R
D Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是( )
A.大于5的自然数
B.一切很大的数
C.路桥系优秀的学生
D.班上考试得分很高的同学
5.下列不能组成集合的是( )
A. 不大于8的自然数
B. 很接近于2的数
C.班上身高超过2米的同学
D.班上数学考试得分在85分以上的同学
6.下列语句不正确的是( )
A.由3,3,4,5构成一个集合,此集合共有3个元素
B.所有平行四边形构成的集合是个有限集
C.周长为20cm 的三角形构成的集合是无限集
D.如果,,a Q b Q a b Q ∈∈+∈则
7.下列集合中是有限集的是( )
{}
{}{}
{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形 8.下列4个集合中是空集的是( ) {}
{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=
9.下列关系正确的是( )
.0.0.0.0A B C D ∈∅⊆∅∉∅≠∅
10.用列举法表示集合{}2|560x x x -+=,结果是( )
A.3 B.2 C.{}3,2 D.3,2
11.绝对值等于3的所有整数组成的集合是( )
A.3 B.{}3,3- C.{}3 D.3,-3
12.用列举法表示方程24x =的解集是( )
{}{}{}{}2.|4.2,2.2.2A x x B C D =--
13.集合{}1,2,3,4,5也可表示成( )
{}{}
{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈
14.下列不能表示偶数集的是( )
{}{}
{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈是偶数
15.下列表示集合{}1,1-不正确的是( )
{
}{}
{
}{}
22.|1.1.|1.|1A x x B x C x x D x ====
16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是(
) ....A A B B A B C B A D A B ≠⊆⊇⊇
17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是( )
....A A B B B A C A B D B A ∈∈⊆⊆
18.集合{},,a b c 的子集个数为( )
.3.7.8.9A B C D 个个个个
19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是(
) {}{}{}.1234.3..012A B C D ∅,,,,,
20.已知{}{}24734,5(A B A B ==⋂=,,,,,则).
{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D
21.若N={自然数},Z={整数},则()N Z ⋂=
A.N
B.Z C{0} D.{正整数}
22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()
M N = {}{}
{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤<
23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()
M N =
{}
{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤<
24.若全集U={整数},集合A={奇数},则()U A =
A.{偶数}
B.{整数}
C.{自然数} D{奇数}
25.
()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
26.()0"0b 0ab a ==="是“且”的
A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
27.x>5是x>3的( )
A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
二、填空题:
1.自然数集用大写字母______表示;整数集用大写字母______表示;
有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;
2.用符号“∈”或“∉”填空
11)3.14__;3)__;4)2__;6)__2
R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;
4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;
5.绝对值小于6的实数组成的集合_______________;
6.大于0而小于10的奇数组成的集合__________________;
7.小于7的正整数组成的集合__________________;
8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.
9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.
10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;
,,__,,;__0;__0;______.a a b c a b c c a b ∅∅正三角形等腰三角形;平行四边形梯形
已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==
已知A={10以内的质数},B={偶数},则______.A B =
用“充分条件”,“必要条件”或“充要条件”填空:
1)416________;x ==2是x 的
2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;
4)24a b >是方程20x ax b ++=有实根的 __________;
5)若,,a b R ∈则220a b +=是0a b +=的_____________;
解答题
写出{1,2,3}的所有子集,并指出哪些不是真子集。
指出下列集合之间的关系,并用图表示:
A={三角形};B={正三角形};C={等腰三角形}D={直角三角形} 已知U={1,2,3,4,5,6,7,8,9},A={1,2,3,4,5},B={2,4,6,8},求 ,,,().U U U U U A B A B A B
已知U=R ,{}{|12},|0,,,U A x x B x x A B A B A =-≤≤=>求。