2013年学业水平考试数学模拟试题K

合集下载

2013届初中毕业生学业考试模拟试卷数学试题

2013届初中毕业生学业考试模拟试卷数学试题

2013届初中毕业生学业考试模拟试卷数学试题一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.计算的值为()A.B.C.4 D.22.下列图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如图所示,下列选项中,正六棱柱的左视图是()4.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某通信卫星的零部件的质量情况的调查D.对某类烟花爆竹燃放安全情况的调查5.已知圆锥的侧面积为8πcm2,侧面展开图的圆心角为45°,则该圆锥的母线长为()A.64cm B.8cm C.2cm D.6.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是()7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5 B.m=n=4 C.m+n=4 D.m+n=89.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5 )C.D.10.如表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为()2 a b c ﹣3 1 …A.2 B.﹣3 C.0 D.111.如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.14.分解因式:= .15.乐乐和爸爸到广场散步,爸爸的身高是176cm,乐乐的身高是156cm,在同一时刻爸爸的影长是44cm,那么乐乐的影长是cm.16.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF= 度.17.如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,则∠B= 度.18.如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ= 时,四边形APQE的周长最小.三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(3)°20.如图,方格纸上的每个小方格都是边长为1小正方形,我们把格点连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)填空:BC=_________,tanB=_________;(2)请先在方格纸中画出一个格点三角形DEF,使△DEF∽△ABC,并且DE:AB=2:1.再回答:△DEF与△ABC的周长之比为_________.21.为了了解我市初中学生体育活动情况,随机调查了720名八年级学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2012年我市八年级学生约为1.2万人,按此调查,可以估计2012年我市八年级学生中每天锻炼未超过1小时的学生约有多少万人?22.如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:≈1.73)23.已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长;(2)⊙P移动到与边OB相交于点E,F,若EF=4 cm,求OC 的长.24.小王从A地前往B地,到达后立刻返回.他与A地的距离y(千米)和所用时间x(小时)之间的函数关系如图所示.(1)小王从B地返回到A地用了多少小时?(2)求小王出发6小时后距A地多远?(3)在A、B之间有一C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C 两地相距多远?25.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.(1)、观察图2可知:与BC相等的线段是_________,∠CAC′=_________°.(2)、问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(3)、拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME 和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.26.已知抛物线经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.参考答案一、选择题(每小题3分,共36分)题号1 2 3 4 5 6 7 8 9 10 11 12答案C B B C B D C D A B B C二、填空题(每小题3分,共18分)题号13 14 15 16 17 18答案3.61×108 3(x+3)(x﹣3)39 80 30°三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(﹣1)2008﹣(π﹣3)0+解:原式=1﹣1+2=2 对一个得一分,答案对得3分,共6分20.解:(1)根据BC2=32+22,∴BC= ,tanB= = ,故答案为:BC= ,tanB= ;2分(2)如图所示,∵△DEF∽△ABC,并且DE:AB=2:1.∴△DEF与△ABC的周长之比为:2:1.故答案为:2:1.4分7分21.解(1)∵= ,∴选出的恰好是“每天锻炼超过1小时”的学生的概率是; 2 分(2)720×﹣120﹣20=400 4分故“没时间”锻炼的人数是400名.频数分布图为:5分(3)1.2×=0.9(万人)故估计2011年我县八年级学生中每天锻炼未超过1小时的学生约有0.9万人.7分22.解:如图,过点A作AD⊥BC,垂足为D.根据题意,可得∠BAD=30°,∠CAD=60°,AD=66.在Rt△ADB中,由tan∠BAD= ,得BD=AD•tan∠BAD=66×tan30°=66×.3分在Rt△ADC中,由tan∠CAD= ,得CD=AD•tan∠CAD=66×tan60°=66×.6分∴BC=BD+CD= ≈152.2.答:这栋楼高约为152.2m.9分23. 解:(1)∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA 相切的切点记为点C.∴∠DPC=120°,∴劣弧的长为:=2πcm;3分(2)可分两种情况,①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB 于点N,∵EF= cm,∴EM=2 cm,在Rt△EPM中,PM= =1cm,∵∠AOB=60°,∴∠PNM=30°,∴PN=2PM=2cm,∴NC=PN+PC=5cm,在Rt△OCN中,OC=NC×tan30°=5×= cm.7分②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,由①可知,PN=2cm,∴NC=PC﹣PN=1cm,在Rt△OCN中,OC=NC×tan30°=1×= cm.9分综上所述,OC的长为cm或cm.24.解:(1)从B地返回到A地所用的时间为4小时;2分(2)小王出发6小时.由于6>3,可知小王此时在返回途中,于是,设DE所在的直线的解析式为y=kx+b.由图象可知:解得:∴DE的解析式是y=﹣60x+420(3≤x≤7).当x=6时,有y=﹣60x+420=60.∴小王出发6小时后距A地60千米;7分(3)设AD所在直线的解析式是y=mx.由图象可知3m=240,解得m=80∴AD所在直线的解析式是y=80x(0≤x≤3)设小王从C到B用了n小时,则去时C与A的距离为y=240﹣80n.返回时,从B到C用了(﹣n)小时,这时C与A的距离为y=﹣60[3+(﹣n)]+420=100+60n由240﹣80n=100+60n,解得n=1故C与A的距离为240﹣80n=240﹣80=160千米.12分另解:设从C到B用小时,从B到C用小时,从A到B的速度为80千米/小时,从B到A的速度为60千米/小时,则所以,AC=240-80=160千米25.解:①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB,∴∠CAC′=180°﹣∠C′AD﹣∠CAB=90°;故答案为:AD,90.2分②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°,∴∠AFQ=∠CAG,同理∠ACG=∠FAQ,又∵AF=AC,∴△AFQ≌△CAG,∴FQ=AG,同理EP=AG,∴FQ=EP.7分③HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.12分26. 解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴,解得:,∴y= x2﹣x+3;∴点C的坐标为:(0,3);3分(2)假设存在,分两种情况:①当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,如图1,过点B作BM⊥x轴于点M,∵A(3,0),B(4,1),∴AM=BM=1,∴∠BAM=45°,∴∠DAO=45°,∴AO=DO,∵A点坐标为(3,0),∴D点的坐标为:(0,3),∴直线AD解析式为:y=kx+b,将A,D分别代入得:∴0=3k+b,b=3,∴k=﹣1,∴y=﹣x+3,∴y= x2﹣x+3=﹣x+3,∴x 2﹣3x=0,解得:x=0或3,∴y=3,y=0(不合题意舍去),∴P点坐标为(0,3),∴点P、C、D重合,7分②当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,如图2,过点B作BF⊥y轴于点F,由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,∴D点坐标为:(0,5),B点坐标为:(4,1),∴直线BD解析式为:y=kx+b,将B,D分别代入得:∴1=4k+b,b=5,∴k=﹣1,∴y=﹣x+5,∴y= x2﹣x+3=﹣x+5,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4(舍),∴y=6,∴P点坐标为(﹣1,6),∴点P的坐标为:(﹣1,6),(0,3);10分求出一个得四分求出二个得七分(3)如图3:作EM⊥AO于M,∵直线AB的解析式为:y=x﹣3,∴tan∠OAC=1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∴AC⊥AF,∵S△FEO= OE×OF,OE最小时S△FEO最小,∵OE⊥AC时OE最小,∵AC⊥AF∴OE∥AF∴∠EOM=45°,∴MO=EM,∵E在直线CA上,∴E点坐标为(x,﹣x+3),∴x=﹣x+3,解得:x= ,∴E点坐标为(,).14分。

2013年中考数学模拟试卷(含答案)

2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。

2013年初中学业水平考试模拟题数学试题 (潍坊)

2013年初中学业水平考试模拟题数学试题 (潍坊)

2013年初中学业水平考试模拟题数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.2. 答第Ⅰ卷前务必将自己的姓名、准考证号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.sin60°=A .12BCD2.2(的平方根是( )A .- 3B . 3 C. D .3±3.关于x 的一元二次方程032=-+kx x 有一个根等于 -1,则另一个根等于( ) A .-2 B .1 C . 2 D . 3 4.数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数 约为7160 000,这个数用科学记数法表示为( ) A 、7.16×105 B 、7.16×106 C 、7.16×107 D 、7.16×108 5.右图是由4个相同的小正方体组成的几何体,其俯视图为()(A ) (B ) (C ) (D )6.如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBC =23,则AD 的长为( )(A ) 2 (B )4 (C )2 (D )32(第5题)7.2的值为0,则x 的值等于( )(A ) 1 (B )2 (C ) 1或2 (D )38.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB=( ) A 、125B 、512 C 、135 D 、1312 9..某医院决定抽调甲、乙、丙、丁4名医护人员参加抗震救灾,先随机地从这4人中抽取2人作为第一批救灾医护人员,那么丁医护人员被抽到作为第一批救灾医护人员的概率是( )A .12 B.13 C.14 D.3410.已知点P 是半径为5 的⊙O 内的一点,且OP =3,则过点P 的所有⊙O 的弦中,最短的弦长等于( ).A .4B .6C . 8D . 1011.如图,直线1y kx b =+过点A (0,2),且与直线2y mx =交于点P (1,m ),则不等式组2mx kx b mx >+>-的解是( )A .1<x <2 B. 0<x <2 C. 0<x <1 D.1<x12.点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、AC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是A .125B .65C .245D .不确定第Ⅱ卷 (非选择题 共84分)注意事项:1. 第Ⅱ卷共8页,用蓝黑钢笔或圆珠笔直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分.)13.在半径为6的圆中,60°的圆心角所对的弧长等于 . 14.分解因式32693x x x -+= 15.如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的 面积S △AOB=2,则k =______.得 分评 卷 人16.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 则211⨯+321⨯+431⨯+…+120122013=⨯_____. 18. 在直角坐标平面上,横坐标与纵坐标都是整数的点称为整点.如果将二次函数23984y x x =-+-与x 轴所围成的封闭图形染成红色,则在此红色内部区域及其边界上的 整点个数是 .三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分10分)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容。

2013年中考模拟考试数学学业水平测试试题

2013年中考模拟考试数学学业水平测试试题

第2题图 2013年学业水平考试模拟考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果+10%表示“增加10%”,那么“减少8%”可以记作 A .-18% B .-8% C .+2% D .+8% 2.如图,右面几何体的俯视图是3.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为84.610⨯帕的钢材,那么84.610⨯的原数为 A .4 600 000 B .46 000 000 C .460 000 000 D .4 600 000 000 4.下列说法或运算正确的是A .1.0×102有3个有效数字B .222()a b a b -=-C .235a a a +=D .a 10÷a 4= a 6 5.已知反比例函数y =2x ,则下列点中在这个反比例函数图象的上的是 A .(-2,1) B .(1,-2) C .(-2,-2) D .(1,2)6.下列说法错误的是A的平方根是±2 B.2是分数 CD7.在10到99这些连续正整数中任意选一个数,其中每个数被选出的机会相等,求选出的数其十位数字与个位数字的和为9的概率A .908B .909C .898D .899A .B .C .D .第9题图B第8题图 A 1 B 1 C 12A 3B 2B 3C 2 C 3 第14题图第15题图OB第12题图D A 8.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是A .40°B .60°C .70°D .80° 9.已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图所示, 若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表 示圆心距d 的点D 所在的位置是 A .在点B 右侧 B .与点B 重合C .在点A 和点B 之间D .在点A 左侧 10.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的算术平方根为A .4B .2C . 2D .±211.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .-3,2B .-3,-2C .3,2D .3,-212.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD 于点O ,AE ⊥BC ,DF ⊥BC ,垂足分别为E 、F ,AD =4,BC =8,则AE +EF 等于A .9B .10C .11D .1213.已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2yB .1y 2y =C .1y <2yD .不能确定14.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2, 作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的 方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是A 71()2B 81()2C 71()4D 81()415.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图所示,根据图象判定下列结论不正确...的是 A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米第18题图第20题图第21题图AP DCB 第Ⅱ卷(非选择题 共75分)题中横线上.16.分解因式:229121m n -=____________________________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_______.18.如图所示,一个宽为2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数 恰好是“2”和“10”(单位:cm ),那么该光盘的直径是cm.. 19.如图,1∠的正切值等于. 20.已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是21.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若1AE AP ==, PB =APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ED ⊥;④1APD APB S S +=+V V ;⑤4ABCD S =+正方形其中正确的结论是__________.(将正确结论的序号填在横线上.)第22题图 AB CD FE 三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分7分)⑴解不等式组122 3x x x +⎧⎪-⎨+⎪⎩>0 ≤⑵如图,将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).求该抛物线的解析式.23.(本小题满分7分)⑴解方程:33122x x x-+=--⑵如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分别为E 、F .求证:BF =CE .第25题图 24.(本小题满分8分)为了增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:⑴在这次调查中共调查了多少名学生?⑵求户外活动时间为1.5小时的人数,并补充频数分布直方图; ⑶求表示户外活动时间 1小时的扇形圆心角的度数;⑷本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少.25. (本小题满分8分)某商场为缓解“停车难”问题,拟建造地下停车库,如图所示是该地下停车库坡道入口的设计示意图,其中, AB ⊥BD ,∠BAD =18°,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD 的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m )参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,sin72°≈0.95,cos72°≈0.31.26.(本小题满分9分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.⑴分别求出y1、y2与x之间的函数关系式;⑵若市政府投资140万元,最多能购买多少个太阳能路灯?。

云南省2013年学业水平模拟考试数学试卷(一)有答题卷、答案

云南省2013年学业水平模拟考试数学试卷(一)有答题卷、答案

密封 线 学校 班级 姓名学籍号密 封 线 内 不 得 答 题BACE D Oxy (2,0) (4,0) (6,0) (8,0) (10,0)(12,0) (1,1)(5,1)(9,1)(3,2)(7,2)(11,2)Y第14题图第13题图云南省2013年学业水平考试模拟考试数学试卷(一)(全卷三个大题,共23小题,共8页;满分100分 考试用时120分钟) 一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.-2012的倒数是( )A .-2012B .2012C .20121 D . 20121— 2.若一个菱形的一条边长为4cm ,则这个菱形的周长为( ) (A )20cm (B )18cm (C )16cm (D )12cm3. 已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )A 3.84×104千米 B 3.84×105千米C 3.84×106千米 D 38.4×104千米 4.如图,己知AB ∥CD ,BE 平分∠ABC ,∠CDE=150°,则∠C 的度数是( )A .100°B .110°C .120°D .150°5.已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是 ( )A .内切B .相交C .外离D .外切6.点P (-2,1)关于x 轴对称的点的坐标是( ) A .(-2,-1) B .(2,-1) C .(1,-2) D .(2,1)7. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( ) A .1 B . 2 C .3 D .48.如图,DE 是ABC △的中位线,则ADE △与ABC △的 面积之比是( )A .1:1B .1:2C .1:3D .1:4二、填空题(本大题共6小题,每小题3分,满分18分) 9.计算:(a 2b )3的结果是_ .10. ()0201212=-++y x ,则x y=11. 若分式3621x x -+的值为0,则x= . 12.学校规定:每学期每位同学的总评成绩 = 平时测试成绩的平均分×10﹪+期中测试成绩×30﹪+ 期末测试成绩×60﹪,小明同学平时三次测试成绩分别为82,85,85,期中测试成绩为92,期末测试成绩为95,那么小明的总评成绩为 。

2013初中数学学业水平测试题

2013初中数学学业水平测试题

2013年学业水平测试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,30分;第Ⅱ卷8页为非选择题,70分;共100分.考试时间为120分钟.第I卷(选择题 共30分)一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分) 1. 9的平方根是A. 3B. -3C. ±3D. ±32. 自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人数估计可达到14 900 000,此数(保留两个有效 数字)用科学记数法表示是A. 61.5010⨯B.810149.0⨯C.7109.14⨯D. 71.510⨯3.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A .4个B .3个C .2个D .1个4.二次函数y =ax 2+bx +c 图象如图所示,反比例函数y = ax 与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是5.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm6.若0)3(12=++-+y y x ,则y x -的值为A .1B .-1C .7D .-77.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .πab 21 B .πac 21C .πabD .πac8.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是( )A. 59,61B. 59,63C.59,59D.57,619.如图,双曲线)0(>k xky =经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

若梯形ODBC 的面积为3,则双曲线的解析式为(A )x y 1=(B )x y 2= (C ) x y 3= (D )xy 6=10. 12.如图,正方形ABCD 的边长为2, 将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动。

2013 年陕西省初中毕业学业考试模拟试题(数学)答案

2013 年陕西省初中毕业学业考试数学模拟试题答案一、选择题1-5BCCAD 6-10BCDDA二、填空题 11.83- 12.2)y (3--x 13. I.65O II.3.66 14.k=4315.170.7 16.22三、解答题17.x=1无解答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm.21.解:(1)根据2012年5月份,该市居民甲用电100千瓦时,交电费60元; 得出:a=60÷100=0.6, 居民乙用电200千瓦时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x .当150<x≤30时,y=0.65(x-150)+0.6×150=0.65x-7.5,当x >300时,y=0.9(x-300)+0.6×150+0.65×150=0.9x-82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x ,故x≥0,当居民月用电量x 满足150<x≤300时, 0.65x-7.5≤0.62x ,解得:x≤250,所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.…(5分)所以c=-12,又18a+c=0,a=,∵AB∥OC,且AB=6,∴抛物线的对称轴是,∴b=-4,所以抛物线的解析式为;(2)①,t的取值范围:0≤t≤6;②当t=3时,S取最大值为9,这时点P的坐标(3,-12),点Q坐标(6,-6);若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,-18),将(3,-18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,-18);(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,-6),将(3,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件;(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,-6),将(9,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件;综上所述,点R坐标为(3,-18)。

2013年学业水平考试数学模拟试题10

2013年中考数学模拟试卷一、仔细选一选(本题有20个小题,每小题3分,共60分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1. 如果)0(1≠-=b ba,那么a ,b 两个实数一定是( ) 【原创】A. 一正一负B. 相等的数C.互为相反数D.互为倒数2. 下列调查适合普查的是( ) 【原创】A .调查2013年3月份市场上西湖龙井茶的质量B .了解萧山电视台188热线的收视率情况C .网上调查萧山人民的生活幸福指数D .了解全班同学身体健康状况3. 函数,一次函数和正比例函数之间的包含关系是( ) 【原创】4. 已知下列命题:①同位角相等;②若a>b>0,则11a b<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2-2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。

从中任选一个命题是真命题的概率为( ) 【改编】 A.15 B. 25 C.35 D.455. 已知点A (x ,y )在函数2x y -=的图象上,那么点A 应在平面直角坐标系中的( )A.x 轴上B. y 轴上C. .x 轴正半轴上D.原点 【原创】6. 我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么这个小组的频率是( )【原创】A. 0.12B. 0.32C. 0.38D. 3.125 7. ( )8. 如图是某几何体的三视图及相关数据,则判断正确的是( ) 【改编】A . a >cB .b >cC .4a 2+b 2=c 2D .a 2+b 2=c 29. 如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连结PG ,PC 。

若∠ABC=∠BEF =60°,则 PCPG( ) 【改编】A.2B. 3C.22 D.33.10.大理地热国有一游泳池的横截面如图所示,管理人员用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 的关系的是( )第7题图第8题图第9题图A .B .C .D . 11.已知函数21y x =与函数2132y x =-+的图象大致如图.若12y y <,则自变量x 的取值范围是( ). A .322x -<< B. 322x x ><-或 C. 322x -<< D. 322x x <->或12.正比例函数2y kx =与反比例函数()0ky k x=≠的图象交于点()1A m ,,则k 的值是( ).A . B. 2-或2 C. 2D. 13.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推.若各种开本的矩形都相似,那么ABAD等于( ).A .0.618 B.C. D. 214.房地产公司1—5月份利润的变化情况如下图所示,以下说法与图中所反映的信息相符的是( )A .1~2月份利润的增长快于2~3月份利润的增长B .1~4月份利润的极差与1~5月份利润的极差不同C .1~5月份利润的众数是130万元D .1~5月份利润的中位数是120万元15.如图一个扇形铁皮OAB ,已知OA=30cm ,∠AOB=120°, 工人师傅将OA 、OB 合拢制成了一个圆锥形的烟囱帽 (接缝忽略不计),则烟囱帽的底面圆的半径为( ) A .5 cm B .12cm C .10cm D .15cm16. 如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )17. 如图,梯形ABCD 中,AD BC ∥,点E 在BC 上,AE BE =,点F 是CD 的中点,且AF AB ⊥,若 2.746AD AF AB ===,,,则CE 的长为( ) A . B. 2.3 C. 2.5 D. 118. 对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220112011A B A B A B +++ 的值是( ) 【改编】A .20112010B .20102011 C .20122011 D .2011201219.如图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图象,观察图象写出y 2≥y 1时,x 的取值范围( )A .x ≥0B .0≤x ≤1C .-2≤x ≤1D .x ≤1(16题) CDEF A B20.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A . -12aB . -12(a+1)C . -12(a-1)D . -12(a+3)二. 认真填一填(本题有3个小题,每小题4分,共12分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 21. 某班第二组女生参加体育测试,仰卧起坐的成绩(单位:个)如下:43、41、39、40、37.这组数据的中位数是___________;标准差是_______________。

2013年山东省普通高中学业水平考试数学试题及参考答案

2013年山东省普通高中学业水平考试数学模拟试题第一卷(选择题 共45分)一、选择题(15’×3=45’)1、已知角的终边经过点(-3,4),则tanx 等于A43 B 43- C 34 D 34- 2、已知lg2=a,lg3=b ,则lg 23等于A a-bB b-aC a bD ba3、设集合M={})2,1(,则下列关系成立的是 A 1∈M B 2∈M C (1,2)∈M D (2,1)∈M4、直线x-y+3=0的倾斜角是A 300B 450C 600D 9005、底面半径为2,高为4的圆柱,它的侧面积是 A 8π B 16π C 20π D 24π6、若b<0<a(a,b ∈R),则下列不等式中正确的是A b 2<a 2 Bab 11> C -b<-a D a-b>a+b 7、已知x ∈(-2π,o),cosx=54,则tanx 等于A 43B 43-C 34D 34-8、已知数列{}n a 的前n 项和s n =21++n n ,则a 3等于A 201B 241C 281D 3219、在ΔABC 中,sinA ∙sinB-cosA ∙cosB<0则这个三角形一定是A 锐角三角形B 钝角三角形C 直角三角形D 等腰三角形 10、若函数)2(21)(≠-=x x x f ,则f(x) A 在(-2,+∞),内单调递增 B 在(-2,+∞)内单调递减 C 在(2,+∞)内单调递增 D 在(2,+∞)内单调递减11、在空间中,a 、b 、c 是两两不重合的三条直线,α、β、γ是两两不重合的三个平面,下列命题正确的是A 若两直线a 、b 分别与平面α平行, 则a ∥bB 若直线a 与平面β内的一条直线b 平行,则a ∥βC 若直线a 与平面β内的两条直线b 、c 都垂直,则a ⊥βD 若平面β内的一条直线a 垂直平面γ,则γ⊥β 12、不等式(x+1)(x+2)<0的解集是A {}12-<<-x xB {}12->-<x x x 或 C {}21<<x x D {}21><x x x 或13、正四棱柱ABCD-A 1B 1C 1D 1中,A 1 C 1与BD 所在直线所成角的大小是A 300B 450C 600D 90014、某数学兴趣小组共有张云等10名实力相当的组员, 现用简单随机抽样的方法从中抽取3人参加比赛, 则张云被选中的概率是A 10%B 30%C 33.3%D 37.5%15、如图所示的程序框图,如果输入三个实数a ,b ,c , 要求输出这三个数中最大的数,那么在空白处的判断框中, 应该填入下面四个选项中的(注:框图中的赋值符号“=”也可以写成“←”或“:=”) A c>x B x>c C c>b D b>c第二卷(非选择题共55分)二、填空题(5’ ×4=20’)16、已知a>0,b>0,a+b=1则ab 的最大值是____________17、若直线2ay-1=0与直线(3a-1)x+y-1=0平行,则实数a 等于18、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么f(5)的值为____________ 19、在[-π,π]内,函数)3sin(π-=x y 为增函数的区间是____________20、设┃a ┃=12,┃b ┃=9,a ∙ b=-542, 则a 和 b 的夹角θ为____________三、解答题(共5小题,共35分)21、已知a =(2,1)b=(λ,-2),若a ⊥ b ,求λ的值 22、(6’)已知一个圆的圆心坐标为(-1, 2),且过点P (2,-2),求这个圆的标准方程23、(7’)已知{}n a 是各项为正数的等比数列,且a 1=1,a 2+a 3=6,求该数列前10项的和S n24、(8’)已知函数R x x x x f ∈-=,cos 21sin 23)( 求f(x)的最大值,并求使f(x)取得最大值时x 的集合25、(8’)已知函数f(x)满足xf(x)=b+cf(x),b ≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边都有意义的任意 x 都成立(1)求f(x)的解析式及定义域(2)写出f(x)的单调区间,并用定义证明在各单调区间上是增函数还是减函数?参考答案一、1.D2.B3.C4.B5.B6.D7.B8.A9.B10.D11.D12.A13.D14.B15.A二、16、41 17、31 18、8 19、 [6π-,65π] 20、43π三、21、解:∵a ⊥b ,∴a ∙b=0,又∵a=(2,1),b =(λ,-2),∴a ∙b=2λ-2=0,∴λ=122、解:依题意可设所求圆的方程为(x+1)2+(y-2)2=r 2。

2013年九年级学业水平模拟考试数学试题 00


区. 清明节试运营期间景区共接待游客 33.5 万人,其中 33.5 万用科学记数法表示为
A. 33.5 ×104
B. 0.335 ×106
C. 3.35 ×104
D. 3.35 ×105
5.有理数 a、b 在数轴上的位置如图所示,则 a+b 的值
A.大于 0 C.小于 a
B.小于 0 D.大于 b
-1 a 0 1 b
第 5 题图
6.不等式组
的解集在数轴上表示为
01 2
A
01 2
B
012
C
0
12
D
7.为了比较甲乙两种水稻秧苗是否出苗整齐,每种秧苗各取 10 株分别量出每株长度,发现
两组秧苗的平均长度一样,甲、乙的方差分别是 3.9,15.8,则下列说法正确的是
A.甲秧苗出苗更整齐
B.乙秧苗出苗更整齐
1. 4 的值是
A. 4
B. 2
C. -2
D. ±2
2.如图,与∠1 是内错角的是
A.∠ 22x)3 ÷ x 的结果正确的是
A. 8x2
B. 6x2
C. 8x3
D. 6x3
第 2 题图
4.为打造 5A 级景区,济南市组建了以趵突泉景区、大明湖景区为主体的“天下第一泉”风景
D. 主视图改变,俯视图不变
A
9.化简
1 x +1

x
1 −
1
的结果是
2 A. x2 − 1
B.

2 x2 −1
2x C. x2 − 1
D. −
2x x2 −1
10.如图,⊙O 是 △ABC 的外接圆, ∠ABO = 40°,则 ∠ACB 的大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乡镇 学校 姓名 考号 密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………初中毕业生学业考试 数学模拟试题(东都镇初级中学赵连水)说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-27,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.22-的值是 ( )A .2-B .2C .4D .4- 2( )正面A .B . C.3.我国第二颗月球探测卫星嫦娥二号于2011年6月9号奔向距地球1 500 000km 的深空, 用科学记数法表示1 500 000为( )A .1.5×106B .0.15×107C .1.5×107D .15×1064.下列图形中既是轴对称图形又是中心对称图形的有A .2个B .3个C .4个D .5个5.不等式组⎩⎨⎧≥+≤-3242x x x 的解集是( )A .x ≥3B .x ≤6C .3≤x ≤6D .x ≥66.商场对某商品优惠促销,如果以八折的优惠价格每出售一件商品,就少赚15元,那么顾客买一件这种商品 就只需付( )元. A .35B .60C .75D .1507.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则依题意可列方程( ) A .xx 70580=- B .57080+=x x C .xx 70580=+ D .57080-=x x 8.为了呼吁同学们共同关注地球暖化问题对人类生活的影响,小明调查了2011年6月气温 情况,如图所示.根据统计图分析,这组数据的众数和中位数分别是 ( )A .32℃,30℃B .31℃,30℃C .32℃,31℃D .31℃,31℃9.如图所示的函数图象的关系式可能是( )A .x y 2=B .y =x1C .y = x2D .y =1x10.如图,ABC ∆中,90B ∠= ,6AB =,8BC =,将ABC ∆沿DE 折叠,使点C 落在AB 边上的C ′处,并且C ′D ∥BC ,则C ′D 的长是)A .950B .940C .415 D .42511.在平面直角坐标系中给定以下五个点A (-2,0)、B (1,0)、C (4,0)、D (-2,29)、E (0,-6),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩摸球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是( ) A .21B .53C .107D .54 第8题图8 5429℃ 30℃ CC 第10题图密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………12.如图,ABCD 、CEFG 是正方形,E 在CD 上且BE 平分∠DBC ,O 是BD 中点,直线BE 、DG 交于H ,BD 、AH 交于M ,连接OH ,下列四个结论:①BE ⊥GD ;②BG OH 21=; ③∠AHD=45°;④GD.其中正确的结论个数有( )A .1个B .2个C .3个D .4个第二部分 非选择题填空题(本题共8小题,每小题3分,共24分.) 13.分解因式:228x -=_______________; 14.不等式组322(4)1x x x +>⎧⎨--⎩≥的解集为___________.15.某商店4月份销售额为50万元,第二季度的总销售额为182万元,若5、6两个月的月增长率相同,求月增长率为_______. 16.对实数a 、b 定义新运算“*”如下: ()()a a b a b b a b ⎧*=⎨<⎩≥,如323*=,(=.若210x x +-=的两根为12,x x ,则12x x *=___________.17.如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°, ∠ADB =60°,CD =60m ,则河宽AB 为________m(结果保留根号).18.如图,梯形ABCD 中,AD //BC ,CE 是BCD ∠的平分线,且AB CE ⊥,E 为垂足,AE BE 2=.若四边形AECD 的面积为1,则梯形ABCD 的面积是________________.19.如图,在Rt ABC △中,90301ACB A BC ∠=∠==°,°,,过点C 作1CC AB ⊥,垂足为1C ,过点1C 作12C C AC ⊥,垂足为2C ,过点2C 作23C C AB ⊥,垂足为3C ,……按此作法进行下去,则n AC =______________. 20.如图,M 为双曲线y =x1上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 交于点B .则AD ·BC 的值为___________.解答题(本题共7小题,其中第21题5分,第22题6分,第25题10分,第26题11分,第27题12分,共60分.) 21.(本题5分)计算:22)3(60sin 2|23|122-︒-+--++-22.(本题6分)解分式方程:1213-+=+x x x23.(本题8分)图1表示的是某综合商场今年1~5月份的商品各月销售总额的情况,图2表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图1、图2, 解答下列问题:第17题图OM H GF E D CA第12题图第18题图C 5C 4C 3C 2C 1CBA第19题图C 6乡镇 学校 姓名 考号 密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………1 2 3 5月份商场各月销售总额统计图图1图2商场服装部...各月销售额占商场当月 销售总额的百分比统计图第23题图(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元, 请你根据这一信息将图1中的统计图补充完整;(2)商场服装部...5月份的销售额是多少万元?(3)小刚观察图2后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.24.(本题8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)在你学过的特殊四边形中,写出两种勾股四边形的名称:__________和_________; (2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4).请画出以格点为顶点,OA OB ,为勾股边,且对角线相等的勾股四边形OAM B ;(3)如图2,将ABC △绕顶点B 按顺时针方向旋转60 ,得到DBE △,连接AD DC ,,已知30DCB = ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.25.(本题10分)如图,AB 为⊙O 的直径,过半径OA 的中点G 作弦CE ⊥AB ,在⌒CB 上取一点D ,直线CD 、ED 分别交直线AB 于点F 和M .(1)求∠COA 和∠FDM 的度数;(2)已知OM =1,MF =3,请求出⊙O 的半径并计算tan ∠DMF 的值.图1A图2第24题图第25题图密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………26.(本题11分)某经销商销售一种进价为每件20元的护眼台灯,销售过程中发现,如果按进价销售,每月销售量为300台,售价每增加1元,销量减少10台,若商场将这种台灯销售单价定为x (元),每月销量为y (件).(1)试判断商场每月销量y (件)与销售单价x (元)之间的函数关系; (2)如果经销商想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果经销商想要每月获得的利润不低于2000元,那么他每月用于购进这种台灯的成本最少需要多少元?27.(本题12分)已知如图,抛物线c bx ax y ++=2与x 轴相交于B (1,0)、C (4,0)两点,与y 轴的正半轴相交于A 点,过A 、B 、C 三点的⊙P 与y 轴相切于点A . (1)请求出点A 坐标和⊙P 的半径; (2)请确定抛物线的解析式;(3)M 为y 轴负半轴上的一个动点,直线MB 交⊙P 于点D .若△AOB 与以A 、B 、D 为顶点的三角形相似,求MB •MD 的值.(先画出符合题意的示意图再求解).乡镇 学校 姓名 考号密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………第一部分 选择题选择题:(每题3分,共36分)1.C . 2.C 3.A 4.B 5.C 6.B 7.D 8.C 9.D 10.B 11.B 12.D 第二部分 非选择题填空题:(每题3分,共24分)13.)2)(2(2+-x x . 14.-2<x ≤3. 15.20% 16.17.330 18.715. 19.n n 2)3(1+20.2解答题:(本题共7小题,其中第21题5分,第22题6分,第23题8分,第24题8分,第25题10分,第26题11分,第27题12分,共60分.) 21.解:原式=923232324+⨯--++-……………………………………………3分79332324=+--++-= (2)分22.解:去分母得)3(2)1)(3()1(++-+=-x x x x x ……………………………………2分整理得35-=x ∴53-=x ……………………………………………………3分检验:把53-=x 代入)1)(3(-+x x 得0)153)(353()1)(3(≠--+-=-+x x ……………………………………………………1分∴53-=x 是原方程的解.23.(1)410-100-90-65-80=75(万元)3分(2)5月份的销售额是80×16%=12.8(万元) (2)分 (3)4月份的销售额是75×17%=12.75(万元),∵12.75<12.8. ∴不同意他的看法.……………………………………3分 24.解(1)正方形、长方形、直角梯形.(任选两个均可)…………2分(2)答案如图所示.M (3,4)或M (4,3).…………………………2分 (3)证明:连结EC ∵△ABC ≌△DBE ∴AC =DE ,BC =BE ∵∠CBE =60° ∴EC =BC ,∠BCE =60° ∵∠DCB =30°∴∠DCE =90° ∴DC 2+∴DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形…………………………4分25.解:(1)∵OA 、OC 都是⊙O 的半径,且G 为OA 的中点,直径AB ⊥CE∴在Rt △OCG 中,cos ∠COG =21∴∠COG =60° ∵⌒AC =⌒AE =21⌒CE ∴∠EDC =∠COA =60°∴∠EDF =120°,即∠FDM =120°……………………………………4分(2)∵直径AB ⊥CE ∴AB 平分CE∴AB 垂直平分CE . ∴MC =ME ∴∠CMA =∠EMA 又∵∠FMD =∠EMA ∴∠FMD =∠CMA ∵∠FDM =∠COM =120° ∴∠F =∠OCM 又∵∠FOC =∠COM ∴△FOC ∽△COM ∴OMOCOC OF =即4)31(12=+⨯=⋅=OF OM OC ∴OC =2 在Rt △CGO 中,322=-=OG OC CG 又∵∠DMF =∠CMA ∴tan ∠DMF =tan ∠CMA =23=GM CG ……………………………………6分26.解:(1)50010)20(10300+-=--=x x y …………………………2分 (2)根据题意列方程得(x -20)(-10x +500)=2000 化简得 01200702=+-x x 解得,301=x 402=x答:经销商想要每月获得2000元的利润,那么销售单价应定 30元或40元.…………………4分(3)设这种台灯每月利润为w ,则有)50010)(20(+--=x x w10000700102-+-=x x 2250)35(102+--=x可知当销售单价为35元时可获得最大利润2250元,由(2) 知当销售单价为30元时可获得利润2000元,所以30≤x ≤ 32,因为y =-10x +500,可知y 随x 的增大而减少,当x 取最 大值32时销量最小,此时购进这种台灯的成本为商场各月销售总额统计图月份5432120 4060 80 100x密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………360018020)5003210(20=⨯=+⨯-⨯答:每月用于购进这种台灯的成本最少需要3600元.……………………………5分 27.(1)∵OA 是⊙P 的切线,OC 是⊙P 的割线.∴OA 2=OB ×OC 即OA 2=1×4 ∴OA =2 即点A 点坐标是(0,2)连接PA ,过P 作PE 交OC 于E 显然,四边形PAOE 为矩形, 故PA =OE∵PE ⊥BC ∴BE =CE 又BC =3,故BE =23∴PA =OE =OB +BE =1+23=25即⊙P 的半径长为25.…………………………4分(2)抛物线的解析式是:225212+-=x x y ……………………………………4分(3)根据题意∠OAB =∠ADB ,所以△AOB 和△ABD 相似有两 种情况①∠ABD 和∠AOB 对应,此时AD 是⊙P 的直径则AB =5,AD =5 ∴BD =25∵Rt △AMB ∽Rt △DAB ∴MA :AD =AB :BD 即MA =25=⋅BD AD AB ∵Rt △AMB ∽Rt △DMA ∴MA :MD =MB :MA 即MB ·MD =MA 2=425②∠BAD 和∠AOB 对应,此时BD 是 ⊙P 的直径,所以直线MB 过P 点 ∵B (1,0),P ()2,25 ∴直线MB 的解析式是:3434-=x y ∴M 点的坐标为(0,)34- ∴ AM =310由△MAB ∽△MDA 得MA :MD =MB :MA ∴MB ·MD =MA 2=9100……………………………………4分。

相关文档
最新文档