1.2集合间的基本关系及运算
第二讲 集合之间的基本关系及其运算

第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学

.
解析:由题意得A={x|x>a},B={x|x>2},
因为A∪B=B,所以A⊆B.
在数轴上分别表示出集合A,B,如图所示,
则实数a必须在2的右边或与2重合,所以a≥2.
答案:a≥2
12/13/2021
5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=
解析:由于A∩B={2,3},则3∈B,又B={2,m,4},则m=3.
事实上有:A∩(B∪C)=(A∩B)∪(A∩C);
A∪(B∩C)=(A∪B)∩(A∪C).
12/13/2021
一
二
三
3.填写下表:
交集的运算性质
A∩B=B∩A
A∩A=A
A∩⌀=⌀∩A=⌀
如果 A⊆B,则 A∩B=A
并集的运算性质
A∪B=B∪A
A∪A=A
A∪⌀=⌀∪A=A
如果 A⊆B,则 A∪B=B
3.做一做:已知集合M={x|-2≤x<2},N={0,1,2},则M∩N等于(
A.{0}
B.{1}
C.{0,1,2}
D.{0,1}
解析:按照交集的定义求解即可.
M∩N={x|-2≤x<2}∩{0,1,2}={0,1}.
故选D.
答案:D
12/13/2021
)
一
二
三
二、并集
【问题思考】
1.集合A∪B中的元素个数如何确定?
提示:(1)当两个集合无公共元素时,A∪B的元素个数为这两个集
合元素个数之和;
(2)当两个集合有公共元素时,根据集合元素的互异性,同时属于A
和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个
1.2集合间的基本关系及运算

集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集, 记作A B 或B A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B3、真子集:如果A B,且A B,那么集合A称为集合B的真子集,A B .4、设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C S A5 、元素与集合、集合与集合之间的关系6 、有限集合的子集个数1 )n 个元素的集合有2n个子集2) n 个元素的集合有2n-1 个真子集3) n 个元素的集合有2n-1 个非空子集4) n 个元素的集合有2n-2 个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A Bo8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A B o9 、集合的运算性质及运用知识应用】1. 理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x A能推出x Bo【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1} ,B=Z (2)A={1,3,5,15} ,B={x|x 是15的正约数}【L】例 2.已知集合A={x|-2 x 5},B={x|m+1x 2m-1},若B A,求实数m取值范围。
【C】例3.已知集合A {0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一写出。
2. 解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用【C 】例 3.集合 M={x|x=3k-2,k Z},P={y|y=3x+1,x Z},S={z|z=6m+1,m Z}之间的关列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足 的条件是否一致,若均一致,则两集合相等。
1.2集合的基本关系

解: A {0, -4},B A,于是可分类处理. (1)当A B时,B {0, -4}. 由此知:, 0 -4是方程x 2( a 1) a 1 0的两根,
2 2
由韦达定理得
-2(a 1) 4 2 a 1=0
解得 a 1
(2)当B A时,又可分为: (a) B 时,即B {0},或B {-4}, 4(a 1) 4( a 1) 0, 解得a 1
(Venn图)
为了直观的表示集合间的关系,我们常常画一条封闭的曲线, 用它的内部表示一个集合.
例如,图1-1表示任意一个集合A;
A
图1-1
图1-2表示集合{1,2,3,4,5} .
1, 2, 3, 4, 5.
图1-2
2、集合相等
• 如果 A,B 两个集合所含元素完全相同,我们就 说这两个集合相等,记作A=B。 • 如果A B,同时B A,那么A=B。
2 2
B {0}满足条件; (b)B 时, 4(a 1) 4( a 1) 0, 解得a 1
2 2
综合(1)、 (2)知,所求实数a的值a 1, 或a 1.
反馈演练
5.已知A {x | 2 x 5},B {x | a 1 x 2a 1}, B A,求实数a的取值范围. 解: A, 当B ,有a 1 2a 1, 即a 2
用适当的符合填空 (1) a____{a} (7) 3____
(2) {1,3,5,7}____{3,5} (3) {a}______{a,b,c} (4) d____{a,b,c} (5) {a,b}____{b,a} (6) a____{a,b,c}
1.2 集合间的基本关系

小结
1.本节课我们学习了什么?
(1)两个集合间的关系; (2)子集和真子集,子集的性质; (3)空集及其性质;
2.本节我们学习了哪些思想方法?
(1)类比实数的大小关系来探集合间的关系; (2)自然语言、符号语言、图形语言之间转化; (3)分类与整合、数形结合。
布置作业
(1)教材P.9:第2,3,5题 (2)同步作业
若A⊆B,且B⊆A,则A=B
3.集合的相等
自然语言: 一般地,如果集合A的任何一个元素都是集合B的元素,同时
集合B的任何一个元素都是集合A的元素,这时我们就称集合A与 集合B的相等.记作:A=B
符号语言: 若A⊆B,且B⊆A,则A=B
图形语言: B (A)
3.集合的相等
练习1:判断集合A与集合B的关系 (1) A {0,1,2,3,4}, B {x N | x 5}
第一章 集合与常用逻辑用语
1.2 集合间的基本关系
学习新知
问题1: 上一节我们学习了集合,知道了两个集合之间有
相等的关系. 两个实数之间由相等关系、大小关系,如5=5,
5<7,5>3,等等.两个集合之间是否也有类似的关系?
1.集合的包含关系和子集
例子:(1)A={1,2,3},B={1,2,3,4,5}; (2)C为北师大芜湖附校高一(4)班全体女生组成的集合, D为北师大芜湖附校高一(4)班全体学生组成的集合; (3)E={x|x两条边相等的三角形},F={x|x是等腰三角形}.
问题2:(1)给定集合后,你关心集合的什么? 从这个角度分析两集合的关系是什么? (2)考察其他两组例子,你能概括它们共同点吗?
(3)类比实数间的相等关系、大小关系,你能发现下面各组中 两个集合之间的关系吗?
第02讲 1.2集合间的基本关系(教师版)

第02讲 1.2集合间的基本关系课程标准学习目标①理解集合之间包含与相等的含义,能识别给定集合的子集、真子集;②理解与掌握空集的含义,在解题中把握空集与非空集合、任意集合的关系。
1.能利用集合间的包含关系解决两个集合间的问题。
2. 在解决集合问题时,易漏集合的特殊形式,比如集合是空集时参数所具备的意义。
3. 能利用Venn 图表达集合间的关系。
4.判断集合之间的关系时,要从元素入手。
知识点01:venn 图(韦恩图)在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Venn 图。
Venn 图和数轴一样,都是用来解决集合问题的直观的工具。
利用Venn 图,可以使问题简单明了地得到解决。
对Venn 图的理解(1)表示集合的Venn图的边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.(2)用Venn 图表示集合的优点是能够呈现清晰的视觉形象,即能够直观地表示集合之间的关系,缺点是集合元素的公共特征不明显.知识点02:子集1子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(1)记法与读法:记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”)(2)性质:①任何一个集合是它本身的子集,即A A ⊆.②对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆(3)venn 图表示:2集合与集合的关系与元素与集合关系的区别符号“⊆”表示集合与集合之间的包含关系,而符号“Δ表示元素与集合之间的从属关系.【即学即练1】(2024·全国·高三专题练习)写出集合{,}a b 的所有子集.【答案】{}{}{},,,,a b a b f 【详解】集合{,}a b 的所有子集有:{}{}{},,,,a b a b f 知识点03:集合相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A B =.也就是说,若A B ⊆,且B A ⊆,则A B =.(1)A B =的venn 图表示(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关【即学即练2】(2024秋·辽宁沈阳·高一沈阳二中校考阶段练习)下面说法中不正确的为( )A .{}{}1||1x x y y x y +==+=B .(){}{},2||2x y x y x x y +==+=C .{|2}{|2}x x y y >=>D .{}{}1,22,1=【答案】B【详解】对于A ,因{}1|R x x y +==,{}1|R y x y ==+,即{}{}1||1x x y y x y +==+=,A 正确;对于B ,因集合(){},2|x y x y +=的元素为有序数对,而{}2|x x y +=的元素为实数,两个集合的对象不同,B 不正确;对于C ,因集合{|2}x x >与{|2}y y >都表示大于2的数形成的集合,即{|2}{|2}x x y y >=>,C 正确;对于D ,由列举法表示集合知{}{}1,22,1=正确,D 正确.故选:B知识点04:真子集的含义如果集合A B ⊆,但存在元素x B Î,且x A ∉,我们称集合A 是集合B 的真子集;(1)记法与读法:记作A B Ü,读作“A 真包含于B ”(或“B 真包含A ”)【即学即练3】(2024·全国【答案】7【详解】由{}a {,,M a b ⊆M 中的元素个数多于{}a 中的元素个数,不多于因此M 中的元素来自于b ,c,d 即在b ,c,d 中取1元素时,M 故足条件:{}a {,,M a b ⊆故答案为:7.{}{}Ì,故③正确,④错误,正确的个数为2.11,2,3故选:B题型01 判断两个集合的包含关系【详解】由题意知,,M xì=【典例1】(2024·陕西咸阳·统考三模)设集合*{|13}A x N x =Î-<£,则集合A 的真子集个数是( )A .6B .7C .8D .15【答案】B【详解】因为*{|13}A x N x =Î-<£,【典例1】(多选)(2024·全国·高三专题练习)已知集合{17}A xx =-££∣,{221}B x a x a =+££-∣,若使B A ⊆成立的实数a 的取值集合为M ,则M 的一个真子集可以是( )A .{4}x x £∣B .{3}xx £∣C .{|34}x x <£D .{|45}x x £<【答案】BC【详解】由题意集合{17}A xx =-££∣,{221}B x a x a =+££-∣,因为B A ⊆,所以当B =∅时,221a a +>-,即3a < ;当B ≠∅时,有12217a a -£+£-£ ,解得34a ££,故(,4]M =-¥,则M 的一个真子集可以是(,3]-¥或(]3,4,故选:BC.【典例2】(2024·高一课时练习)设{1,2}A =,{|}B x x A =⊆若用列举法表示,则集合B 是________.【答案】{∅,{1},{2},{1,2}}【详解】由题意得,A ={1,2},B ={x |x ⊆A },则集合B 中的元素是集合A 的子集:∅,{1},{2},{1,2},所以集合B ={∅,{1},{2},{1,2}},故答案为:{∅,{1},{2},{1,2}}.【变式1】(多选)(2024秋·福建宁德·高一福建省霞浦第一中学校考期末)已知集合{2,4}M =,集合M N N ⊆,是{1,2,3,4,5}的真子集,则集合N 可以是( )A .{2,4}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】ABC【详解】集合{2,4}M =,集合M N ⊆{1,2,3,4,5},则集合N 中至少包含2,4两个元素,又不能等于或多于{1,2,3,4,5}中的元素,所以集合N 可以是{2,4},{2,3,4},{1,2,3,4},故选:ABC题型04空集的概念集判断【典例1】(2024·河北·高三学业考试)下列集合中,结果是空集的是( )A .2{|10}x R x Î-=B .{|61}x x x ><或C .22{(,)|0}x y x y +=D .{|61}x x x ><且【答案】D【详解】A 选项:21{|10}x R x ±ÎÎ-=,不是空集;B 选项:7$Î{x |x >6或x <1},不是空集;C 选项:(0,0)∈{(x ,y )|x 2+y 2=0},不是空集;D 选项:不存在既大于6又小于1的数,即:{x |x >6且x <1}=∅.故选:D【典例2】(2024春·宁夏银川·高二银川一中校考期中)下列各式中:①{}{}00,1,2Î;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=.正确的个数是()A .1B .2C .3D .4【答案】B【详解】①集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{}{}0,1,22,1,0⊆,正确;③空集是任意集合的子集,故{}0,1,2∅⊆,正确;④空集没有任何元素,故{}0∅≠,错误;⑤两个集合所研究的对象不同,故{}(){}0,1,0,1为不同集合,错误;⑥元素与集合之间只有属于、不属于关系,故错误;∴②③正确.故选:B.【变式1】(2024·上海·高一专题练习)下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00Î.其中正确的个数是( )A .1B .3C .4D .6【答案】C【详解】①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立.④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立;⑤正确,空集是任何非空集合的真子集;⑥正确,由元素与集合的关系知,{}00Î.故选:C.【变式1】(多选)(2024·全国·高一校联考阶段练习)下列关系中正确的是( )A .0Î∅B .{}∅Î∅C .{}∅⊆∅D .{}0∅⊆【答案】BCD【详解】选项A :空集中没有元素,故A 错误;选项B :{}∅中只有一个元素∅,故B 正确;选项C ,D :空集是任意集合的子集,故C ,D 正确故选:BCD题型05 空集的性质及应用【典例1】(2024·全国·高一专题练习)已知集合{|21}M x m x m =<<+,且M =∅,则实数m 的取值范围是____.【答案】m ≥1【详解】∵M =∅,∴2m ≥m +1,∴m ≥1.故答案为m ≥1【典例2】(2024·高一课时练习)不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,则实数a 的取值范围是_____________.【答案】{|1}a a £-【详解】解:∵不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,①当0a >时,由0ax >求得0x >;由10x a ++>,求得1x a >--,故不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|0}x x >≠∅,故不满足条件;②当a<0时,由0ax >求得0x <;由10x a ++>,求得1x a >--,若10a --³,即1a £-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为∅,满足条件;若10a --<,即01a >>-时,不等式组10(0)0x a a ax ++>ì≠í>î的解集为{|10}x a x --<<≠∅,不满足条件,综上可得实数a 的取值范围是{|1}a a £-,故答案为:{|1}a a £-.【变式1】(2024秋·湖南永州·高一校考阶段练习)若集合{}R 2x a x Σ£ 为空集,则实数a 的取值范围是______.【典例1】(2024·全国·高三专题练习)已知集合{}20,1,A a =,{}1,0,32B a =-,若A B =,则a 等于( )A .1或2B .1-或2-C .2D .1【答案】C【详解】解:因为A B =,所以232a a =-,解得1a =或2a =.当1a =时,21a =,与集合元素互异性矛盾,故1a =不正确.题型08根据集合的包含关系求参数【典例1】(2024·全国·高一专题练习)给定集合{}1,2,3,4,5,6,7,8S =,对于x S Î,如果11x S x S +∉-∉,,那么x 是S 的一个“好元素”,由S 的3个元素构成的所有集合中,不含“好元素”的集合共有_________个.【答案】6【详解】若不含好元素,则集合S 中的3个元素必须为连续的三个数,故不含好元素的集合共有{}{}{}{}1,2,3,2,3,43,4,545,6,5,6,7,6,7,8{},{},,,共有6个.故答案为:6.【典例2】(2024·高一课时练习)设A 是整数集的一个非空子集,对于k A Î,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个.【答案】7【详解】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”,则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.故答案为:7.本节重点方法(数轴辅助法)【典例1】(2024·全国·高三专题练习)已知集合{|4A x x =³或}5x <-,{}|13B x a x a =+££+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <-或}3a ³【详解】用数轴表示两集合的位置关系,如上图所示,要使B A ⊆,只需35a +<-或14a +³,解得8a <-或3a ³.所以实数a 的取值范围{|8a a <-或}3a ³.故答案为:{|8a a <-或}3a ³ 综上,实数a 的取值范围为{4a a -或}2a >.本节数学思想方法(分类讨论法){},|34B A A x x ⊆=-££Q ,213m \-³-且14m +£,解得:13m -≤≤,所以12m -£<,②若B 为空集,符合题意,可得:211m m -³+,解得:2m ³.综上,实数m 的取值范围是1m ³-.故答案为:[)1,-+¥.。
1.2 集合间的基本关系

[对点练清] 1.[变条件]本例若将集合 A,B 分别改为 A={-1,3,2m-1},B={3,m2},
其他条件不变,则实数 m=________. 解析:因为 B⊆A,所以 m2=2m-1, 即(m-1)2=0,所以 m=1, 当 m=1 时,A={-1,3,1},B={3,1}. 满足 B⊆A. 故实数 m 的值为 1. 答案:1
N.故选 D.
知识点二 空集 (一)教材梳理填空
定义 记法
我们把不__含__任__何__元__素__的集合叫做空集 ∅
规定
空集是任何集合的_子__集__,即∅ ⊆A
(1)空集只有一个子集,即它的本身,∅ ⊆∅ ; 特性
(2)若 A≠∅ ,则∅ _____A
[微思考] {0},∅与{∅}之间有什么区别与联系? 提示:{0}是含有一个元素 0 的集合,∅ 是不含任何元素的集合,因
此有∅ {0},而{∅ }是含有一个元素∅ 的集合.因此,∅ 作为一个元素
时,有∅ ∈{∅ },∅ 作为一个集合时,有∅ {∅ }.
(二)基本知能小试 1.判断正误
(1)∅和{∅}都表示空集. (2)任何集合都有子集和真子集.
(3)集合{x|x2+1=0,x∈R }=∅. 答案:(1)× (2)× (3)√
含有 4 个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}.
含有 5 个元素:{1,2,3,4,5}.
故满足条件的集合 M:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},
{1,2,4,5},{1,2,3,4,5}. [答案] B
[方法技巧] 求集合子集、真子集个数的 3 个步骤
3.(多选)如下四个结论中,正确的有
1.2.1 集合之间的关系

N.故选 B. (k∈Z),集合 N 的元素:
解法二:集合 M 的元素:x= + = 2 4 4 2 4
b 解:∵ 1,a, ={0,a2,a+b}, a b ∴0∈ 1,a, . a
∴b=0,此时有{1,a,0}={0,a2,a}, ∴a =1,a=〒1. 当 a=1 时,不满足互异性, ∴a=-1. ∴a2 009+b2 010=-1.
在上述子集中,除去集合A本身,即{1,2,3}剩下的都是 集合A的真子集.
方法归纳
(1)正确区分子集与真子集概念是解题的关键. (2)写一个集合的子集时,按子集中元素个数多少,以一
定顺序来写不易发生重复和遗漏现象.
(3)集合中含有n个元素,则此集合有2n个子集,记住这个 结论可以提高解答速度,其中要注意空集 漏掉. 和集合本身易
这个命题还可以表述为:
X是有理数推出x是实数.
“推出”一词用符号“
”,读作“推出”
于是上述说法可以表示为:
x是有理数
x是实数
反过来,如果上述说法正确,那么有理数Q也一定是实数 R的子集. 由此可见,我们可以通过判断两个集合之间的关系来判
断它们的特征性质之间的关系, 或用集合特征性质之间
的关系,判断集合之间的关系.
(2)星期一升国旗时,每个班的同学都聚集在一起站在
旗杆附近指定的区域内,一字排开,校长在讲话时,从 主席台向下看,每位同学是哪个班的,一目了然.试想一 下高一(5)班全体学生与高一年级全体学生之间是怎样 的关系呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集, 记作 AB 或 B A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B3、真子集:如果 A B,且A B,那么集合A称为集合B的真子集,A B .4、设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C S A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数1 )n 个元素的集合有2n个子集2)n 个元素的集合有2n-1 个真子集3)n 个元素的集合有2n-1 个非空子集4)n 个元素的集合有2n-2 个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A Bo8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A B o9 、集合的运算性质及运用知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x A能推出x Bo【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1} ,B=Z (2)A={1,3,5,15} ,B={x|x 是15的正约数}【L】例 2.已知集合A={x|-2 x 5},B={x|m+1 x 2m-1},若B A,求实数m取值范围。
【C】例3.已知集合A {0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一写出。
2. 解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用【C 】例 3.集合 M={x|x=3k-2,k Z},P={y|y=3x+1,x Z},S={z|z=6m+1,m Z}之间的关列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足 的条件是否一致,若均一致,则两集合相等。
B A ,贝U A=B.【J 】例1.下列各组中的两个集合相等的有( (1) P={x|x=2n,nZ}, Q={x|x=2( n-1)(2)利用集合相等的定义证明A B,且)Z}(2) P={x|x=2n-1,nN }, Q={x|x=2n+1,n⑶ P={x|x 2-x=0}, Q={x|x=Z}1【L 】例2.已知集合A={x|x= k2与集合B 是否相等。
Z}, B={x|x= Ik4+ ,k2Z},判断集合Ax3【C 】例 3.设集合 A={x|0},集合 B={x|(x-3)(x-2)x 20},判断A 与B 相等吗3. 理解方法:如果集合A 中的元素都包含于集合 B,并且集合B 中有集合A 所没有的元素,那么集合A 就是集合B 的真子集。
【J 】例1.设集合A={2,8,a}, B={2,2a -3a+4},且 B A,求 A 的值。
【L 】例2.满足{a}M {a,b,c,d}的集合M 有哪几个玄阜系疋 _______________ 。
4.理解方法:通俗的讲,A S,那么将集合S中的元素去除掉集合A中的元素,所剩余下来的元素组成的集合就是S的子集A的补集。
【J 】例 1.设集合A={1,2,3,4,},集合U={1,2,3,4,5,6},那么C u A= _______________【L】例 2.若U=Z A={x|x=2k,k Z},B={x|x=2k+ },则C u A= _________ , C u B= _________2x 1 0【C】例3.不等式组的解集为A,U=R试求C u A3x 6 05.理解方法:元素与集合的关系是属于与不属于的关系,用表示;集合与集合之间的关系是包含()、真包含(),相等(=)的关系。
、L】例1.在下列各式中错误的个数是()① 1 € {0,1,2} :②{1} € {0,1,2}:③{0,1,2}?{0,1,2} ;④{0,1,2}= :{2,0,1}个个个个【C】例2设A B为两个集合,下列四个命题:(1)A B 对任意x A,有x B (2)A B A B=(3)A B B A (4)A B 存在x A,使得x B,其中真命题的序号()A. (1)(2)B.⑶(4)C. (1)(2)(3)D. (4)6.应用类。
主要记住子集个数,那么真子集的个数就是子集个数减去本身(也就是1个),非空子集个数就是子集个数减去空集(也是1个),非空真子集个数就是子集个数减去空集和本身(也就是减去2个)。
如果记忆不牢靠,可以用列举法列举一个或多个元素较少的集合,来找出它的集合的个数,推出子集个数。
【J】例1集合A= {x|0 w x<3且x € Z}的真子集的个数是()A. 5?B. 6 C . 7? D . 8【L】例2集合{a,b,c,,d,e,f} 的子集个数真子集个数非空子集个数________ 非空真子集个数________ .【C】例3同时满足:(1) M {1,2,3,4,5,} ; (2) a M,则6-a M的非空集合M有________ 个。
7.理解方法:简单的说,就是将集合A与集合B中共有的元素找出来,将这些元素组成的集合就是集合A与集合B的交集。
(注意:不能仅认为 A B中的任一兀素都是都是 A 与B的公共元素,同时还有A与B的公共元素都属于 A B的含义,这就是文字定义中“所有”二字的含义,而不是“部分”公共元素。
当A与B没有公共元素时,不能说 A 与B没有交集,而是它们的交集为。
【J 】例 1 设集合M={m Z|-3<m<2},N={n Z|-1 n 3},贝U M N= ______________ 例 2 如果集合U={1,2,3 , 4,5,6,7,8} , A={2,5,8} , B={1,3,5,7}那么(C u A)B= _______【L】例 3 已知A={-4,2a-1 , a2} , B={a-5,1-a , 9}, A B={9} , a= ________【C】例 4 设集合A={a2, -3,9} , B={4, -3,8},若A B 4, 3求实数a的值例 5 已知集合M={ (x, y) |x+y=2} , N={ (x, y) |x-y=4} ,那么M N= ___________8.解题方法:集合A与集合B的并集就是将集合A中的元素与集合B的元素加起来所组成的集合。
也就是说, 如果我们已知了两个集合, 那么它们所包含的所有不同元素组成的就是这 个集合的并集。
并集的符号语言中的“或”与生活语言中的“或”的含义是不同的,生活用 语中的 “或”是只取其一, 并不兼存,而并集中的 “或”则是可兼有的。
包含 3 种情形:( 1) x A ,且 x B; (2) xB,且 x A (3) x A 且 x B 。
【J 】例 1 若集合 A={1,3 , x} , B={1 , x 2}, A B={1 , , 3, x},则 x 可以为 ______________例 2 集合 M={x|-3<x<1},N={x|x 22【L 】例 3 集合 A={x| x +3x+2 0} , B={x|m x -4x+m-1>0,m R},若 A B=,且 A B=A,求m 的取值范围。
【C 】例 4 集合 A={0,2 , a} , B={1 , a 2},若 A B={0,1,2,4,16},则 a 的值为 _____________例5集合A={x<a},B={x|1<x<2},且A ( C R B )=R,贝V 实数a 的取值范围是 _________________9. 理解类:A A=A A=AA = A =A A B=B A AB=B AAC u A=U AC u A=C u ( C u A ) =A ( C u B)C u ( A B ) =( C u A) ( C u B)验元素的互异性。
在解题时 要一步一步来求出集合 最终得出我们要求的集合 有括 号的先求括号里的。
若是求一个值的取值范围 一般可以先求出一个集合 在通过 2个集合的关系 求出另一个集合 列出关系可求的所求值。
【J 】例 1 已知集合 A={x| x 2+3x+2 0} , B={x|m x 2-4x+m-1>0 , m R},若 A B=且A B=A,求m 的取值范围。
-3} ,则 M N= ____________C u (AB ) =(C u A)A B=A AB AB=A B A.要熟练掌握这些运算性质 建议运用文氏图形帮助理解记忆。
并且在运用时 要注意检x 3【L 】例2已知集合 M={x|0},N={x|x-3},则集合{x|x 1}=()x 1A M NB M NC C R (M N) DC R (MN)2 2卄x +2(a+1)x+ a -仁0,右 A总结:(1) 熟练掌握与应用文氏图,将题目与文氏图结合,更容易求出答案(2) 要求出某一个含有元素字母的集合,要求元素字母取值范围,往往是利用题目 中所给的集合间的关系或者集合与元素之间的关系来找出元素字母的取值范围。
练习题:1 集合 P={x|2 x 10},Q={x|a-1 x 2a+2},Q P,求 a 的取值范围【C 】例 3 设 A={x| X 2+4X =0},B={B=B,求a 的取值范围。
3 已知集合 {1,2,3,4,} ,写出这个集合的所以子集4 已知集合 A={x|a x 2-3x+1=0 ,a R},(1 )若A 是空集,求a 的取值范围( 2 )若 A 至多有一个元素,求 a 的取值范围5 集合 U={1,2,3,4,5} , A={2,4},B={3,4,5},C={3,4},226A={x , x , y -1} , B={0, |x| , y},若 A=B 求2 22 A={x| x -3x+2=0},B={x| x -ax+3a-5=0},AB=B,求 a 的取值范围。
则(A B ) ( C u C)= ___________x , y 的值。