哈三中2017-2018学年高一上学期期末数学试卷及答案

合集下载

黑龙江省哈尔滨市第三中学2017届高三上学期期末考试数学(理)试题Word版含答案

黑龙江省哈尔滨市第三中学2017届高三上学期期末考试数学(理)试题Word版含答案

哈三中2016-2017学年度上学期高三学年期末考试数学试卷(理)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则A. B. C. D.2.点到直线的距离比到点的距离大2,则点的轨迹方程为A. B. C. D.3.下列说法错误的是A.在中,若,则B.若,则为的等比中项C.若命题与为真,则一定为真D.若,,则,4. 已知三个不同的平面,三条不重合的直线,有下列四个命题:①若,则;②若,则;③若;④若,则其中真命题的个数是A.1个B.2个C.3个D.4个5.已知=,,,则A. B. C. D.6.已知则A. B. C. D.7. 某小组有7人,已知利用假期参加义工活动次数为1,2,3的人数分别是2,2,3,现从这7 人中随机选取2人作为代表参加座谈,则选出的2人参加义工活动次数之和是4的概率为A. B. C. D.8.几何体的所有顶点都在同一个球面上,则这个球的体积是A. B.C. D.9.已知,其中实数满足,且的最大值是最小值的2A. B. C. 4 D.10. 已知是直线上的动点,是圆的两条切线,是切点,是圆心,若四边形面积的最小值为,则的值为A.3 B.2 C. D.11. 在二项式的展开式中只有第六项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为A. B. C. D.12. 已知,为曲线的左、右焦点,点为曲线与曲线在第一象限的交点,直线为曲线在点处的切线,若三角形的内心为点,直线与直线交于点,则点,横坐标之和为A.3B. 2 C.1 D.随的变化而变化第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13. 已知,,,则从小到大的顺序为______14. 已知双曲线的焦点、实轴端点恰好分别是椭圆的长轴端点、焦点,则双曲线的渐近线方侧视图程是15.已知抛物线方程,过焦点的直线斜率为与抛物线交于两点,满足,又,则直线的方程为__________________16.已知函数,则不等式的解集为三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.在中内角所对的边分别为,已知(I)求角的大小;(II)若,求的面积.18. 已知正项数列的前项和为,满足,,且(I)求;(II)设数列前项和为,求.19.如图,沿等腰直角三角形的中位线,将平面折起,使得平面平面,并得到四棱锥.(Ⅰ)求证:平面平面;(Ⅱ)是棱的中点,过的与平面平行的平面,设平面截四棱锥所得截面面积为,三角形的面积为,试求的值;(Ⅲ)求二面角的余弦值.20.已知椭圆()的左、右焦点分别为,上顶点为.为抛物线的焦点,且, 0.(Ⅰ)求椭圆的标准方程;(Ⅱ)过定点的直线与椭圆交于两点(在之间),设直线的斜率为(),在轴上是否存在点,使得以为邻边的平行四边形为菱形?若存在,求出实数的取值范围;若不存在,请说明理由.21.已知函数()(Ⅰ) 若恒成立,求实数的取值范围;(Ⅱ) 若,求证:对于任意,不等式成立.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4—4:坐标系与参数方程平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(Ⅰ)求直线的极坐标方程;(Ⅱ)若直线与曲线相交于两点,求.23.选修4—5:不等式选讲已知(Ⅰ)已知关于的不等式有实数解,求实数的取值范围;(Ⅱ)解不等式哈三中2016-2017学年度上学期高三学年期末考试数学答案(理)选择题:1.A2.D3.B4.A5.C6.B7.C8.B9.D10.A11.C12.A填空题:13.c<b<a 14. 15. 16.解答题:17. (1)(2)18.(1);(2)19.(1)略 (2)1:2 (3)20.(1)(2)21.(1)(2)略22.(1)(2)23. (1)(2)。

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷(解析版)

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷(解析版)

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)sin的值为()A.B.C.﹣D.﹣2.(5分)=()A.2B.﹣3C.7D.13.(5分)已知集合,B={α|0<α<π},A∩B=C,则C=()A.B.C.D.4.(5分)函数f(x)=2x﹣的零点所在的区间是()A.B.C.D.5.(5分)下图给出4个幂函数的图象,则图象与函数的大致对应是()A.①,②y=x2,③,④y=x﹣1B.①y=x3,②y=x2,③,④y=x﹣1C.①y=x2,②y=x3,③,④y=x﹣1D.①,②,③y=x2,④y=x﹣16.(5分)函数的单调减区间为()A.(﹣∞,﹣3)B.(﹣∞,﹣1)C.(﹣1,+∞)D.(﹣3,﹣1)7.(5分)在△ABC中,角A,B所对的边分别为a,b,,则A=()A.15°B.30°C.45°D.60°8.(5分)已知,则cos(α+β)=()A.B.C.D.9.(5分)已知f(x)=tanωx(0<ω<1)在区间上的最大值为,则ω=()A.B.C.D.10.(5分)已知sinα﹣cosα=﹣,则tanα+的值为()A.﹣4B.4C.﹣8D.811.(5分)记a=log sin1cos1,b=log sin1tan1,c=log cos1sin1,d=log cos1tan1,则四个数的大小关系是()A.a<c<b<d B.c<d<a<b C.b<d<c<a D.d<b<a<c 12.(5分)已知函数f(x)=cos x,若存在x1,x2,…,x n满足,且,则n的最小值为()A.6B.8C.10D.12二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.(5分)在0°到360°范围内,与角﹣60°的终边相同的角为.14.(5分)先将函数f(x)=sin2x的图象向右平移个单位,再向上平移1个单位后,得到函数g(x)的图象,函数g(x)的解析式为.15.(5分)下列说法中,正确的序号是.①y=|sin x|的图象与y=sin(﹣x)的图象关于y轴对称;②若sinα+cosα=1,则sin nα+cos nα(n∈N*)的值为1;③若,则cos(sinθ)>sin(cosθ);④把函数的图象向左平移个单位长度后,所得图象的一条对称轴方程为;⑤在钝角△ABC中,,则sin A<cos B;⑥sin168°<cos10°<sin11°.16.(5分)若函数恰有4个零点,则a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知点P(1,1)在角α的终边上,求下列各式的值.(Ⅰ);(Ⅱ).18.(12分)已知,.(Ⅰ)求的值;(Ⅱ)求的值.19.(12分)函数.(Ⅰ)若,求函数f(x)的值域;(Ⅱ)若是函数g(x)=f(x)+λcos2x的一条对称轴,求λ的值.20.(12分)已知函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和.(Ⅰ)求f(x)解析式及x0的值;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若时,函数g(x)=2f(x)+1+m有两个零点,求实数m的取值范围.21.(12分)设函数f(x)=x2+|x﹣1|+2a,a∈R.(Ⅰ)若方程f(x)=3x在(0,1)上有根,求实数a的取值范围;(Ⅱ)设g(x)=cos2x+2a sin x,若对任意的,x2∈(0,2)都有,求实数a的取值范围.22.(12分)已知函数f(x)=sin x+cos x.(Ⅰ)把f(x)的图象上每一点的纵坐标变为原来的A倍,再将横坐标变向右平移φ个单位,可得y=sin x图象,求A,φ的值;(Ⅱ)若对任意实数x和任意,恒有,求实数a的取值范围.2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:由特殊角的正弦函数值可得:sin=.故选:A.2.【解答】解:=﹣5+log636=﹣5+2=﹣3.故选:B.3.【解答】解:,B={α|0<α<π};∴;又A∩B=C;∴.故选:C.4.【解答】解:令=0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:B.5.【解答】解:②的图象关于y轴对称,②应为偶函数,故排除选项C,D①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.6.【解答】解:令t=x2+2x﹣3=(x+3)(x﹣1)>0,解得x<﹣3,或x>1,故函数的定义域为(﹣∞,﹣3)∪(1,+∞).根据f(x)=log2t,复合函数的单调性可得,本题即求函数t=(x+1)2﹣4 在定义域(﹣∞,﹣3)∪(1,+∞)上的减区间.再利用二次函数的性质可得函数t=(x+1)2﹣4 在定义域上的减区间为(﹣∞,﹣3),故选:A.7.【解答】解:∵,∴由正弦定理,可得:sin A===,∵a<b,可得A∈(0°,45°),∴A=30°.故选:B.8.【解答】解:已知:,所以:,故:,,所以:,则:cos(α+β)=cos[()+()],=﹣,=,=故选:D.9.【解答】解:∵0<ω<1,∴T=>π,故f(x)在区间上递增,故f(x)max=f()=,故tan=,解得:ω=,故选:A.10.【解答】解:∵sinα﹣cosα=﹣,∴两边平方可得1﹣2sinαcosα=,∴sin2α=﹣,∴tanα+==﹣8,故选:C.11.【解答】解:∵tan1>1>sin1>cos1>0,a=log sin1cos1,b=log sin1tan1,c=log cos1sin1,d=log cos1tan1,∴a=log sin1cos1==log cos1sin1>log sin1sin1=1,∴a>c>0.又lg tan1>0>lg sin1>lg cos1,b=log sin1tan1=<=log cos1tan1=d<0,∴0>d>b.综上可得:a>c>0>d>b.∴b<d<c<a.故选:C.12.【解答】解:函数f(x)=cos x,对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)﹣f(x j)|≤|f(x)max﹣f(x)min|=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,x j(j=1,2,3,…,m)取得最低点,由,且,则按下图取值即可满足条件,∴n的最小值为10.故选:C.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.【解答】解:∵与﹣60°角终边相同的角为:α=k•360°﹣60°,(k∈Z)∵0°≤α<360°,∴k=1时,α=300°.故答案为:300°.14.【解答】解:将函数f(x)=sin2x的图象向右平移个单位,得到:y=sin[2(x﹣)]=﹣cos2x,再向上平移1个单位后,得到函数g(x)=1﹣cos2x.故答案为:g(x)=1﹣cos2x15.【解答】解:①,y=sin(﹣x)的图象关于y轴对称的函数为y=sin x,而非y=|sin x|,故①错误;②,若sinα+cosα=1,两边平方可得1+2sinαcosα=1,即sinα=0,cosα=1,或sinα=1,cosα=0,则sin nα+cos nα(n∈N*)的值为1,故②正确;③,若,则sinθ∈(0,1),cosθ∈(0,1),﹣cosθ∈(﹣1,),且sinθ+cosθ=sin(θ+)<,即有sinθ<﹣cosθ,可得cos(sinθ)>cos(﹣cosθ),即有cos(sinθ)>sin(cosθ),故③正确;④,把函数的图象向左平移个单位长度后,所得y=cos(2x+)的图象,由y=cos(+)=﹣,不为最值,则一条对称轴方程不为,故④错误;⑤,在钝角△ABC中,,可得A+B<,即有A<﹣B,则sin A<sin(﹣B)=cos B,故⑤正确;⑥,sin168°=sin12°,cos10°=sin80°,可得sin11°<sin12°<sin80°,即有sin11°<sin168°<cos10°,故⑥错误.故答案为:②③⑤.16.【解答】解:设g(x)=sin(2x+),h(x)=cos(2x+),分别令f(x)=0,g(x)=0,则:g(x)在[﹣π,]上的零点为﹣π,﹣π,﹣;h(x)在[﹣π,]上的零点为﹣π,﹣,.f(x)恰有4个零点,可得m∈(﹣π,﹣]∪(﹣π,﹣]∪(﹣,].故答案为:(﹣π,﹣]∪(﹣π,﹣]∪(﹣,].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解答】解:∵角α终边上有一点P(1,1),∴x=1,y=1,r=|OP|=,∴sinα==,cosα==,tanα==1,∴(Ⅰ)===﹣;(Ⅱ)===﹣.18.【解答】解:(Ⅰ)∵已知,,∴sinα=﹣=﹣,∴=sinαcos+cosαsin=﹣•+•=.(Ⅱ)由(Ⅰ)可得tanα===﹣,tan2α==﹣,∴==﹣.19.【解答】解:(Ⅰ)=2sin(2x+)﹣1,若,则2x+∈[0,],故2sin(2x+)∈[0,1],故f(x)∈[﹣1,1];(Ⅱ)g(x)=sin2x﹣2sin2x+λcos2x=sin(2x+θ)﹣1sinθ=,cosθ=,若是函数g(x)=f(x)+λcos2x的一条对称轴,则2×+θ=,故θ=,故,解得:λ=2.20.【解答】解:(Ⅰ)∵函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和,∴A=2,2sinφ=﹣,即sinφ=﹣,∴φ=﹣,且•=,ω=2,∴f(x)=2sin(2x﹣).令2x0﹣=,求得x0=.(Ⅱ)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅲ)若时,函数g(x)=2f(x)+1+m有两个零点,即4sin(2x﹣)+1+m=0有2个实数根,即方程sin(2x﹣)=﹣有2个解.若时,2x﹣∈[﹣,],sin(2x﹣)∈[﹣,1],∴结合正弦函数的图象可得,应有≤﹣<1,解得﹣5<m≤﹣2﹣1,即实数m的取值范围(﹣5,﹣23﹣1].21.【解答】(Ⅰ)解:(1)∵方程f(x)=3x在(1,2)上有根,∴函数h(x)=f(x)﹣3x=x2+|x﹣1|﹣3x+2a在(1,2)上有零点.由于在(1,2)上,h(x)=f(x)﹣3x=x2﹣2x+2a﹣1是增函数,故有h(1)h(2)=(2a﹣2)•(2a﹣1)<0,得﹣<a<1.∴实数a的取值范围:(﹣,1)(Ⅱ)在(0,2)上,f(x)=,∴f(x)的最小值为f()=2a+,对任意的,x2∈(0,2)都有,⇔对任意的,有g(x1)<2a+1恒成立,∴cos2x+2a sin x<2a+1在[﹣,]恒成立.⇒sin2﹣2a sin x+2a>0在[﹣,]恒成立,⇒(sin x﹣a)2+2a﹣a2>0在[﹣,]恒成立.①⇒a≥1.②⇒a∈∅,③⇒0<a<1综上实数a的取值范围为(0,+∞).22.【解答】解:(Ⅰ)f(x)=sin x+cos x=sin(x+),由题意可得A=,φ=;(Ⅱ)不等式等价于(3+2sinθcosθ﹣a sinθ﹣a cosθ)2≥,θ∈[0,]①,由①得a≥②,或a≤③,在②中,1≤sinθ+cosθ≤,=(sinθ+cosθ)+,显然当1≤x≤时,f(x)=x+为减函数,从而上式最大值为f(1)=1+=,由此可得a≥;在③中,=(sinθ+cosθ)+≥2=,当且仅当sinθ+cosθ=时取等号,所以的最小值为,由此可得a≤,综上,a≤或a≥.。

哈三中2018-2019学年上学期期末高一数学考试试卷Word版含答案

哈三中2018-2019学年上学期期末高一数学考试试卷Word版含答案

哈三中2018-2019学年上学期期末高一数学考试试卷Word版含答案XXX2018-201年上学期期末高一数学考试试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。

1.选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合 $A=\{y|y=x\}$,$B=\{x|y=ln(1-x)\}$,则$A\cap B=$A。

$\{x|\leq x<e\}$ B。

$\{x|\leq x<1\}$ C。

$\{x|1\leqx<e\}$ D。

$\{x|x\geq 0\}$2.函数 $y=tan(2x-\frac{\pi}{3})$ 的最小正周期是A。

$2\pi$ B。

$\pi$ C。

$\frac{\pi}{2}$ D。

$\frac{2\pi}{3}$3.若 $sin\alpha=\frac{1}{5}$,则 $cos2\alpha=$A。

$\frac{5}{23}$ B。

$-\frac{25}{232}$ C。

$-\frac{25}{525}$ D。

$\frac{5}{2525}$4.下列函数中,当 $x\in(0,\frac{\pi}{2})$ 时,与函数$y=x$ 单调性相同的函数为A。

$y=cosx$ B。

$y=sin^3x$ C。

$y=tanx$ D。

$y=sinxcosx$5.若 $a=ln\pi$,$b=log_{\frac{3}{2}}2$,$c=-2$,则它们的大小关系为A。

$a>c>b$ B。

$b>a>c$ C。

$a>b>c$ D。

$b>c>a$6.若函数 $y=log_3x$ 的反函数为 $y=g(x)$,则 $g(81)$ 的值是A。

$3$ B。

$4$ C。

$\frac{1}{4}$ D。

$\frac{1}{3}$7.函数 $f(x)=log_2x-\frac{1}{2}$ 的零点所在区间为A。

黑龙江省哈尔滨市第三中学校2018-2019学年高一上学期期末考试数学试题(解析版)

黑龙江省哈尔滨市第三中学校2018-2019学年高一上学期期末考试数学试题(解析版)

哈三中2018—2019学年度上学期高一学年第一模块数学试卷第I卷(选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.()A. B. C. D.【答案】A【解析】【分析】利用特殊角的三角函数值计算即可求出值.【详解】故选:A【点睛】此题考查了特殊角的三角函数值,正确记忆相关角的的三角函数值是解题的关键.2.()A. 2B. -3C. 7D. 1【答案】B【解析】【分析】利用根式的性质及对数的运算性质直接化简求值即可.【详解】.故选:B【点睛】本题考查了根式的运算性质,考查了对数的运算性质,考查了计算能力.3.已知集合,,,则()A. B.C. D.【答案】C【解析】【分析】,借助余弦图像即可得到结果.【详解】∵,∴即故选:C【点睛】本题考查交集概念及运算,考查余弦函数的图象与性质,属于基础题.4.函数的零点所在区间为()A. B.C. D.【答案】C【解析】【分析】令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x),最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【详解】令0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:C.【点睛】本题主要考查函数零点所在区间的求法.考查数形结合思想是中档题.5.下图给出四个幂函数的图象,则图象与函数的大致对应是()①②③④A. ①,②,③,④B. ①,②,③,④C. ①,②,③,④D. ①,②,③,④【答案】B【解析】【分析】通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项【详解】②的图象关于y轴对称,②应为偶函数,故排除选项C,D,①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.【点睛】本题考查幂函数的图象与性质,幂函数的图象取决于幂指数.属于基础题.6.函数的单调递减区间是()A. B. C. D.【答案】A【分析】先求出函数的定义域,再由复合函数的单调性求单调减区间.【详解】∵x2+2x﹣3>0,∴x>1或x<﹣3;又∵y=x2+2x﹣3在(﹣∞,﹣1]上是减函数,在[﹣1,+∞)上是增函数;且y=log2x在(0,+∞)上是增函数;∴函数y=log2(x2+2x﹣3)的单调递减区间为(﹣∞,﹣3);故选:A.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.7.在中,角所对的边分别为,,则A. B. C. D.【答案】B【解析】【分析】利用正弦定理,即可解得.【详解】∵∴,即,∴,又a<b,A三角形的内角,∴故选:B【点睛】本题考查了正弦定理的应用,注意利用大边对大角进行角的限制,属于基础题.8.已知则()A. B. C. D.【答案】D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β).【详解】∵∴,∴。

黑龙江省哈三中高一上学期期末考试试题(数学)

黑龙江省哈三中高一上学期期末考试试题(数学)

黑龙江省哈三中高一上学期期末考试试题(数学)考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分. 考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷(选择题,共60分)、选择题(本大题共 12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 项是符合题目要求的) 6,扇形圆心角为2 rad ,则扇形的面积为3 C . 6cos (―213 27(2k ,2k) (k Z ) B . (2k ,2k )(k Z )4 24 4 (2k - ,2k 3 )(k Z ) D . (2k — ,2k -)(k Z )2444已知函数m 2 5m4 Z ))上单调递减,则 y x(m )为偶函数且在区间(0,2或3B .3C.2D . 1已知函数y sin 2x 3sin x 1 (x[6,]),则函数的值域为[1,1]B . [1,1]-2)的定义域为函数A . 7. A . & C . A .1. A . 已知一个扇形弧长为 22. 已知函数ysin(x 3),则函数的最小正周期为3.已知ABC 中,a45。

,4.化简sin()cos (2 )所得结果为A . sinsinC . coscos5.已知COs3si n .3. 2,则sinsincos 2 .cos sin3cos7 27log 3(2sin x6.1C . [ 1 2, 4]441 sin cos 9.2. 4sin sinA . -B. 2 C .3D . 1210. 设 a tan1 , b tan2 , c tan3, d tan4 ,则a, b,c,d 大小关系为 A . d a c b B . a d bc C .ad c b D . dab11.12已知sin(-) 一,且— (0,-),则 sin三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤 )17. (本大题10分) 已知:函数f(x) 3sin(2x) (( ,0))的一条对称轴方程为 x 7 ,122求函数y f (x)的解析式;41,5]12. 17 2 26B - 7262 *C .17—2 267 2 26已知2,2],tan,tan是关于方程2011x 2012 0的两根,3B.—4 C . 一或4第口卷(非选择题,共90 分)(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上 )13 .函数y的值域为sin x 214. ABC中,若 a 5, b 3, 15 .已知(, ), cos — a ,2 216. 若函数 f(x)2x (2m 1)x1 sinm 在区间[1,1]内有零点,贝U m 的取值范围是二、填空题18. (本大题12分)求实数a的取值范围使不等式sinx cosx 4sin x cosx 1 a 0恒成立•19. (本大题12分)、,1 已知函数g(x) sin( x —), f (x) 2cosx g(x)—6 2(1)求函数f (x)的最小正周期及其对称中心坐标;(2) 当x [0,]时,求函数f (x)的值域;2(3) 由y si nx可以按照如下变换得到函数y f(x),(1) (2)y sinx y sin(x ) y sin(2x ),写出(1) (2)的过程.6 620. (本大题12分)1 在 ABC 中,sin(C A) 1 , sin B 3(1)求si nA 的值;(2)设AC 2 3,求 ABC 的面积.(3)是否存在实数 m 使得不等式f(, m 2 2m 3) m 的取值范围.22. (本大题12分)21. (本大题12分) 已知函数f (x) Asin( x 大值和一个最小值,且当 x2(1) 求函数解析式; (2) 求函数的单调递增区)(A 0, 0,0时,函数取到最大值2,—)在(0,5 )内只取到一个最 当x 4时,函数取到最小值f(, m 2 4)成立,若存在,求出已知函数f i (x) lg|xP 1 |, f 2(x) lg(| X P 21 2) ( x R , 口,p ?为常数) 函数f (x)定义为对每个给定的实数 x ( x p ), f (x)(1)当P i 2时,求证:y f i (x)图象关于x 2对称;(2)求f(x) f i (x)对所有实数x ( x p )均成立的条件(用 P i 、P 2表示);(3)设a, b 是两个实数,满足a b ,且p i , p 2 (a,b),若f (a) f (b)求证:函数f(x)在区间[a,b ]上单调增区间的长度之和为(区间[m, n ]、(m, n)或(m, n ]的长度均定义为n m )高一数学答案f l (x) f i (x) f 2(x) f 2(X )f 2(X ) f l (x)一、 选择题1 12 DCBCB BAABC BB二、 填空题22(1)当 P 1 2时f 1 (x) g|x 2,H2 x) lg 2 x 2 lg x, f 1 (2 x) Ig 2 x 2| lg x仏(2x) f 2(2 x),所以对称轴为x 2 即 ig|x pj ig |x P 2 ,由对数的单调性可知xP1P 2 2均成立 xP1Ix P2I2,又x P 1x P 2的最大值为|p 1P 213 [ 2,3]14. 715.. 1 a 216. m 2或 m 1 -32三、解答题17. 〔 1) /(x) — 3sin.(2x(2)图略20. ( 1) sin A(2) S ABC21 .(1)f (X)12sin(— x 3(2) 单调增区间为[6k (3)FT = 7Tr 6)2 ,6k中心±标(挈-害卫)(A(3)① 当 |p i P 2I 2时,由(2)可知 f(x) f i (x) lg|xP i由(1)可知函数f(x) f i (x)关于xP i 对称,由f(a) f(b),可知P iig(x P i )(x P i ) ig(P i x)(x P i )②当丘-屮』> 2时.不妨设“ <Zi <Pi 即羽一們"当工<昼时!二迈血一兀)cl 或刃一兀)c 成tr).=当x> p t 时,_AM=lg(x-d ft) = l£(x -j 1 +ft-ft) A /J IQ , 所以此时/W = /2(x)当円CX S 空时,图義V = fl®与尸三贞交点橫坐标垢盘三卫1:乃十」・由(1 '>可知!故由y f i (x)与y f 2(x)单调性可知,增区间长度之和为(X 。

黑龙江省哈尔滨市第三中学2017届高三上学期期末考试数学(理)试题 Word版含答案

黑龙江省哈尔滨市第三中学2017届高三上学期期末考试数学(理)试题 Word版含答案

哈三中2016-2017学年度上学期 高三学年期末考试 数学 试卷(理)考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}1,0,1M =-,{}(2)(1)0N x x x =+-<,则M N = A.{}1,0M =- B.{}0,1M = C.{}0M = D.{}1M =- 2.点P 到直线3y =的距离比到点()0,1F -的距离大2,则点P 的轨迹方程为 A.24y x = B.24y x =- C. 24x y = D. 24x y =- 3.下列说法错误的是A.在ABC ∆中,若A B >,则cos cos A B <B.若2b ac =,则b 为,a c 的等比中项 C.若命题p 与p q ∧为真,则q 一定为真D.若:p ()0,x ∀∈+∞,ln 1x x <-,则:p ⌝()00,x ∃∈+∞,00ln 1x x ≥-4. 已知三个不同的平面,,αβγ,三条不重合的直线,,m n l ,有下列四个命题:①若,m l n l ⊥⊥,则//m n ;②若,αγβγ⊥⊥,则//αβ;③若βαβα⊥⊂⊥则,,//,n n m m ; ④若//,m n ααβ= ,则//m n 其中真命题的个数是A .1个B .2个C .3个D .4个5.已知a =)2,(x ,b )1,2(-=,b a ⊥,则=-b aA .5B .52C .10D .10 6.已知,31tan ,21)tan(==+ββα则=-)4tan(πα A .43 B .43- C .错误!未找到引用源。

2017-2018学年哈尔滨高一(上)期末数学试卷((有答案))-(新课标人教版)AlPMMM

 2017-2018学年哈尔滨高一(上)期末数学试卷((有答案))-(新课标人教版)AlPMMM

2017-2018学年黑龙江省哈尔滨高一(上)期末数学试卷一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3}B.{2,3}C.{1,2}D.(0,3))2.(5分)已知角α在第三象限,且sinα=﹣,则tanα=()A.B.C.D.3.(5分)的值为()A.B.C.1 D.﹣14.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C为()A.150°B.120°C.60°D.30°5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.66.(5分)若sin()=,sin(2)的值为()A.B.C.D.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.28.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x∈(0,3)时,f (x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.9810.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度D.向左平移个单位长度11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A.B. C.D.二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f(x)=x+log a x的图象过点(2,3),则实数a=.14.(5分)已知sin,且α∈(0,),则tan的值为.15.(5分)已知f(x)=x2﹣ax+2a,且在(1,+∞)内有两个不同的零点,则实数a的取值范围是.16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c=.三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k 的取值范围.2017-2018学年黑龙江省哈尔滨高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每个小题5分)1.(5分)已知集合A={1,2,3,4,5},B={x|x2﹣3x<0},则A∩B为()A.{1,2,3}B.{2,3}C.{1,2}D.(0,3))【解答】解:∵集合A={1,2,3,4,5},B={x|x2﹣3x<0}={x|0<x<3},∴A∩B={1,2}.故选:C.2.(5分)已知角α在第三象限,且sinα=﹣,则ta nα=()A.B.C.D.【解答】解:∵角α在第三象限,且sinα=﹣,∴cosα=﹣.∴.故选:C.3.(5分)的值为()A.B.C.1 D.﹣1【解答】解:==.故选:B.4.(5分)已知△ABC的三边a,b,c满足a2+b2=c2+ab,则△ABC的内角C为()A.150°B.120°C.60°D.30°【解答】解:△ABC中,a2+b2=c2+ab,∴a2+b2﹣c2=ab,∴cosC===,C∈(0°,180°),∴C=60°.故选:C.5.(5分)设函数f(x)=,则f(2)+f(﹣log23)的值为()A.4 B.C.5 D.6【解答】解:∵函数f(x)=,∴f(2)=log22=1,f(﹣log23)==3,∴f(2)+f(﹣log23)=1+3=4.故选:A.6.(5分)若sin()=,sin(2)的值为()A.B.C.D.【解答】解:∵sin()=,∴sin(2)=cos[﹣(2)]=cos()=cos2()=.故选:A.7.(5分)已知f(x)=sin2x+2cosx,则f(x)的最大值为()A.﹣1 B.0 C.1 D.2【解答】解:f(x)=sin2x+2cosx,=1﹣cos2x+2cosx,=﹣(cosx﹣1)2+2,当cosx=1时,f(x)max=2,故选:D8.(5分)已知函数f(x)=cos2x﹣,则下列说法正确的是()A.f(x)是周期为的奇函数B.f(x)是周期为的偶函数C.f(x)是周期为π的奇函数D.f(x)是周期为π的偶函数【解答】解:函数f(x)=cos2x﹣=(2cos2x﹣1)=cos2x,∴f(x)是最小正周期为T==π的偶函数.故选:D.9.(5分)已知f(x)是定义在R上的偶函数,且满足f(x+6)=f(x),当x∈(0,3)时,f (x)=x2,则f(64)=()A.﹣4 B.4 C.﹣98 D.98【解答】解:由(x)是定义在R上的偶函数,且满足f(x+6)=f(x),∴f(x)是以6为周期的周期函数,又∵又当x∈(0,3)时,f(x)=x2,∴f(64)=f(6×11﹣2)=f(﹣2)=f(2)=22=4.故选:B.10.(5分)函数的图象如图所示,为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象()A.向右平移π个单位长度B.向左平移π个单位长度C.向右平移个单位长度D.向左平移个单位长度【解答】解:根据函数的图象,可得A=1,=﹣,∴ω=3,再根据五点法作图可得3×+φ=π,∴φ=,f(x)=sin(3x+).为了得到g(x)=sin(3x+)的图象,只需将f(x)的图象向左平移个单位长度,故选:D.11.(5分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式x[f(x)﹣f(﹣x)]>0的解集为()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(1,+∞)【解答】解:若奇函数f(x)在(0,+∞)上为增函数,则函数f(x)在(﹣∞,0)上也为增函数,又∵f(1)=0,∴f(﹣1)=0,则当x∈(﹣∞,﹣1)∪(0,1)上时,f(x)<0,f(x)﹣f(﹣x)<0;当x∈(﹣1,0)∪(1,+∞)上时,f(x)>0,f(x)﹣f(﹣x)>0,则不等式x[(f(x)﹣f(﹣x)]>0的解集为(1,+∞)∪(﹣∞,﹣1),故选:C.12.(5分)将函数f(x)=2sin(x+2φ)(|φ|<)的图象向左平移个单位长度之后,所得图象关于直线x=对称,且f(0)>0,则φ=()A .B .C .D .【解答】解:将函数f (x )=2sin (x +2φ)(|φ|<)的图象向左平移个单位长度之后,可得y=2sin (x ++2φ)的图象,根据所得图象关于直线x=对称,可得++2φ=kπ+,即 φ=﹣,k ∈Z .根据且f (0)=2sin2φ>0,则φ=,故选:B .二、填空题(本大题共4个小题,每个小题5分)13.(5分)已知f (x )=x +log a x 的图象过点(2,3),则实数a= 2 .【解答】解:∵已知f (x )=x +log a x 的图象过点(2,3),故有2+log a 2=3,求得 a=2, 故答案为:2.14.(5分)已知sin ,且α∈(0,),则tan的值为 2 .【解答】解:由sin ,得,∴sin ()=1, ∵α∈(0,),∴∈(),则=,即,∴tanα=tan . ∴tan=1+1=2.故答案为:2.15.(5分)已知f (x )=x 2﹣ax +2a ,且在(1,+∞)内有两个不同的零点,则实数a 的取值范围是 (8,+∞) .【解答】解:∵二次函数f (x )=x 2﹣ax +2a 在(1,+∞)内有两个零点,∴,即,解得8<a.故答案为:(8,+∞).16.(5分)已知△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,sinB=sinC,则边c=3.【解答】解:△ABC中,a=2,cosC=﹣,sinB=sinC,∴b=c,∴c2=a2+b2﹣2abcosC=22+c2﹣2×2×c×(﹣),化简得5c2﹣3c﹣36=0,解得c=3或c=﹣(不合题意,舍去),∴c=3.故选:3.三、解答题(本大题共6个小题,共70分)17.(10分)已知函数f(x)=2x﹣sin2x﹣.(I)求函数f(x)的最小正周期及对称轴方程;(II)求函数f(x)的单调区间.【解答】解:(Ⅰ)函数f(x)=2x﹣sin2x﹣=(1+cos2x)﹣sin2x﹣=﹣sin2x+cos2x=﹣2sin(2x﹣);﹣﹣﹣﹣(3分)∴f(x)的最小正周期为π,﹣﹣﹣﹣(4分)对称轴方程为x=+,k∈Z;﹣﹣﹣﹣(6分)(Ⅱ)令+2kπ≤2x﹣≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递增区间为[+kπ,+kπ](k∈Z);﹣﹣﹣﹣(8分)令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴f(x)的单调递减区间为[﹣+kπ,+kπ](k∈Z).﹣﹣﹣﹣(10分)18.(12分)若0,0,sin()=,cos()=.(I)求sinα的值;(II)求cos()的值.【解答】解:(Ⅰ)∵0,∴,又sin()=,∴cos()=,∴sinα=sin[﹣()]=sin cos()﹣cos sin()=;(Ⅱ)∵0,∴,又cos()=,∴sin()=.∴cos()=cos[()+()]=cos()cos()﹣sin()sin()=.19.(12分)已知△ABC中,内角A,B,C的对边分别为a,b,c,若(2a﹣c)cosB=bcosC.(I)求角B的大小;(II)若b=2,求△ABC周长的最大值.【解答】(本题满分为12分)解:(Ⅰ)∵由(2a﹣c)cosB=bcosC,可得:(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB=sinBcosC+cosBsinC,可得:2sinAcosB=sin(B+C)=sinA,∵A∈(0,π),sinA>0,∴可得:cosB=,∴由B=,B∈(0,π),B=.﹣﹣﹣﹣(4分)(Ⅱ)∵2R==,a=sinA,c=sinC,﹣﹣﹣﹣(6分)∴可得三角形周长:a+b+c=sinA+sinC+2=sinA+sin(﹣A)+2=4sin(A+)+2,﹣﹣﹣﹣(9分)∵0<A<,<A+<,可得:sin(A+)∈(,1].﹣﹣﹣﹣(11分)∴周长的最大值为6.﹣﹣﹣﹣(12分)20.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的最小正周期为π,函数的图象关于点()中心对称,且过点().(I)求函数f(x)的解析式;(II)若方程2f(x)﹣a+1=0在x∈[0,]上有解,求实数a的取值范围.【解答】解:(Ⅰ)函数f(x)=Asin(ωx+φ)的最小正周期为T==π,由ω>0,得ω=2;由函数f(x)的图象关于点()中心对称,∴2×+φ=kπ,φ=﹣+kπ,k∈Z;又|φ|<,∴φ=﹣;又f(x)过点(),∴Asin(2×﹣)=1,解得A=2,∴函数f(x)=2sin(2x﹣);(II)方程2f(x)﹣a+1=0,∴a=4sin(2x﹣)+1;又x∈[0,],∴2x﹣∈[﹣,],∴sin(2x﹣)∈[﹣,1],∴4sin(2x﹣)+1∈[﹣1,5],∴实数a的取值范围是[﹣1,5].21.(12分)在△ABC中,边a,b,c所对的角分别为A,B,C,且a>c,若△ABC的面积为2,sin(A﹣B)+sinC=sinA,b=3.(Ⅰ)求cosB的值;(Ⅱ)求边a,c的值.【解答】解:(Ⅰ)由sin(A﹣B)+sinC=sinA,得sinAcosB﹣cosAsinB+sin(A+B)=sinA即2sinAcosB=sinA,∵sinA≠0,∴cosB=.sinB=(Ⅱ)由余弦定理得:b2=a2+c2﹣2ac•cosB=a2+c2﹣ac⇒a2+c2﹣ac=9…①又∵s=ac•sinB=2,∴ac=6…②△ABC由①②解得,∵a>c,∴a=3,c=2.22.(12分)设函数f(x)=a2x+ma﹣2x(a>0,a≠1)是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若f(1)=,且g(x)=f(x)﹣2kf()+2a﹣2x在[0,1]上的最小值为2,求实数k 的取值范围.【解答】解:(Ⅰ)由题意可得f(0)=0,1+m=0,解得m=﹣1,则f(x)=a2x﹣a﹣2x,f(﹣x)=a﹣2x﹣a2x=﹣f(x),可得f(x)为奇函数,则m=﹣1成立;(Ⅱ)由f(x)=a2x﹣a﹣2x,f(1)=,可得a2﹣a﹣2=,解得a=2,则f(x)=22x﹣2﹣2x,设y=g(x)=22x+2﹣2x﹣2k(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2k(2x﹣2﹣x)+2,设t=2x﹣2﹣x,y=t2﹣2kt+2x∈[0,1],可得t∈[0,],当k<0时,y min=2成立;当0≤k≤时,y min=2﹣k2=2,解得k=0成立;当k≥时,ymin=﹣3k+=2,解得k=不成立,舍去.综上所述,实数k的取值范围是(﹣∞,0].。

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷解析版

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷解析版

2018-2019学年黑龙江省哈尔滨三中高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1.sin的值为()A. B. C. - D. -【答案】A【解析】解:由特殊角的正弦函数值可得:sin=.故选:A.由特殊角的正弦函数值即可解得.本题主要考查了三角函数求值,特殊角的三角函数值一定要加强记忆,属于基本知识的考查.2.=()A. 2B. -3C. 7D. 1【答案】B【解析】解:=-5+log636=-5+2=-3.故选:B.利用对数的性质、运算法则直接求解.本题考查对数式化简求值,考查对数的性质、运算法则等基础知识,考查推理能力与计算能力,属于基础题.3.已知集合,B={α|0<α<π},A∩B=C,则C=()A. B. C. D.【答案】C【解析】解:,B={α|0<α<π};∴;又A∩B=C;∴.故选:C.可求出集合A,然后进行交集的运算即可.考查描述法的定义,以及交集的运算,熟悉余弦函数的图象.4.函数f(x)=2x-的零点所在的区间是()A. B. C. D.【答案】B【解析】解:令=0,可得,再令g(x)=2x,,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(,1),从而函数f(x)的零点在(,1),故选:B.令函数f(x)=0得到,转化为两个简单函数g(x)=2x,h(x)=,最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.本题主要考查函数零点所在区间的求法.考查数形结合思想是中档题.5.下图给出4个幂函数的图象,则图象与函数的大致对应是()A. ①,②y=x2,③,④y=x-1B. ①y=x3,②y=x2,③,④y=x-1C. ①y=x2,②y=x3,③,④y=x-1D. ①,②,③y=x2,④y=x-1【答案】B【解析】解:②的图象关于y轴对称,②应为偶函数,故排除选项C,D①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除A故选:B.通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项.本题考查幂函数的性质、考查幂函数的图象取决于幂指数.6.函数的单调减区间为()A. (-∞,-3)B. (-∞,-1)C. (-1,+∞)D. (-3,-1)【答案】A【解析】解:令t=x2+2x-3=(x+3)(x-1)>0,解得x<-3,或x>1,故函数的定义域为(-∞,-3)∪(1,+∞).根据f(x)=log2t,复合函数的单调性可得,本题即求函数t=(x+1)2-4 在定义域(-∞,-3)∪(1,+∞)上的减区间.再利用二次函数的性质可得函数t=(x+1)2-4 在定义域上的减区间为(-∞,-3),故选:A.令t=x2+2x-3>0,求得函数的定义域,根据f(x)=log2t、复合函数的单调性,可得本题即求函数t=(x+1)2-4 在定义域上的减区间,再利用二次函数的性质可得答案.本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.7.在△ABC中,角A,B所对的边分别为a,b,,则A=()A. 15°B. 30°C. 45°D. 60°【答案】B【解析】解:∵,∴由正弦定理,可得:sin A===,∵a<b,可得A∈(0°,45°),∴A=30°.故选:B.由已知利用正弦定理可求sin A的值,根据大边对大角可求A的范围,由特殊角的三角函数值可求A的值.本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的应用,属于基础题.8.已知,则cos(α+β)=()A. B. C. D.【答案】D【解析】解:已知:,所以:,故:,,所以:,则:cos(α+β)=cos[()+()],=-,=,=故选:D.直接利用同角三角函数关系式的应用和角的变换的应用求出结果.本题考查的知识要点:本题考查的知识要点:三角函数关系式的恒等变变换,角的变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.已知f(x)=tanωx(0<ω<1)在区间上的最大值为,则ω=()A. B. C. D.【答案】A【解析】解:∵0<ω<1,∴T=>π,故f(x)在区间上递增,故f(x)max=f()=,故tan=,解得:ω=,故选:A.根据函数的周期,求出函数的单调性得到关于ω的方程,结合ω的范围,求出ω的值即可.本题考查了求三角函数最值,考查三角函数的性质,是一道常规题.10.已知sinα-cosα=-,则tanα+的值为()A. -4B. 4C. -8D. 8【答案】C【解析】解:∵sinα-cosα=-,∴两边平方可得1-2sinαcosα=,∴sin2α=-,∴tanα+==-8,故选:C.先平方,可得sin2α=-,再切化弦tanα+=,可得结论.本题考查同角三角函数关系,考查学生的计算能力,比较基础.11.记a=log sin1cos1,b=log sin1tan1,c=log cos1sin1,d=log cos1tan1,则四个数的大小关系是()A. a<c<b<dB. c<d<a<bC. b<d<c<aD. d<b<a<c【答案】C【解析】解:∵tan1>1>sin1>cos1>0,a=log sin1cos1,b=log sin1tan1,c=log cos1sin1,d=log cos1tan1,∴a=log sin1cos1==log cos1sin1>log sin1sin1=1,∴a>c>0.又lgtan1>0>lgsin1>lgcos1,b=log sin1tan1=<=log cos1tan1=d<0,∴0>d>b.综上可得:a>c>0>d>b.∴b<d<c<a.故选:C.由tan1>1>sin1>cos1>0,得到a=log sin1cos1==log cos1sin1>log sin1sin1=1;由lgtan1>0>lgsin1>lgcos1,得到b=log sin1tan1=<=log cos1tan1=d<0,由此能求出结果.本题考查四个数的大小的求法,是中档题,解题时要认真审题,注意对数性质、三角函数知识的合理运用.12.已知函数f(x)=cos x,若存在x1,x2,…,x n满足,且,则n的最小值为()A. 6B. 8C. 10D. 12【答案】C【解析】解:函数f(x)=cos x,对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)-f (x j)|≤|f(x)max-f(x)min|=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,x j(j=1,2,3,…,m)取得最低点,由,且,则按下图取值即可满足条件,∴n的最小值为10.故选:C.由余弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)-f(x j)|≤|f(x)max-f(x)min|=2,要使n取得最小值,应尽可能多让x i(i=1,2,3,…,m)取得最高点,x j(j=1,2,3,…,m)取得最低点,结合题意画出图象,利用图象求出满足条件n的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了数形结合的应用问题,是中档题.二、填空题(本大题共4小题,共20.0分)13.在0°到360°范围内,与角-60°的终边相同的角为______.【答案】300°【解析】解:∵与-60°角终边相同的角为:α=k•360°-60°,(k∈Z)∵0°≤α<360°,∴k=1时,α=300°.故答案为:300°.利用与α终边相同的角度为k•360°+α(k∈Z)即可得到答案.本题考查与α终边相同的角的公式,考查理解与应用的能力,属于基础题.14.先将函数f(x)=sin2x的图象向右平移个单位,再向上平移1个单位后,得到函数g(x)的图象,函数g(x)的解析式为______.【答案】g(x)=1-cos2x【解析】解:将函数f(x)=sin2x的图象向右平移个单位,得到:y=sin[2(x-)]=-cos2x,再向上平移1个单位后,得到函数g(x)=1-cos2x.故答案为:g(x)=1-cos2x直接利用函数的图象的平移变换求出函数的关系式.本题考查的知识要点:本题考查的知识要点:三角函数关系式的恒等变变换,函数的图象的平移变换和伸缩变换的应用,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.15.下列说法中,正确的序号是______.①y=|sin x|的图象与y=sin(-x)的图象关于y轴对称;②若sinα+cosα=1,则sin nα+cos nα(n∈N*)的值为1;③若,则cos(sinθ)>sin(cosθ);④把函数的图象向左平移个单位长度后,所得图象的一条对称轴方程为;⑤在钝角△ABC中,,则sin A<cos B;⑥sin168°<cos10°<sin11°.【答案】②③⑤【解析】解:①,y=sin(-x)的图象关于y轴对称的函数为y=sin x,而非y=|sin x|,故①错误;②,若sinα+cosα=1,两边平方可得1+2sinαcosα=1,即sinα=0,cosα=1,或sinα=1,cosα=0,则sin nα+cos nα(n∈N*)的值为1,故②正确;③,若,则sinθ∈(0,1),cosθ∈(0,1),-cosθ∈(-1,),且sinθ+cosθ=sin(θ+)<,即有sinθ<-cosθ,可得cos(sinθ)>cos(-cosθ),即有cos(sinθ)>sin(cosθ),故③正确;④,把函数的图象向左平移个单位长度后,所得y=cos(2x+)的图象,由y=cos(+)=-,不为最值,则一条对称轴方程不为,故④错误;⑤,在钝角△ABC中,,可得A+B<,即有A<-B,则sin A<sin(-B)=cos B,故⑤正确;⑥,sin168°=sin12°,cos10°=sin80°,可得sin11°<sin12°<sin80°,即有sin11°<sin168°<cos10°,故⑥错误.故答案为:②③⑤.由图象关于y轴对称的特点可判断①;由两边平方可得sinα=0,cosα=1,或sinα=1,cosα=0,可判断②;由正弦函数、余弦函数的单调性可判断③;运用图象变换特点和余弦函数的对称性可判断④;由A,B的关系,结合正弦函数的单调性可判断⑤;由诱导公式和正弦函数的单调性可判断⑥.本题考查三角函数的图象和性质,考查三角函数的单调性和对称性,以及图象变换,考查化简变形能力和运算能力、推理能力,属于中档题.16.若函数恰有4个零点,则a的取值范围是______.【答案】(-π,-]∪(-π,-]∪(-,]【解析】解:设g(x)=sin(2x+),h(x)=cos(2x+),分别令f(x)=0,g(x)=0,则:g(x)在[-π,]上的零点为-π,-π,-;h(x)在[-π,]上的零点为-π,-,.f(x)恰有4个零点,可得m∈(-π,-]∪(-π,-]∪(-,].故答案为:(-π,-]∪(-π,-]∪(-,].设g(x)=sin(2x+),h(x)=cos(2x+),分别令g(x)=0,h(x)=0,求出零点,即可得到所求m的范围.本题考查函数的零点个数问题解法,注意运用转化思想和数形结合思想方法,考查观察和判断能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知点P(1,1)在角α的终边上,求下列各式的值.(Ⅰ);(Ⅱ).【答案】解:∵角α终边上有一点P(1,1),∴x=1,y=1,r=|OP|=,∴sinα==,cosα==,tanα==1,∴(Ⅰ)===-;(Ⅱ)===-.【解析】由条件利用任意角的三角函数的定义求得sinα,cosα,tanα的值,再利用诱导公式即可求得要求式子的值.本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.18.已知,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】解:(Ⅰ)∵已知,,∴sinα=-=-,∴=sinαcos+cosαsin=-•+•=.(Ⅱ)由(Ⅰ)可得tanα===-,tan2α==-,∴==-.【解析】(Ⅰ)由题意利用同角三角函数的基本关系求得sinα,再利用两角和的正弦公式求得的值;(Ⅱ)先求得tanα,再求得tanα2α,再利用两角和的正切公式的值.本题主要考查同角三角函数的基本关系,二倍角公式,两角和的三角公式,以及三角函数在各个象限中的符号,属于基础题.19.函数.(Ⅰ)若,求函数f(x)的值域;(Ⅱ)若是函数g(x)=f(x)+λcos2x的一条对称轴,求λ的值.【答案】解:(Ⅰ)=2sin(2x+)-1,若,则2x+∈[0,],故2sin(2x+)∈[0,1],故f(x)∈[-1,1];(Ⅱ)g(x)=sin2x-2sin2x+λcos2x=sin(2x+θ)-1sinθ=,cosθ=,若是函数g(x)=f(x)+λcos2x的一条对称轴,则2×+θ=,故θ=,故,解得:λ=2.【解析】(Ⅰ)化简f(x),根据x的范围,求出函数的值域即可;(Ⅱ)化简g(x)的解析式,根据函数的对称轴,得到关于λ的方程组,解出即可.本题考查了函数值域问题,考查三角函数的性质,是一道常规题.20.已知函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和.(Ⅰ)求f(x)解析式及x0的值;(Ⅱ)求f(x)的单调增区间;(Ⅲ)若时,函数g(x)=2f(x)+1+m有两个零点,求实数m的取值范围.【答案】解:(Ⅰ)∵函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和,∴A=2,2sinφ=-,sinφ=,φ=-,且•=,ω=2,∴f(x)=2sin(2x-).令2x0-=,求得x0=.(Ⅱ)令2kπ-≤2x-≤2kπ+,求得kπ+≤x≤kπ+,可得函数的增区间为[kπ+,kπ+],k∈Z.(Ⅲ)若时,函数g(x)=2f(x)+1+m有两个零点,即4sin(2x-)+1+m=0有2个零点,即方程sin(2x-)=-有2个解.若时,2x-∈[-],sin(2x-)∈[-,1],∴结合正弦函数的图象可得,应有≤-<1,解得-5<m≤2+1,即实数m的取值范围(-5,23+1].【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ和x0的值,可得函数的解析式.(Ⅱ)利用正弦函数的单调性求得f(x)的单调增区间,(Ⅲ)由题意可得若时,方程sin(2x-)=-有2个解,结合正弦函数的图象和性质,求得m的范围.本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性,正弦函数的图象和性质,属于难题.21.设函数f(x)=x2+|x-1|+2a,a∈R.(Ⅰ)若方程f(x)=3x在(0,1)上有根,求实数a的取值范围;(Ⅱ)设g(x)=cos2x+2a sin x,若对任意的,x2∈(0,2)都有,求实数a的取值范围.【答案】(Ⅰ)解:(1)∵方程f(x)=3x在(1,2)上有根,∴函数h(x)=f(x)-3x=x2+|x-1|-3x+2a在(1,2)上有零点.由于在(1,2)上,h(x)=f(x)-3x=x2-2x+2a-1是增函数,故有h(1)h(2)=(2a-2)•(2a-1)<0,得-<a<1.∴实数a的取值范围:(-,1)(Ⅱ)在(0,2)上,f(x)=,∴f(x)的最小值为f()=2a+,对任意的,x2∈(0,2)都有,⇔对任意的,有g(x1)<2a+1恒成立,∴cos2x+2a sin x<2a+1在[-,]恒成立.⇒sin2-2a sin x+2a>0在[-,]恒成立,⇒(sin x-a)2+2a-a2>0在[-,]恒成立.①⇒a≥1.②⇒a∈∅,③⇒0<a<1综上实数a的取值范围为(0,+∞).【解析】(Ⅰ)由题意可得函数h(x)=f(x)-3x=x2+|x-1|-3x+2a在(1,2)上有零点,h(1)h(2)=(2a-2)•(2a-1)<0,由此求得a的范围.(Ⅱ)在(0,2)上,f(x)的最小值为f()=2a+,对任意的,x2∈(0,2)都有,⇔对任意的,有g(x1)<2a+1恒成立,即cos2x+2a sin x<2a+1在[-,]恒成立,分类讨论即可.本题主要考查对数函数的图象和性质的综合应用,函数的恒成立问题,属于中档题.22.已知函数f(x)=sin x+cos x.(Ⅰ)把f(x)的图象上每一点的纵坐标变为原来的A倍,再将横坐标变向右平移φ个单位,可得y=sin x图象,求A,φ的值;(Ⅱ)若对任意实数x和任意,恒有,求实数a的取值范围.【答案】解:(Ⅰ)f(x)=sin x+cos x=sin(x+),由题意可得A=,φ=;(Ⅱ)不等式等价于(3+2sinθcosθ-a sinθ-a cosθ)2≥,θ∈[0,]①,由①得a≥②,或a≤③,在②中,1≤sinθ+cosθ≤,=(sinθ+cosθ)+,显然当1≤x≤时,f(x)=x+为减函数,从而上式最大值为f(1)=1+=,由此可得a≥;在③中,=(sinθ+cosθ)+≥2=,当且仅当sinθ+cosθ=时取等号,所以的最小值为,由此可得a≤,综上,a≤或a≥.【解析】(Ⅰ)化简函数f(x)=sin(x+),由图象变换即可得到所求值;(Ⅱ)原不等式等价于(3+2sinθcosθ-a sinθ-a cosθ)2≥,θ∈[0,]①,从而可得a≥②,或a≤③,于是问题转化为求函数的最值问题加以解决,对上述分式进行合理变形,利用函数单调性、基本不等式即可求得最值.本题考查函数恒成立问题,转化为函数最值问题是解决该类题目的常用方法,解决本题的关键是先对不等式进行等价变形去掉x,变为关于θ的恒等式处理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档