1.4集合的基本运算与充分必要条件
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)

(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
1.4充分条件与必要条件(两个课时)高一数学(人教A版2019必修第一册)

本节主要讨论这种形式的命题.
下面我们将进一步考察“若,则”形式的命题中和的关系,学习数
学中的三个常用的逻辑用语——充分条件、必要条件和充要条件.
2.理解充分条件、必要条件、充要条件的意义
情景一:
观察下列“若,则”形式的命题
(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形;
(5)由于(−1) × 0 = 1 × 0,但−1 ≠ 1, ⇏ ,所以,不是的必要条件
.
(6)由于1 × 2 = 2为无理数,但1, 2不全是无理数, ⇏ ,所以,
不是的必要条件.
判断是否有“ ⇒ ”,即“若,则”是否是真命题
情景三:
例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,
(6)若��为无理数,则,为无理数。
解:(1)这是平行四边形的一条性质定理, ⇒ ,所以,是的必要条
件.
(2)这是三角形相似的一条性质定理, ⇒ ,所以,是的必要条件.
(3)四边形的对角线互相垂直,但它不是菱形, ⇏ ,所以,不
是的必要条件.
(4)显然, ⇒ ,所以,是的必要条件.
(2)若两个三角形的周长相等,则这两个三角形全等;
(3)若 2 − 4 + 3 = 0,则 = 1;
(4)若平面内两条直线和均垂直于直线,则 ∥ .
问题1 上述的4个例子,哪些是真命题?哪些是假命题?为什么?
在命题(1)(4)中,由条件通过推理可以得出结论,所以它们是真命题.
在命题(2)(3)中,由条件不能得出结论,所以它们是假命题.
要条件.
3.能够利用命题之间的关系判定充要关系或进行充要条件
的证明.
1.4 充分条件与必要条件知识梳理

1.4充分条件与必要条件知识梳理一.命题1.命题的定义:可判断真假的陈述句叫作命题。
2.命题的条件和结论:数学中,许多命题可表示为“如果p,那么q”或“若p,则q”的形式,其中p叫作命题的条件,q叫作命题的结论。
二.充分条件与必要条件“若p,则q”为真命题“若p,则q”为假命题推出关系p⇒q p⇏q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件【注意】(1)前提p⇒q,有方向,条件在前,结论在后;(2)p是q的充分条件或q是p的必要条件;(3)改变说法:“p是q的充分条件”还可以换成q的一个充分条件是p;“q是p的必要条件”还可以换成“p的一个必要条件是q”。
三.充要条件一般地,如果既有p⇒q,又有q⇒p,就记作p⇔q。
此时,我们说p是q的充分必要条件,简称充要条件。
显然,如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件。
概括地说,(1)如果p⇔q,那么p与q互为充要条件;(2)若p⇒q,但q⇒/p,则称p是q的充分不必要条件;(3)若q⇒p,但p⇒/q,则称p是q的必要不充分条件;(4)若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件。
四.充分必要条件与集合的关系若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件;①若A B,则p是q的充分不必要条件;②若A⊇B,则p是q的必要条件;③若A B,则p是q的必要不充分条件;④若A=B,则p是q的充要条件;⑤若A⊈B且A⊉B,则p是q的既不充分也不必要条件。
从集合的角度判断充分必要条件精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;五.充分必要条件判断方法1.定义法2.集合法。
1.4充分条件与必要条件-【新教材】人教A版(2019)高中数学必修第一册讲义

新教材必修第一册1.4:充分条件与必要条件课标解读:1.必要条件的概念(理解)2.充分条件的概念(理解)3.充要条件.(理解)学习指导:1.学习本节内容的关键在于通过对典型数学命题的梳理,理解“充分条件、必要条件、充要条件”的概念,并熟练掌握判定方法.2.学习重点是对充分条件、必要条件和从要条件的意义的理解和辨析,判断“若p,则q”形式的命题的真假.知识导图:教材全解知识点1:充分条件与必要条件1.命题:一般地,我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题.判断为真的语句是真命题,判断为假的语句是假命题.中学数学中的许多命题可以写成“若p,则q”、“如果p,那么q”等形式.其中p称为命题的条件,q称为命题的结论.2.充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可以推出q,记作qp⇒,并且说,p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由条件p不能推出结论q,记作qp⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.说明:一般地(1)数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件;(2)数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.3.充要条件的概念一般地,“若p,则q”和它的逆命题“若q,则p”均是正命题,即既有qq⇒,p⇒,又有p 记作qp⇔.此时,p既是q的充分条件,q也是p的必要条件,我们就说p是q的充分必要条件,简称为充要条件.显然,如概括地说,如果qp⇔,那么q与p互为充要条件. 知识剖析:4.充分条件与必要条件的传递性充分、必要、充要条件都具有传递性,具体如下:(1)若p 是q 的充分条件,q 是s 的充分条件,即s q q p ⇒⇒,,则有s p ⇒,即p 是s 的充分条件;(2)若p 是q 的必要条件,q 是s 的必要条件,即q s p q ⇒⇒,,则有p s ⇒,即p 是s 的必要条件;(3)若p 是q 的充要条件,q 是s 的充要条件,即s q q p ⇔⇔,,则有s p ⇔,即p 是s 的充要条件;例1-1:用符号“⇒”与“⇒”填空.(1)12>x 1>x ; (2)b a ,都是偶数 b a +是偶数.例1-2:下列说法是否正确?请说明理由.(1)1=x 是)2)(1(--x x =0的充分条件;(2)1>x 是2>x 的充分条件;(3)2>+y x 是1,1>>y x 的必要条件.答案:(1)正确,因为0)1)(1(1=+-⇒=x x x ;(3)正确,因为21,1>+⇒>>y x y x .例1-3:(浙江高考题)设b a ,是实数,则“0>+b a ”是“0>ab ”的()A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:D例1-4:已知q p ,都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,那么:(1)s 是q 的什么条件?(2)r 是q 的什么条件?(3)p 是q 的什么条件?答案:(1)s 是q 的充要条件.(2)r 是q 的充要条件;(3)(3)p 是q 的充分条件.重难拓展知识点2:从集合角度看充分、必要条件1.依据设集合)}(|{)},(|{x q x B x p x A ==.若x 具有性质p ,则A x ∈;若x 具有性质q ,则.B x ∈ 若B A ⊆,就是说x 具有性质p ,则x 必有性质q ,即.q p ⇒类似地,A B ⊆与p q ⇒等价。
1.4充分条件与必要条件 教学设计

1.4充分条件与必要条件教学设计教材分析本节内容比较抽象,首先从命题出发,分清命题的条件和结论,看条件能否推出结论,从而判断命题的真假;然后从命题出发结合实例引出充分条件、必要条件、充要条件这三个概念,再详细讲述概念,最后再应用概念进行论证.教学目标与核心素养课程目标1.理解充分条件、必要条件与充要条件的意义.2.结合具体命题掌握判断充分条件、必要条件、充要条件的方法.3.能够利用命题之间的关系判定充要关系或进行充要性的证明.数学学科素养1.数学抽象:充分条件、必要条件与充要条件含义的理解;2.逻辑推理:通过命题的判定得出充分条件、必要条件的含义,通过定义或集合关系进行充分条件、必要条件、充要条件的判断;3.数学运算:利用充分、必要条件求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:充要条件的探求与证明:将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程;5.数学建模:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力。
教学重难点重点:充分条件、必要条件、充要条件的概念..难点:能够利用命题之间的关系判定充要关系.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、问题导入:写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x > a2 + b2,则x > 2ab, (2)若ab = 0,则a = 0.学生容易得出结论;命题(1)为真命题,命题(2)为假命题.提问:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?结论:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本17-22页,思考并完成以下问题1. 什么是充分条件?2. 什么是必要条件?3. 什么是充要条件?5. 什么是充分不必要条件?6. 什么是必要不充分条件?7. 什么是既不充分也不必要条件?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题,教师巡视指导,解答学生在自主学习中遇到的困惑过程。
1.4充分条件、必要条件、充分必要条件(ppt文档)

初中知识回顾
1.什么叫命题?什么意思?
1.命题:可以判断真假的陈述句叫做命题, 命题都是由条件和结论两部分组成,通常 用小写字母p、q、r、s等表示。可写成 “若p,则q”或“如果p,那么q”或“只要 p,就有q”的形式。
真命题:判断为真的语句。
的充分条件?
(1)若x 1,则x2 4x 3 0
(2)若x为无理数,则x2为无理数
解: 命题 (1)是真命题,命题 (2) 是假命题。 所以,命题 (1) 中的p是q的充分条件。
如果“若p,则q”为假命题,那么由p推不出q,记作 p q。此时,我们就说p不是q的充分条件,q不是p的必 要条件。
思考
问题1:当某一天你和你的妈妈在街上遇 到老师的时候,你向老师介绍你的妈妈 说:“这是我的妈妈.”那么,大家想 一想这个时候你的妈妈还会不会补充说: “你是她的孩子”呢?为什么?
【因为前面你所介绍的她是你的妈妈就足 于说明你是她的孩子】
问题2:这在数学中是一层什么样的关系 呢?【充分条件与必要条件】
例题
例2 :下列“若p,则q”形式的命题中,哪些命 题中的 q是p的必要条件?
pq (1)若x y,则x2 y2; (2)若两个三角形全等,则这两个三角形 的面积相等;
(3) 若a b,则ac bc.
例题解析
例2:下列“若p,则q”形式的命题中,哪些命题中的 q是p的必要条件?
必要条件的特征是:“没它不行,有它未必 行”;
充要条件的特征是:“有它就行,没它不 行”.
由此可看出,充分条件、必要条件都不 是唯一的,而充要条件是唯一的,是互逆 的。
1、定义:
课堂小结
若p q,则p是q的充分条件,q的一个充分条件是p
高中数学新教材必修第一册第一章1.4充分条件与必要条件

第29页
第一章 1.4 1.4.1
[针对训练] 4.已知条件 p:x2+x-6=0,条件 q:mx+1=0(m≠0),且 q 是 p 的充分条件,求 m 的值.
[解] 解 x2+x-6=0 得 x=2 或 x=-3, 令 A={2,-3},B=-m1 , ∵q 是 p 的充分条件,∴B⊆A. 当-m1 =2 时,m=-12;当-m1 =-3 时,m=13. 所以 m=-12或 m=13.
(3)二次函数 y=ax2+bx+c,当 Δ>0 时,其图象与 x 轴有交 点,因此 p 是 q 的充分条件;反之若函数的图象与 x 轴有交点, 则 Δ≥0,不一定是 Δ>0,因此 p 不是 q 的必要条件.
第19页
第一章 1.4 1.4.1
充分、必要条件的判断方法 (1)定义法:首先分清条件和结论,然后判断 p⇒q 和 q⇒p 是 否成立,最后得出结论. (2)命题判断法: ①如果命题:“若 p,则 q”为真命题,那么 p 是 q 的充分 条件,同时 q 是 p 的必要条件; ②如果命题:“若 p,则 q”为假命题,那么 p 不是 q 的充 分条件,同时 q 也不是 p 的必要条件. 显然,p 是 q 的充分条件与 q 是 p 的必要条件表述的是同一 个逻辑关系,即 p⇒q,只是说法不同而已.
第
一
集合与常用逻辑用语
章
1.4
充分条件与必要条件
第2页
第一章 1.4 1.4.1
1.4.1
充分条件与必要条件
第3页
第一章 1.4 1.4.1
课前自主预习
第4页
第一章 1.4 1.4.1
1.理解充分、必要条件的概念. 2.会根据命题的条件和结论的关系判断是否为充分条件、 必要条件.
第1章+集合与简单逻辑知识点汇总

《人教A版必修一知识点汇总》第1章《集合与常用逻辑用语》知识点汇总1.1 《集合的概念》1.集合的概念一般地,由某些确定的对象组成的整体就称为集合,简称为集.组成这个集合的对象称为这个集合的元素。
注:集合通常用大写字母表示,如A,B,C…元素通常用小写字母表示,如a,b,c…2.集合与元素之间的关系(1)如果a是集合A的元素,就说a属于A,记作a ∈ A,读作“a属于A”;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”;3.集合中元素的三种特性(1)确定性:给定的集合,它的元素必须是确定的,也就是说给定一个集合,那么任何一个元素在不在这个集合中就确定了(即x∈A与x∉A必居其一.)(2)互异性:一个给定的集合中的元素是互不相同的,即集合中的元素不能相同.(3)无序性:集合中的元素是无先后顺序的,即集合里的任何两个元素可以交换位置.4.集合的分类根据集合所含有元素的个数,将集合分为:(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:特别的,把不含有任何元素的集合叫做空集,记作∅.5.常用的数集例如1∈N,−5∈Z,π∉ Q6. 用列举法表示集合当集合中元素的个数为有限个(或无限个但呈现出某种规律)时,可以把集合中所有的元素一一列举出来,中间用逗号隔开,并用大括号“{}”把它们括起来,这种表示集合的方法就称为列举法。
例1小于6的所有正整数组成的集合A用列举法可以表示为A={1,2,3,4,5}.7.用描述法表示集合当集合的元素是无穷多个时,我们可以利用元素的特征性质来表示集合,这种表示集合的方法就叫做描述法.注:用描述法表示集合时,在大括号{}中画一条竖线(分隔符),竖线的左侧表示的是组成集合的元素,竖线的右侧是元素所具有的特征性质(或元素满足的条件).解:小于1的所有整数组成的集合A用描述法表示为A={x ∣ x<1,且 x∈Z }1.2集合间的基本关系1.子集与包含关系(1)定义像上面这样,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,并称集合A为B的子集.记作:A⊆B(或者B⊇A),读作:A包含于B(或B包含A).规定:空集是任何集合的子集,即 ∅⊆A.(2)用Venn图表示集合与集合之间的关系例如集合A={1,2,3}与B={1,2,3,4,5}的关系为A⊆B,用Venn图表示为(3)非子集与不包含关系如果集合A不是集合B的子集,记作A⊈B或B⊉A,读作“A不包含于B“(或B不包含A).例如:集合C={2,3},集合D={2,4,5},则集合C不是集合D的子集,即C⊈D.2.集合与集合相等若集合A和集合B的元素完全相同:即A的每个元素都是B的元素,而B的每个元素也都是A的元素,那么就说A和B相等,记作“A=B”例如A={1,2,3} 与B={3 , 1 , 2},则A=B.3.真子集与真包含于一般的,若集合A是集合B的子集,且B中至少有一个元素不属于A,则A叫做B的真子集,记作A⫋B(或B⫌A),读作A真包含于B(或B真包含A)注:空集是任何非空集合的真子集例如A={1,3}与B={1, 3,5},则A⫋B(即A是B的真子集).1.3《集合的基本运算》1.交集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由既属于集合A又属于集合B的所有元素组成的集合,称为集合A与集合B的交集,记作A∩B.读作“A交B”.即 A∩B={ x | x∈A 且 x∈B }.(2)实例运用例1设集合A={2,4,6}, 集合B={0,1,2},则A∩B={2}.例2 设集合A={x | −2<x≤1},集合B ={x|−1≤x < 3},则A∩B={x |−1≤x ≤1}.2.并集的概念及其运算(1)定义一般地,对于给定的集合A与集合B,由集合A与集合B的所有元素组成的集合称为集合A与集合B的并集,记作A∪B.读作“A并B”.即A∪B={x|x∈A或x∈B}.(2)实例运用例1 设集合A={1,3,5,7}, 集合B={0,2,3,4,6},则A∪B={0,1,2,3,4,5,6,7}.例2 设集合A={x |−1<x≤2}, 集合B={x |0<x≤3},则 A∪B={x |−1<x≤3}.3.补集的概念及其运算(1)定义一般地,如果集合A是全集U的一个子集,则由集合U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集,记作C U A,即C U A={ x | x∈U且x∉A }(2)实例运用例1设全集U={x∈N|x<7},集合A={1,2,4,6},则C U A={0,3,5}.例2设全集U= R,集合A={x|−2≤x<1},则CA={ x | x<−2或 x≥1 }.U1.4充分条件与必要条件1.充分条件与必要条件(1)定义一般地,“若p, 则q”为真命题,即由“条件p 可以推出条件 q ”,记作:p⇒ q那么就称:“p 是 q 的充分条件, q 是p的必要条件”注:如果“若p, 则 q ”为假命题,即由“条件p不能推出条件 q ”,记作: p⇏ q那么就称:“p不是 q 的充分条件, q 不是p的必要条件”(2)实例运用例1若四边形的两组对角分别相等,则这个四边形是平行四边形;解析:设题设“四边形的两组对角分别相等”为p,结论“这个四边形是平行四边形”为 q∵ p ⇒ q∴p是 q的充分条件, q是p的必要条件例2若x2=1,则x = 1;解:设题设“x2=1”为 p ,结论“x = 1”为 q∵由x2=1可得x=1或x=−1∴p ⇏ q故p不是q的充分条件,q不是p的必要条件2.充要条件(1)定义一般地,如果 p ⇔ q (即情况1:原真逆真)我们就称 p 是 q 的充分必要条件,简称为“ 充要条件”.注1(情况2:原真逆假)如果 p ⇒ q ,且 q ⇏p , 我们就称 p是 q 的充分而不必要条件;注2(情况3:原假逆真)如果 p ⇏ q ,且 q ⇒p , 我们就称 p是 q 的必要而不充分条件;注3(情况4:原假逆假)如果 p ⇏ q ,且 q ⇏p , 我们就称 p是 q 的既不充分也不必要条件;(2)实例运用例1 p:两个三角形相似,q:两个三角形三边成比例;解:①原命题:“若p,则q”∵ 已知两个三角形相似∴ 两个三角形三边成比例即 p ⇒ q (相似三角形的性质)∴ p是q的充分条件②逆命题:“若 q ,则 p ”∵ 已知两个三角形三边成比例∴ 两个三角形相似即 q ⇒ p (三边定理)∴ p 是 q 的必要条件.综上所述,∵ p ⇔ q,即原真逆真,∴ p 是 q 的充要条件例2 p:四边形是正方形,q:四边形的对角线互相垂直且平分;解:①原命题:“若 p ,则 q ”∵ 已知四边形是正方形∴ 四边形的对角线互相垂直且平分即 p ⇒ q∴ p 是 q 的充分条件②逆命题:“若 q ,则 p ”∵ 已知四边形的对角线互相垂直且平分∴ 四边形是菱形,即 q ⇏ p∴ p 不是 q 的必要条件综上所述,∵ 原真逆假,∴ p 是 q 的充分而不必要条件1.5 全称量词与存在量词1.全称量词与全称量词命题一变:∀ (任意)变 ∃(存在) 二变:结论 p(x) 变 它的反面 ¬p(x) 像上面这样,短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示;含有全称量词的命题,叫做全称量词命题.例如,命题“对任意的n ∈Z,2n +1 是奇数”;“所有的正方形都是矩形” 等都是全称量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,全称量词命题“对 M 中任意一个 x , p(x)成立”可用符号简记为:∀x ∈M ,p(x)2.存在量词与存在量词命题像上面这样,短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ∃ ”表示;含有存在量词的命题,叫做存在量词命题.例如,命题“有的平行四边形是菱形”;“有一个素数不是奇数” 等都是存在量词命题注:通常,将含有变量 x 的语句用 p(x),g(x),r(x),… 表示,变量x 的取值范围用 M 表示 那么,存在量词命题“存在M 中的元素 x , p(x)成立”可用符号简记为:∃ x ∈M ,p(x)3. 全称量词的否定(1)概念一般地,对于全称量词命题:∀x ∈M , p(x)它的否定为:∃x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ”注2:全称量词命题的否定是存在量词命题(2)实例运用例1所有能被3整除的整数都是奇数;解:原全称量词命题的否定为:“存在一个能被 3 整除的整数不是奇数”一变:∃ (存在)变 ∀(任意) 例2对 ∀ x ∈R , x 2≥0 ;解:原全称量词命题的否定为:“ ∃ x ∈R ,x 2<0 ”4.存在量词命题的否定(1)概念一般地,对于存在量词命题:∃ x ∈M , p(x)它的否定为:∀x ∈M , ¬p(x)注1:符号 “ ¬p(x) ” 表示 “ p(x) 的反面 ” 注2:存在量词命题的否定是全称量词命题(2)实例运用例1 ∃x ∈R,x +2 ≤ 0 ;解:原存在量词命题的否定为“ ∀x ∈R,x +2 > 0” 例2 有的三角形是等边三角形;解:原存在量词命题的否定为“ 所有的三角形都不是等边三角形 ”二变:结论 p(x) 变它的反面 ¬p(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的基本运算及充分与必要条件
一、交集、并集、全集、补集的概念(注意补集的前提条件)
单一运算、混合运算、求参数等常用数形结合思想解答这一类题目
二、命题:指一个判断句的语义(实际表达的概念),真假命题的判断
原命题、否命题、逆命题、逆否命题之间的关系
三、条件概念:充分条件、必要条件、充要条件
注意推理方向,可用集合思想判断。
常见题型有条件的判断、求条件成立的条件、参数范围 例题:1、设集合A ={1,2,6},B ={2,4},C ={x∈R|-1≤x≤5},则(A∪B)∩C= ( )
2、设全集为R ,A ={x|3≤x<7},B ={x|2<x<10},则∁R (A∪B)=________,(∁R A)∩B =________.
3、已知集合A 、B 均为全集U ={1,2,3,4}的子集,且∁U (A∪B)={4},B ={1,2},则A∩∁U B 等于________.
4、已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )
5、设集合S ={x|x >-2},T ={x|-4≤x≤1},则(∁R S)∪T 等于( )
6、已知M ={1,2,},N ={-1,a,3},M∩N={3},求实数a 的值.
7、设集合A ={x|-1<x <a},B ={x|1<x <3}且A∪B={x|-1<x <3},求a 的取值范围.
8、已知集合A ={x|-3<x≤4},集合B ={x|k +1≤x≤2k-1},且A∪B=A ,试求k 的取值范围.(改)
9、已知集合A={x|0≤x≤4},集合B={x|m+1≤x≤1-m},且A∪B=A,求实数m 的取值范围.
10、已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.
11、设a ,b 是实数,则“a >b ”是“a 2>b 2”的( )
12、“x 2-4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <4
13、不等式x (x -2)<0成立的一个必要不充分条件是( )
A .x ∈(0,2)
B .x ∈[-1,+∞)
C .x ∈(0,1) D.x ∈(1,3)
14、已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0),且p 是q 的充分不必要条件,则实数m 的取值范围为____(改)
15、已知集合A ={x ∈R|12
<2x <8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是 ( )
16、设集合{|||2}A x R x a =∈-<,21{|1}2
x B x x -=<+,若A B ⊆,求实数a 的取值范围。
(改条件) 17、已知2{|(2)10}A x R x m x =∈+++=,{|}B x x =是正实数,若A B φ=,求实数m 的取值范围。
18、已知集合2{|560},{|10},A x x x B x mx =-+==+=且,A B A =求实数m 的值组成的集合。
19、已知00,:,:11100.
x P q m x x +⎧-+⎨-⎩≥≤≤≤m,若P 是q 的必要不充分条件,求实数m 的取值范围.
20、已知221:{||1|2},:210(0)3x p x q x x m m --
≤-+-≤>,若p ⌝是q ⌝成立的必要非充分条件,求实数m 的取值范围。