数学人教版八年级上册13.4课题学习 最短路径问题
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
数学人教版八年级上第十三章134 课题学习 最短路径问题

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。
人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案

13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
人教版八年级上册13.4课题学习(最短路径问题)

的位置
解:AB=AC ,△ABC为等腰三角形,
A
AD平分∠CAB,故点D是BC边的中点,即 点B与点C关于直线AD对称.∵点M在AD上, 故BM=CM.即MB+MN的最小值可转化为求
N
●
●M
MC+MN的最小值,故连接CN即可,线段
CN的长即为MB+MN的最小值.
B
D
C
3 如图,在直角坐标系中,点A,B的坐标分别为
●A
●
M′
课堂小结
原理:线段公理和垂线段最短
最
短 路
牧马人 饮马问
轴对称知识+线段公理
径题
问 造桥 题 选址 平移知识+线段公理
问题
课外作业: 第93页 第15题
和最短?
连接AB,与直线l相交于一点C.
A
根据是“两点之间,线段
C
最短”,可知这个交点即
l
为所求.
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如
何解决?
B
想一想:对于问题2,如何将
A
点B“移”到l 的另一侧B′
处,满足直线l 上的任意一
l
点C,都保持CB 与CB′的长
度相等?
利用轴对称,作出点B关于直线l的对称点B′.
练一练:
1 如图,已知正六边形ABCDEF的边长为2,G,H分别 是AF和CD的中点,P是GH上的动点,连接AP,BP,则 AP+BP的值最小时,BP与HG的夹角(锐角)度数为 __6_0°_____
2 如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上
的一定点,M是AD上一动点,要使MB+MN最小,请找点M
2024年人教版八年级上册数学第13章第4节课题学习 最短路径问题

使MN ⊥ m, 且AM 交直线n 于点N,过点N作NM ⊥
+MN+NB 最小
m 于点M,连接AM
感悟新知
特别解读 解决连接河两边两地的最短路
径问题时,可以通过平移桥的方法 转化为求直线异侧两点到直线上一 点所连线段的和最小的问题.
知2-讲
感悟新知
知2-练
例4 如图13.4-5,从A 地到B 地要经过一条小河(河的两岸 平行),现要在河上建一座桥(桥垂直于河的两岸),应 如何选择桥的位置才能使
ቤተ መጻሕፍቲ ባይዱ
课堂小结
设计最短路径 设计最短路径
两点在直 线异侧
两点在直 线同侧
利用轴对称转换
解:如图13 .4 -2,作点B 关于l 的对称点B1,连接 AB1交l 于点M,连接BM, 此时AM+BM 最短,则点 M 即为所求的分支点.
感悟新知
知1-练
1-1.如图,在正方形网格中有M,N 两点,在直线l 上求一 点P 使PM+PN 最短,则点P应选在( C ) A.A 点 B.B 点 C.C 点 D.D 点
四边形P M N Q周 长的最
小值为 P′Q′+ PQ 的值
小
线的交点即为点M,N
感悟新知
知1-讲
特别解读 1.直线异侧的两点到直线上一点的距离的和最短的问
题是根据“两点之间,线段最短”来设计的. 2.直线同侧的两点到直线上一点的距离的和最短的问
题依据两点:一是对称轴上任何一点到一组对称 点的距离相等;二是将同侧的两点转化为异侧的 两点,依据异侧两点的方法找点.
感悟新知
知1-练
例1 [情境题 生活应用]某供电部门准备在输电主干线l 上连 接一个分支线路,分支点为M,同时向新落成的A,B 两个居民小区送电.
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题

人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版八年级数学上册 13、4 课题学习 最短路径问题
由轴对称的性质知: BC =B′C,BC′=B′ C′
B
·
A
∴AC +BC = AC +B′C = AB′,
·
AC′+BC′ = AC′+B′C′
●●
l
在△AB′C′中 AC′ +B′C′ > AB′ C′C
∴ AC′+BC′ > AC +BC
即AC +BC最短。
●
B′
知识小结
原 理
线段公理和垂线段最短
解:作点N关于BC的对 称点N′,连接 N′M与BC 的交点就是点P
知识回顾 问题探究 课堂小结 随堂检测
探究二:“一点两线型”的最短周长问题
能不能类比探究一,证明一下“周长最短作图”的正确性?
A' M C
EA E'
O F' F D N
【理由简要分析】
图2 A''
如图2,在OM上任取一个异于E的点E′,在ON上任取一个异于F的点
13、4 课题学习 最短路径问题
白日登山望烽火,黄昏饮马傍交河
温故知新
两点之间,线段最短
② ①
请勿 践 踏!
③
界石界南 街
点到直线距离垂线段最短
探究一:“两点一线”的最短路径问题
重点、难点知识★▲
活动1 创设情境,引入新知
相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫 海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的 问题:
最短 路径 问题
将军饮 马问题
数学 思想
解题方 法
轴对称知识+线段公理
转化
实际问题→数学问题 未知问题→已知问题
人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(第一课时)
13.4课题学习
最短路径问题请你在以下日常情境中,为牧民设计最短行动路线,并说明你利用了什么原理?
情境1:牧民从蒙古包出发,将马群赶到A 处放牧
作图:原理:。
情境2:牧马人从A 地出发,到一条笔直的河边l 处饮马
作图:
原理:。
情境3:牧马人从A 地出发,到一条笔直的河边l 饮马,然后骑马趟过河到B 地(河的宽度可忽略)。
作图:原理:。
情境4:傍晚,牧马人从的什么地方饮马,可使所走的路径最短?
追问:如何说明所做路径最短?
数学
问题数学
问题数学
问题
(1)(2)
情境5:如图,A为马厩,牧马人某一天要把马从马厩牵出,先到草地边某一处牧马,再到河边饮马,然后回到马厩.请你帮他确定这一天的最短路线.
数学
问题
知识迁移
2.如图,∠AOB=30°,P是∠AOB内任意一点,OP=3cm,M,N分别是射线OA和射线OB上的动点,则△PMN 周长的最小值是cm.
拓展提升
情境6:如图,牧人从A地出发,到一条笔直的河边l饮马,然后再到草地去喂马,最后返回到B地,牧人饮马,喂马,要如何行走,可使所走的路径最短?。
人教版八年级数学上册13.4 课题学习 最短路径问题--将军饮马课件
l
我们是怎样解决问题的?说说思考问题的思路.
反思与总结
新知一 两点一线型
实际问题1 图形表示,数学化 几何问题2
轴对称,转化问题 求两点之间线 段最短问题.
实际意义解释
实际问题1的解
几何问题2的解
轴对称,还原问题
B
B
A
A
DC
l
B′
拓展延伸
新知二 两线一点型
如图,将军从A地出发,先到草地边某处巡逻,再到河边 饮马,然后回到A地,应该怎样走才能使路程最短?
A
拓展延伸
这是个实际问题,你能用自己理解的语言描述一下吗?
如图所示,将A地抽象为一个点,将草地边和河边抽象
为两条直线.
l2
A
l1
你能用数学语言说明这个问题所表达的意思吗?
拓展延伸
如图,在直线l1和直线l2上分别找到点M,N,使得 △AMN的周长最小.
l2
A l1
拓展延伸
如图,在直线l1和直线l2上分别找到点M,N,使得
分析问题
新知一 两点一线型 问题2 如图,A,ห้องสมุดไป่ตู้是直线l同侧的两点,在直线l上作一
点C,使AC+BC最小.
A
问题难在哪里?怎么办?
l
C
如点A,B在直线两侧. B
依据:“两点之间,线段最短”
分析问题
问题2 如图,A,B是直线l同侧的两点,在直线l上作一 点C,使AC+BC最小.
能否把点B变到直线l的另一侧?要求?方法? 对于直线上任一点C有BC=B′C. 作点B关于直线l的对称点B′.
△AMN的周长最小.
作法:过点A分别作关于直线l1,
A2 N
人教版初中数学八年级上册第十三章 课题学习 最短路径问题
l
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
探究新知
13.4 课题学习 最短路径问题/
作法:
B
(1)作点B 关于直线l 的对称点B′; A
C
(2)连接AB′,与直线l 相交于点C.
l
则点C 即为所求.
B′
探究新知
13.4 课题学习 最短路径问题/
问题3:你能用所学的知识证明AC +BC最短吗?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥. C
DF
理由:由作图法可知,AF//DD′,AF=DD′, 则四边形AFD′D为平行四边形,
C′ D ′
于是AD=FD′, 同理,BE=GE′,
E E′
由两点之间线段最短可知,GF最小.
BG
课堂检测
13.4 课题学习 最短路径问题/
拓广探索题
巩固练习
13.4 课题学习 最短路径问题/
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河 边饮水,再带到草地吃草,然后回到营地,请你替牧马人 设计出最短的放牧路线.
解:如图AP+AB即为最 短的放牧路线.
探究新知
13.4 课题学习 最短路径问题/
知识点 2 利用平移知识解决造桥选址问题 如图,A和B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
解:连接AB,与直线l相交于一点C.
A
C
根据“两点之间,线段最
l
短”,可知这个交点即为所求.
B
探究新知
13.4 课题学习 最短路径问题/
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B l
你会画吗?
问题5、如图,若A和B两地在一条河的两岸,现要 在河上建一座桥MN,使得牧马人从A地到B地所走 的路径最短,则桥应该造在何处?(假设河的两岸 是平行的直线,桥要与河垂直). (先独立思考2-3分 钟,尝试画出图形,然后小组交流比较,尝试说明 理由) A
作法: 1. 将点 A 沿垂直于河岸的方 向平移一个河宽到A′; 2.连接A′B交河对岸于点N; 则点 N 为建桥的位置, MN 为所建的桥。
北京师范大学南湖附属学校
苏伟杰
你知道吗?
问题1、如图,牧马人从A地出发,到一条笔直的河 边 l 饮马,为使所走的路径最短,牧马人应该怎么 走?为什么? 垂线段最短 问题2、如图,两位牧马人分别从A、B两地出发, 约好在一条笔直的马路 l 上某个地方会面,请问他 们在哪个地方会面,可使两人所走的路径最短?为 什么? 两点之间线段最短 A
图 1
图 2
你会理吗?
A 平移 A M A′ N B
A C A' B' D
B A P l
P
轴 对 称
l B′
B
转化 思想
3、如图,A和B两地之间有两条河,现要在两条 河上各造一座桥MN和PQ.桥分别建在何处才能 使从A到B的路径最短?(假定河的两岸是平行 的直线,桥要与河岸垂直)
A
B
O
P
B
l
§13.4 课题学习 最短路径问题
你会画吗?
问题3、如图,牧马人从A地出发,到一条笔直 的河边 l 饮马,然后到B地,牧马人到河边的什 么地方饮马,可使所走的路径最短?(请在导学 稿上画出图形)
A
B l
你会画吗?
问题4、如图,牧马人从A地出发,先到河边某一处 饮马,再到草地边牧马,然后回到B地,请画出最短 路径,并简要说明理由。
M
A′
l
N
B
你会解吗?
1、如图1,四边形ABCD,∠BAD=120°,∠B=∠D=90°, 在BC、CD上分别找一点M、N,使△AMN周长最小时,则 ∠AMN+∠ANM的度数为 °
2、如图2,已知∠AOB的大小为α, P是∠AOB内部 的一个定点, 且OP=2, 点E、F分别是OA、OB上的 动点, 若△PEF周长的最小值等于2, 则α= °