2.11有理数的混合运算 习题

合集下载

有理数加减乘除混合运算课件.ppt

有理数加减乘除混合运算课件.ppt
=41
学生练习:计算下列各题
(1)6-(-12) ÷(-3) (2)3×(-4) +(-28) ÷7 (3)(-48) ÷8-(-25) ×(-6)
(4)42 ( 2) ( 3) (0.25)
3
4
(5)9 (2 1 ) 2 4 (1 1)
43
3
(6)(3) [5 (1 0.2 3) (2) 5
2.11 有理数的加减乘除 混合运算课件
加减乘除混合运算的法则 先乘除,后加减; 有括号的先算括号里面的
你知道吗?
例题1.计算
(1)-8+4÷(-2) (2)(-7) ×(-5) -90÷(-15)
(1)解: -8+4÷(-2)
=-8+(-2) =-10 (2)解:(-7) ×(-5) -90÷(-15) =35-(-6) =35+6
规律题你会吗?
观察下列等式:
1 1 1 , 1 1 1 , 1 1 1
1 2
2 23 2 3 34 3 4
将以上三个等式两边分别相加得:
1 1 1 1 2 2 3 3 4
1 1 1 1 1 1 1 1 3
2 2334
44
(1)猜想并写出:
1 n(n 1)
(2)直接写出下式的计算结果
3.7
答:这个公司去年全年盈利为3.7万元。
规律题你会吗?
观察下列等式
1 2 1 1 2 3 3
1 2 2 3 1 2 3 4 3
1 2 2 3 3 4 1 3 4 5 3
1 2 2 3 3 4 4 5 1 4 5 6 3
按以上规律请你猜想:
12 2334 n(n 1)
例题2、某公司去年1—3月平均每月亏损1.5万元,

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

专题2.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2 B.3 C.7 D.【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【解析】原式=4+2+1=7,故选:C.2.(2019秋•德城区校级期中)|﹣3|﹣(﹣1)2的值是()A.﹣2 B.4 C.2 D.﹣4【分析】根据有理数的乘方、有理数的减法和绝对值可以解答本题.【解析】|﹣3|﹣(﹣1)2=3﹣1=2,故选:C.3.(2020•金华模拟)下列计算正确的是()A.23×22=26B.C.D.﹣32=﹣9【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解析】∵23×22=25,故选项A错误;∵()3,故选项B错误;∵,故选项C错误;∵﹣32=﹣9,故选项D正确;故选:D.4.(2019秋•海淀区校级期中)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【分析】利用相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【解析】根据题意得:a+b=0,xy=1,1,则原式=0﹣1+1=0,故选:A.5.(2019秋•福田区期中)下列运算错误的是()A.B.(﹣1)2+(﹣1)3=0C.﹣(﹣3)2=﹣9 D.﹣8﹣2×6=﹣20【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解析】22,故选项A错误;(﹣1)2+(﹣1)3=1+(﹣1)=0,故选项B正确;﹣(﹣3)2=﹣9,故选项C正确;﹣8﹣2×6=﹣8﹣12=﹣20,故选项D正确;故选:A.6.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7 B.﹣1 C.1 D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.8.(2020•浙江自主招生)定义运算a⨂b,则(﹣2)⨂4=()A.﹣1 B.﹣3 C.5 D.3【分析】判断﹣2﹣4=﹣6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:﹣2﹣4=﹣6<1,则有(﹣2)⨂4=4﹣1=3,故选:D.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④;⑤;⑥;计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意;②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意;④原式=()×(),符合题意;⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2,不符合题意,故选:C.10.(2019秋•德惠市期中)计算()÷()的结果是()A.B.C.D.﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减..【解析】()÷()=()÷()=(),故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•九龙坡区校级期中)对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解析】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.12.(2020春•海淀区校级月考)计算:﹣2.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可.【解析】原式()(),故答案为.13.(2019秋•资阳区校级期中)若定义一种新的运算,规定ad﹣bc,则﹣11.【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=﹣3﹣8=﹣11,故答案为:﹣1114.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是[(﹣2)+(﹣3)﹣1]×(﹣4)=24.【分析】根据“24点”游戏规则列出算式即可.【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24,故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•思明区校级月考)计算:10242﹣128×(﹣43)×(﹣3)=10240000.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1048576﹣24576=10240000,故答案为:1024000016.(2019秋•虹口区校级月考)若规定一种新运算:a*b=(a+b)÷3,则2*3=.【分析】根据a*b=(a+b)÷3,可以求得所求式子的值.【解析】∵a*b=(a+b)÷3,∴2*3=(2+3)÷3=5,故答案为:.17.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为1.【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值.【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘)=1,故答案为:118.(2019秋•思明区校级期中)计算:(1)(1)×(﹣54)=59;(2)9992﹣999×715+284=284000.【分析】(1)根据乘法分配律可以解答本题;(2)根据提公因式法可以解答本题.【解析】(1)(1)×(﹣54)=9+(﹣10)+60=59,故答案为:59;(2)9992﹣999×715+284=999×(999﹣715)+284=999×284+284=284×(999+1)=284×1000=284000,故答案为:284000.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•钟楼区期中)计算:(1)10+(﹣16)﹣(﹣24);(2)5÷();(3)()×(﹣24);(4)﹣12+[20﹣(﹣2)3]+4.【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)10+(﹣16)﹣(﹣24)=10﹣16+24=34﹣16=18;(2)5÷()=5×();(3)()×(﹣24)(﹣24)(﹣24)(﹣24)=﹣9﹣14+20=﹣3;(4)﹣12+[20﹣(﹣2)3]+4=﹣1+(20+8)+4=﹣1+28+4=31.20.(2019秋•崇川区校级期中)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)【分析】(1)首先写成省略括号的形式,再计算有理数的加减即可;(2)先算乘方,再算乘除,后算加减即可.【解析】(1)原式=﹣20+3+5﹣7,=﹣20﹣7+3+5,=﹣27+8,=﹣19;(2)原式=﹣16()+2,=﹣162,2,.21.(2019秋•海陵区校级期中)计算:(1)﹣3+34+0.25(2)﹣4÷(﹣14)(3)()×60(4)﹣14÷(﹣5)2×()【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)﹣3+34+0.25=(﹣3﹣4)+(3)=﹣7+4=﹣3;(2)﹣4÷(﹣14)=﹣4×();(3)()×60=﹣45﹣50+55=﹣40;(4)﹣14÷(﹣5)2×()=﹣1÷25×()=﹣1().22.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:35﹣34=2×34;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n表示上述规律,通过提取公因式法进行证明便可;(3)把原式化成,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020.23.(2020春•通州区期末)对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.【分析】(1)(x]表示小于x的最大整数,依此即可求解;(2)根据(x]的定义求得a+b=2,代入解析式求得即可;(3)分两种情况列出关于x的不等式,解不等式即可.【解析】(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:﹣3 1 0 2.5 ﹣2 ﹣1.5与标准质量的差值(单位:千克)袋数 1 2 3 8 4 2(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.11。

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)

有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。

有理数的混合运算 同步练习题(含答案) 2021-2022学年北师大版七年级数学上册

有理数的混合运算 同步练习题(含答案) 2021-2022学年北师大版七年级数学上册

2.11有理数的混合运算 同步练习题A 组(基础题)一、填空题1.计算:(1)36÷4×(-14 )=_____; (2)2-(-3)2-|-1|=_____.2.计算:(1) -1100-(-2)3=_____,|5-24|-(-4)=_____; (2)-14 ×(-2)2-(-12 )×42=_____.3.(1)冰箱开始启动时的内部温度为10 ℃,若每3小时冰箱内部的温度降低6 ℃,那么6小时后冰箱内部温度是_____℃.(2)按照如图的操作步骤,若输入x 的值为2,则输出的值是_____.4.(1)如果|a -3|与(b +4)2互为相反数,那么-2a -b 的值为_____. (2)已知|x |=3,|y |=4,且x >y ,则x 3-y ÷(-2)2的值为_____.二、选择题5.对于算式2 020×(-8)+(-2 020)×(-18),利用乘法对加法的分配律写成积的形式是( )A .2 020×(-8-18)B .-2 020×(-8-18)C .2 020×(-8+18)D .-2 020×(-8+18) 6.计算:(-2)2+(-1)2 021-2×(-1)=( ) A .5 B .1 C .-1 D .6 7.下列运算结果最小的是( ) A .(-3)×(-2) B .(-3)2÷(-2)2 C .(-3)2×(-2) D .-(-3-2)28.定义一种新运算a *b =a 2-2ab ,则5*(-3)的值为( ) A .40 B .45 C .50 D .55三、解答题 9.计算:(1)23-17-(-7)+(-16);(2)(-20)×(-1)9-0÷(-4);(3)(-36)×(-49 +56 -712 );(4)-14+9×(-13 )2+23.10.计算: (1)计算:(-1)2 021-|-6|×(-13 )+(-2)2÷12 ;(2)-745 ×(-856 )-(-7.8)×(-434 )-4912 ÷539 ;(3)(-2)3×(-1)4-|-12|÷[-(-12 )2];(4)-22-(-2)2-(-3)2×(-23 )-42÷|-4|.B 组(中档题)一、填空题11.任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+,-,×,÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上述规则,写出一个运算:_____.12.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,已知a 0=1(a ≠0),如将(101)2,(1011)2换算成十进制数应为: (101)2=1×22+0×21+1×20=4+0+1=5, (1011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(10101)2换算成十进制数的结果是_____.13.1加上它的12 得到一个数,再加上所得数的13 又得到一个数,再加上这个数的14 又得到一个数,……以此类推,一直加到上一个数的12 021 ,那么最后得到的数为_____.二、解答题14.若非零数a ,b 互为相反数,c ,d 互为倒数,|m |=3,求(cd )2 020+(a +b )2 021+(ab )2 020+m 的值.C 组(综合题)15.观察下列图形及图形所对应的等式,探究图形阴影部分的面积变化与对应等式其中的规律,并解答下列问题:22-12=2×1+1×1;32-22=3×1+2×1;42-32=4×1+3×1;52-42=_____. (1)补全第四个等式,并直接写出第n 个图对应的等式; (2)计算:12-22+32-42+52-62+…+992-1002; (3)若x 是正整数,且(3x +2)2-2 025=(3x +1)2,求x 的值.参考答案 A 组(基础题)一、填空题1.计算:(1)36÷4×(-14 )=-94 ;(2)(2019·成都武侯区期中)2-(-3)2-|-1|=-8. 2.计算:(1) -1100-(-2)3=7,|5-24|-(-4)=15; (2)-14 ×(-2)2-(-12 )×42=7.3.(1)冰箱开始启动时的内部温度为10 ℃,若每3小时冰箱内部的温度降低6 ℃,那么6小时后冰箱内部温度是-2℃.(2)按照如图的操作步骤,若输入x 的值为2,则输出的值是2.4.(1)如果|a -3|与(b +4)2互为相反数,那么-2a -b 的值为-2. (2)已知|x |=3,|y |=4,且x >y ,则x 3-y ÷(-2)2的值为-28或26.二、选择题5.对于算式2 020×(-8)+(-2 020)×(-18),利用乘法对加法的分配律写成积的形式是( C )A .2 020×(-8-18)B .-2 020×(-8-18)C .2 020×(-8+18)D .-2 020×(-8+18) 6.计算:(-2)2+(-1)2 021-2×(-1)=( A ) A .5 B .1 C .-1 D .6 7.下列运算结果最小的是( D ) A .(-3)×(-2) B .(-3)2÷(-2)2 C .(-3)2×(-2) D .-(-3-2)28.定义一种新运算a *b =a 2-2ab ,则5*(-3)的值为( D ) A .40 B .45 C .50 D .55三、解答题 9.计算:(1)23-17-(-7)+(-16); 解:原式=23+(-17)+7+(-16) =(23+7)+[(-17)+(-16)] =30+(-33) =-3.(2)(-20)×(-1)9-0÷(-4); 解:原式=(-20)×(-1)-0 =20-0 =20.(3)(-36)×(-49 +56 -712 );解:原式=(-36)×(-49 )+(-36)×56 +(-36)×(-712 ) =16+(-30)+21 =7.(4)(2020·成都青羊区石室中学期末)-14+9×(-13 )2+23. 解:原式=-1+9×19 +8 =-1+1+8 =8.10.计算:(1)(2020·成都武侯区期末)计算:(-1)2 021-|-6|×(-13 )+(-2)2÷12 ;解:原式=-1-6×(-13 )+4÷12 =-1+2+4×2 =9.(2)-745 ×(-856 )-(-7.8)×(-434 )-4912 ÷539 ; 解:原式=-7.8×(-856 )-(-7.8)×(-434 )-4912 ×7.8 =7.8×(856 -434 -4112 ) =7.8×(81012 -4912 -4112 ) =7.8×0 =0.(3)(-2)3×(-1)4-|-12|÷[-(-12 )2];解:原式=(-8)×1-12÷(-14 ) =-8-12×(-4) =-8+48 =-40.(4)-22-(-2)2-(-3)2×(-23 )-42÷|-4|.解:原式=-4-4-9×(-23 )-16÷4 =-4-4+6-4 =-6.B 组(中档题)一、填空题11.任取四个1至13之间的自然数,将这四个数(且每个数只能用一次)进行“+,-,×,÷”四则运算,使其结果为24.现有四个有理数:3,4,-6,10,运用上述规则,写出一个运算:3×(4-6+10)=24(答案不唯一).12.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,已知a 0=1(a ≠0),如将(101)2,(1011)2换算成十进制数应为: (101)2=1×22+0×21+1×20=4+0+1=5, (1011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(10101)2换算成十进制数的结果是21.13.1加上它的12 得到一个数,再加上所得数的13 又得到一个数,再加上这个数的14 又得到一个数,……以此类推,一直加到上一个数的12 021 ,那么最后得到的数为1__011.二、解答题14.若非零数a ,b 互为相反数,c ,d 互为倒数,|m |=3,求(cd )2 020+(a +b )2 021+(ab )2 020+m 的值.解:根据题意,得a +b =0,ab =-1,cd =1,m =3或-3, 当m =3时,原式=1+0+1+3=5. 当m =-3时,原式=1+0+1-3=-1.C 组(综合题)15.观察下列图形及图形所对应的等式,探究图形阴影部分的面积变化与对应等式其中的规律,并解答下列问题:22-12=2×1+1×1;32-22=3×1+2×1;42-32=4×1+3×1;52-42=5×1+4×1. (1)补全第四个等式,并直接写出第n 个图对应的等式; (2)计算:12-22+32-42+52-62+…+992-1002; (3)若x 是正整数,且(3x +2)2-2 025=(3x +1)2,求x 的值. 解:(1)第n 个图对应的等式是(n +1)2-n 2=(n +1)×1+n ×1. (2)12-22+32-42+52-62+…+992-1002 =-(22-12+42-32+…+1002-992)=-(2×1+1×1+4×1+3×1+…+100×1+99×1) =-(2+1+4+3+…+100+99)=-100×(100+1)2 =-5 050.(3)因为x 是正整数,(3x +2)2-2 025=(3x +1)2, 所以(3x +2)2-(3x +1)2=2 025. 所以(3x +2)×1+(3x +1)×1=2 025. 解得x =337. 即x 的值是337.。

七年级数学上册第一章有理数的混合运算练习题40道(及检测)1

七年级数学上册第一章有理数的混合运算练习题40道(及检测)1

精编学习资料欢迎下载七年级数学上 --有理数的混合运算(40 道题)专项练习A 组:(1)18-6(-)(-1)3+22(-1)(-)(-)(-)12 ;;(2)35;(3)9 4 +60 ÷2-(-)÷(-2225(4)100÷(-));(5)(-)×[-+(-) ].223339(6)231(-12138+(- 3)(- 2)(-)(-)(- 3)(-)- 4(-).;(7) 4 ÷4;(8)332B 组:(1)36(1-12(-8)() 42);;(-)+;23193(-3)(-+2-1)3(-1)(6)-33-1;4328 3精编学习资料欢迎下载3223(-22(7)(-)-(-)÷(-);()(-)×[)-2] ;20.5 1.6282322(-)1631(9)[ (-3)-(-5)(10)(- 2)-(-)(- 4)] ÷ 2 ;÷.8C 组:(1)11+(- 22)- 3×(- 11);(2)(-321032)(--)(- 2)-3433;(3);(4)23÷[3(3-7)(-7)(-)(3+5)(- 2)-(- 4)];(5)48÷8;(6)6046;(7)-72+2×2+(- 6)÷12(-1-3+4-7)(- 154)33;(8)20512.6D 组:(1) 8-(- 25) (-5)33( )(-2) 3 2 -(- 223322 ;+21 ()-+÷2- × ;(4)(- ) (- +1) 0(- );24 3(5)6 2561084 3(7)-5-0.45;( )125-( -0.5)× 1 ;(9)-20÷5× 1+5×( -3 )÷ 15;12.581 3 4E 组:(1)(- 8)×5-40; ( 2)(-1.2 )÷(- 1 )- (-2 );(3)-3[-5+ (1-0.2 ÷ 3)÷(-2 )] ;3 5(4)- 23÷1 3 ×( -1 1)2÷(1 2) 2;(5)-2+ (51 7 ) ×( -2.4) 5 3 3 5 86 12七年级数学上册 有理数及其运算测试题一、填空(共 20 分,每空 1 分)1、在 5 1,0,- ( -1.5),-│- 5│, 2, 11 ,24 中,整数是.242、A 地海拔高度是- 30 米,B 地海拔高度是 10 米,C 地海拔高度是- 10 米,则地势最高的与地势最低的相差 __________米 .3、在数轴上距原点 3 个单位长度的点表示的数是 ___________.4、已知 P 是数轴上的一点 4 ,把 P 点向左移动 3 个单位后再向右移 1个单位长度,那么 P 点表示的数是 ______________.5、 11的相反数是,它的绝对值是______._______,它的倒数是 _______36、既不是正数也不是负数的数是 _________,其相反数是 ________.7、最大的负整数是 _________ ,最小的正整数是 _________ .8、在4 27中的底数是,指数是 _________.9、1 2003+12004_______ =__________。

北师大版七年级数学上册2.11有理数的加减混合运算[1](共33张PPT)

北师大版七年级数学上册2.11有理数的加减混合运算[1](共33张PPT)

解答
• (1)(a+b)-(a-c) = a+b-a+c = b+c
当a=7,b=-5,c=-1时 333
原 式 = - 5 +(- 1 )= -2 33
(2)2(a-b)+(b+c)-IcI
=2a-2b+b+c- IcI=2a-b+c-IcI
当 a=7,b=-5,c=-1时
333
原式=
2×73 -- 53+-
(减法转为加法,再运用交换律结合律)
4
(
-4
7 9
)-(-
3
1 6
)-(+
2
2 9
)+(
-6
3 4
)
=
-
43 9
+
+
19 6
+
-
20 9
+
-
27 4
= - 43 + 19 - 20 - 27 = - 43 - 20 + 19 - 27 9694 9964
= -7 - 43 = - 127 12 12
•(2)有理数的减法法则是怎样的?
有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
• 一架飞机做特技表演,起飞后的高度变化 如下表:
此时飞机比起飞点高了多少千米?
方法一: 4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4) =2.4+(-1.4) =1(千米)
12,8,6,5的和 〃;
二是按运算的意义,读作 负12,减8,减6,加5

北师版初中七上数学2.11 有理数的混合运算(课件)


探索&交流
(1)小飞抽到了
,他运用下面的方法凑成
了24:7×(3+3÷7)=24.如果抽到是

你能凑成24吗?如果是
呢?
(2)请将下面的每组扑克牌凑成24.
例题欣赏 ☞
例题&解析
例2.若a,b互为相反数,c,d互为倒数,m的绝对值是2,求2a+ 3cd+2b+m2的值. 解:因为a,b互为相反数,c,d互为倒数,m的绝对值是2,
×

=502.
练习&巩固
小结&反思
有理数的混合运算要把握两点: 一是要考虑运算顺序; 二是要善于观察题目中各数之间的特殊关系,能够运用运算律, 使运算快捷而准确.
所以a+b=0,cd=1,m2=4. 所以2a+3cd+2b+m2
=2(a+b)+3cd+m2 =0+3+4=7.
例题欣赏 ☞
例题&解析
例4.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1. (1)求2※4的值; (2)求(1※4)※(-2)的值; (3)任意选择两个有理数(至少有一个是负数),分别填入下面的□ 和○中,并比较它们的运算结果:□※○和○※□; (4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出 来.
(2)两数相除同号得正,异号得负;并把绝对值相除;
(3)零除以任何非零的数为零.
有理数的乘方符号法则
(1)正数的任何次幂都是正数;
(2)负数的奇次幂为负,偶次幂为正.
知识点一 有理数的混合运算
探索&交流
计算:
-3-{[-4+(1-1.6×
5 8
)]÷(-2)}÷3
带有括号的运算
—从内到外依次进行运算

北师大版七年级数学上册 2.11 有理数混合运算专题 练习(含答案)

2019-2020有理数混合运算专题(含答案)一、解答题1.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 2.计算: ()()241110.5123⎡⎤---⨯⨯--⎣⎦3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.5.计算:(1)6(4)(2)-+--- (2)310.1252(8)73⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(3)(-225)-(+4.7)-(-0.4)+ (-3.3) (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)(12-59+712)×(-36) (7)113(5)77(7)12()3322-⨯+⨯--÷-(8)—2391224⨯6.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.7.计算:()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭.8.计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)313+(-237)+523+(-847); (3)(-103)+(+134)+(-97)+(+100)+(-114); (4)(-212)+(-0.38)+(-12)+(+0.38); (5)(-9512)+1534+(-314)+(-22.5)+(-15712);(6)[(+1317)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+417)].9.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).10.计算:(1)2+(-8)-(-7)-5; (2)312+223+12⎛⎫-⎪⎝⎭-13⎛⎫- ⎪⎝⎭;(3)(-3)×6÷(-2)×12;(4)34⎛⎫-⎪⎝⎭×12⎛⎫-⎪⎝⎭÷124⎛⎫-⎪⎝⎭.11.计算(1)1142()(2)(2)(3)5353++----+(2)(﹣2)3×3﹣(﹣3)+6﹣|﹣5|12.计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13.计算:(1)-32-|(-5)3|×22()5--18÷|-(-3)2|; (2)3571()491236--+÷. 14.计算题:(1)(-20)-(+3)-(-5) (2) 51192533812812-+-- (3) |-3|×(-5)÷(-213) (4) 75336964-+-⨯() (5) (1)0572-+÷-⨯ (6)(159916-)×4 (7) 222222792777()()()-⨯-+⨯--⨯- (8) 22018112(1)()663--÷-⨯ 15.计算:(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017 16.计算:()()241110.4263⎡⎤---÷⨯--⎣⎦; 17.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++- 18.观察下列等式111111111,,,12223233434=-=-=-⨯⨯⨯将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ⑴.猜想并写出:()11n n =+ ;⑴.直接写出下列各式的计算结果: ⑴.111112233420162017++++=⨯⨯⨯⨯ ; ⑴. ()11111223341n n ++++=⨯⨯⨯⨯+ ; ⑴.探究并计算:1111144771020112014++++⨯⨯⨯⨯. 19.阅读下列材料:计算:112÷(13–14+112). 解:原式的倒数为(13–14+112)÷112 =(13–14+112)×12 =13×12–14×12+112×12 =2.故原式=12. 请仿照上述方法计算:(–142)÷(16–314+23–27). 20.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭参考答案1.(1)0;(2)8.【解析】试题分析:(1)先计算乘方,然后再计算乘除,最后计算加减即可;(2)先分别进行乘方、绝对值化简、乘法分配律,然后再按运算顺序进行计算即可.试题解析:(1)原式=16÷(-8)-18×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.2.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式=111[14]23--⨯⨯-=﹣1﹣16×(﹣3)=﹣1+1 2=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.3.(1)-12;(2) 11425;(3) 323;(4)1.【解析】【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=12-; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦=-3-2215252-+⨯() =-3-(-5+1125) =-3+5-1125=2-1125=14125; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭ =(13732-)×(-2)823-⨯-() =53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2=[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.4.(1)7;(2)9【解析】【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.【详解】(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.【点睛】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)-8;(2)-1;(3)-10;(4)-1;(5)-0.2;(6)-19;(7)0;(8)-119.5.【解析】【分析】(1)先去括号,再按照从左到右的顺序计算即可,特别要注意符号的变化; (2)先把小数化为分数,再按照从左到右的顺序计算即可;(3)先去括号,再按照有理数加减法进行计算即可;(4)先去括号和绝对值,再按照有理数加减法进行计算;(5)先确定积的符号,然后把除法转化为乘法,按照有理数乘法法则进行计算; (6)依据乘法分配律进行计算即可;(7)原式逆用乘法分配律计算即可得到结果;(8)把—23924写成1-1024,再依据乘法分配律进行计算即可. 【详解】(1)()()642-+---=-6-4+2=-10+2=-8; (2)()310.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=(-37)×18×(-73)×(-8)=1×(-1)=-1; (3)(-225)-(+4.7)-(-0.4)+ (-3.3)=-2.4-4.7+0.4-3.3=-2.4-4.7-3.3+0.4=-10.4+0.4=-10 (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=35+44-3=2-3=-1 (5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-3471=-75125⨯⨯ (6)(12-59+712)×(-36) =157-36--36+-362912⨯⨯⨯()()()=-18-(-20)-21=-18-21+20=-39+20=-19 (7)()1135777123322⎛⎫⎛⎫-⨯+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=-5×713+7×(-713)-12×(-713)=713×(-5-7+12)=0; (8)—2391224⨯=(1-1024)×12=124×12-10×12=0.5-120=-119.5【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算顺序,此题比较简单,但计算时要特别细心,不然很容易出错. 6.(1)−113(2)−32【解析】(1)()212582433-+-+÷-⨯=−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1)=−32.7.1 3 -.【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的即可.【详解】原式=14 1[2274]625 -+⨯+-⨯=14 125625 -+⨯⨯=2 13 -+=13 -.【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.(1)-6.7;(2)-2;(3)-9912;(4)-3;(5)-35;(6)0【解析】【分析】根据有理数的加法运算律进行运算即可.【详解】解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].=1.3-8=-6.7;(2)3+(-2)+5+(-8).=3+5+.=9+(-11).=-2;(3)原式=[(-103)+(-97)]++100.=-200++100=-99;(4)(-2)+(-0.38)+(-)+(+0.38).=+[(-0.38)+(+0.38)].=-3+0.=-3;(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).=-25+12.5+(-22.5).=-25+[12.5+(-22.5)].=-25+(-10)=-35;(6)+[(+2.5)+(+6)+(+)].=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).=+[-3.5+(+2.5)]+[(-6)+(+6)].=1+(-1)+0.=0.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法运算律是解答本题的关键.9.(1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653=8×|-7|+532×653=56+3 =59;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8)= (−14−12+23)×24-54×(-52)×(-8),=-14×24−12×24+23×24-54×52×8=-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.10.(1)-4;(2) 6;(3) 92;(4)-16.【解析】【分析】(1)根据有理数加减法法则进行计算即可.(2)根据有理数加法结合律和交换律进行计算即可.(3)、(4)根据有理数乘除法法则进行计算即可【详解】(1)原式=2-8+7-5=9-13=-4.(2)原式=312-12+223+13=3+3=6.(3)原式=3×6×12×12=9 2 .(4)原式=314429⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1 6.【点睛】本题考查了有理数的混合运算,熟练掌握并灵活运用运算法则是解题关键. 11.(1)-3 (2)-20【解析】试题分析:(1)根据有理数的加减法法则进行计算即可;(2)先计算乘方,然后进行乘法运算,最后按运算顺序进行计算即可.试题解析:(1)原式=11422235353-+-=14122235533+--=3-6=-3;(2)原式=-8×3+3+6-5=-24+9-5=-20.12.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0;(2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.13.(1) -31;(2)-26【解析】【分析】(1)根据幂的乘方、有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【详解】(1)-32-|(-5)3|×225-()-18÷|-(-3)2|=-9-125×425-18÷9=-9-20-2=-31,故答案为-31; (2)3571491236⎛⎫--+÷ ⎪⎝⎭=(3574912--+)×36=34-×3659-×36712+×36=-27-20+21=-26,故答案为-26.【点睛】本题主要考查了的乘方、有理数的乘除法和减法的基本性质. 14.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-39934;(7)0;(8)40. 【解析】 【分析】根据有理数的运算法则可解答本题. 【详解】解:(1)原式=(-20)+(-3)+5 =-23+5 =-18 (2)原式= 51925133881212--+-+()=-6+1 =-5(3)原式=3×(-5)35⨯-() =3⨯535⨯ =9 (4) =原式=7369-⨯+53363664⨯-⨯ =-28+30-27 =-25(5)()10572-+÷-⨯ =-1+0-14 =-15(6)原式=(-100+1416⨯) =-400+14=-39934(7)原式=227927-⨯-+- =227-⨯0 =0(8) ()201821121663⎛⎫--÷-⨯ ⎪⎝⎭=4-166⨯-⨯() =4+36 =40 【点睛】本题考查了有理数的加、减、乘、除、乘方的运算及它们的混合运算,正确理解运算法则及运算顺序是解题的关键. 15.0【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则分别计算得出答案.【详解】(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017=4+[4×(﹣0.25)]2017×4=4﹣4=0.【点睛】此题主要考查了积的乘方运算、负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.16.2.6【解析】【分析】根据含乘方的有理数混合运算法则计算即可.【详解】原式=10.63(46)--⨯⨯-=1 1.8(2)--⨯-=﹣1+3.6=2.6.【点睛】本题考查了含乘方的有理数混合运算,解答本题的关键是明确含乘方的有理数混合运算的计算方法.17.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+. 【解析】【分析】1.(1)-(3)根据有理数的运算法则进行计算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,注意灵活运用运算律.2.(4)先去括号,再合并同类项.【详解】(1)原式4204459=--÷=--=-(2)原式()()1113174201174202244=--+--⨯⨯=+--= (3)原式31512121211841510234=⨯-⨯-⨯+=--+= (4)原式2222222313x x x x x x x =-++-+-=--+【点睛】本题考核知识点:有理数运算和整式运算. 解题关键点:掌握有理数运算法则和整式运算法则.18.⑴. 111n n -+;⑴. 20162017,1n n +;⑴.6712014【解析】【分析】(1)观察所给算式,根据观察到的规律写出即可;(2)⑴、⑴都是根据得出的规律展开,再合并,最后求出结果即可;(3)根据观察到的规律展开,然后合并,即可求出结果.【详解】(1)()1n n 1=+ 11n n 1-+, 故答案为:11n n 1-+; (2)⑴原式=11111122334-+-+-+…+1120162017-=1-1201620172017=; ⑴原式=11111122334-+-+-+…+111n n -+=1-111n n n =++, 故答案为:20162017,n n 1+; (3)原式=3×1111111144771020112014⎛⎫-+-+-++- ⎪⎝⎭=3×112014⎛⎫- ⎪⎝⎭=6712014. 【点睛】本题考查了有理数的混合运算,能根据已知算式得出()1n n 1=+ 11n n 1-+这一规律是解题的关键. 19.–114. 【解析】【分析】 根据阅读材料介绍的方法,利用乘法分配律求出原式倒数的值,即可求出原式的值.【详解】(16–314+23–27)÷(–142) =(16–314+23–27)×(–42)=(–42)×16–(–42)×314+(–42)×23–(–42)×27=–7+9–28+12=–14,故原式=–114. 【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换(4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可;(5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可(6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()()=17+4-12(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭ =43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭ =25×34+25×12-25×14=25×(34+12-14) =25×1。

2.11 《有理数的混合运算》练习

2.11 《有理数的混合运算》练习一、基础过关1.利用交换律和结合律计算:⑴46104=+-____6_____10=______. ⑵=+--43323121_____ + ____ ― _____ ― ______=_____. 2.()______23)3(032=-⨯÷--.3.绝对值小于4的负整数的积加上绝对值小于3的非负整数的积是_______.4. 7)2x (7-+的最小值是_______.5. 在混合运算中,能使计算简便的运算律有 律,__________律和_________法对________法的分配律.6. 当n 为正整数时_______)1()1(12n 2n =-+--.7. 下列各式中的计算结果为零的是( )A. 22)2(2-+-B. 2222--C.22)5(5-⨯-D.2255÷- 8. 计算3232)1()1()2()2(---⨯---的结果为( )A. -30B. 13C. -1D. 249. 如果a 表示有理数,那么a1,a ,a ,1a 42+中不是负数有( ) A. 1个 B. 2个 C. 3个 D. 4个10.计算 (1) 22)211(835)53(43)32(-⨯+⨯-÷-⨯-(2) []2365.081)3(231)325.0(1-----⨯÷---二、能力提升11. 计算:+⨯+⨯+⨯531421311…10098199971⨯+⨯+12. 使a a +-=+-20052005成立,a 应满足的条件是_________。

13. 20052004)4()25.0(-⨯-的值是______.14. )43)(32)(21(---…)20052004(-的值为______.15. _______)24()24()1()1(334544=÷-÷--+-.16.计算:(1) 12)31211(234222⨯⎥⎦⎤⎢⎣⎡⨯---÷- (2)32)211()811()321()311(-⨯⎥⎦⎤⎢⎣⎡-÷---(3)3)811()321)(311(⨯⎥⎦⎤⎢⎣⎡-÷-- (4) ()10()60()6543---⨯-(5)15171619⨯ (6) 999979997997977++++17.20032002)8()125.0(-⨯-的值为( )A. —4B. 4 C .—8 D. 818. 当x=2时,代数式7bx ax 3++的值是5,你能求出当x=-2时这个代数式的值吗?19. 已知a 、b 互为相反数,m 、n 互为倒数,x 的绝对值等于3,求)mn b a (x 2++-三、聚沙成塔 若01c )32b ()1a (22=-+-++,求b c a 3c ab -+的值.。

2.11有理数的混合运算

(5) (-4)2;(6) (-2)3;(7)(-1)101;(8) -252;(9) 3.4×104÷(-5)
2.我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
例2计算:(1)(-3)×(-5)2;(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);(4)(-4×32)-(-4×3)2
做一做:计算:
(1)-72;(2)(-7)2;(3)-(-7)2;(4)(-8÷23)-(-8÷2)3
3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号。
问题:有理数混合运算按怎样的顺序进行?
P67知识技能
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
2.11.2有理数的混合运算
教学
目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.在做数学中体验综合应用知识解决问题的方法。


分析
重点
有理数的运算顺序和运算律的运用。
难点
灵活运用运算律及符号的确定。
三、应用、拓展
例2已知a,b互为相反数,c,d互为倒数,x的绝对值等于2。
试求x2-(a+b+cd)x+(a+b)2013+(-cd)2013值。
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以x2-(a+b+cd)x+(a+b)1995+(-cd)1995
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年数学导学案
课题§2.11有理数的混合运算课型自学
学习目标
教材分析
重点难点
1.掌握有理数混合运算法则;
2.会进行有理数的混合运算;
3.能够使用能够确定有理数的加、减、乘、运算律简化运算掌握有理数混合运算法
则,并能合理使用运算律
进行简便运算。

准确地掌握有理
数的运算顺序和
运算中的符号问
题。

自学过程一、复习
1.计算:
(1)(―2)+(―3) (2)7×(―12) (3) (―1)101 (4) 1
8
7×(―2
2
1)
2.说一说我们学过的有理数的运算律:
加法交换律:加法结合律:
乘法交换律:乘法结合律:
乘法分配律:
二、预习新知
【预习书】P65-66
【要点点击】
1.算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。

2.有理数混合运算的运算顺序规定如下:
①先算,再算,最后算;
②同级运算,按照从至的顺序进行;
③如果有括号,就先算里的,再算里的,最后算里的。

【注】①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。

②可以应用运算律,适当改变运算顺序,使运算简便。

二、预习作业
一.选择题
1.计算3
(25)
-⨯=()
A.1000
B.-1000
C.30
D.-30
2.计算
11
(5)()5
55
⨯-÷-⨯=
A.1
B.25
C.-5
D.35
自学过3.下列式子中正确的是()
A.423
2(2)(2)
-<-<- B. 342
(2)2(2)
-<-<-
C. 432
2(2)(2)
-<-<- D. 234
(2)(3)2
-<-<-
4.42
2(2)
-÷-的结果是()
A.4
B.-4
C.2
D.-2
二.填空题
1.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。

2.一个数的101次幂是负数,则这个数是。

三.计算题
(1) 3
1
45()
2
-⨯-(2) ⎪




-
÷





-
⨯2
2
1
7
6
4
1
2(3) 3+50÷22×(
5
1
-)-1 (4) 2
5(6)(4)(8)
⨯---÷-(5)
161
2()(2)
472
⨯-÷-
三、预习检测
⑴2
1122
()(2)
2233
-+⨯--⑵1997
1
1(10.5)
3
---⨯⑶22
32
[3()2]
23
-⨯-⨯--
⑷2
32
()(1)0
43
-+-+⨯⑸2
(16503)(2)
5
--+÷- (6)32
(6)8(2)(4)5
-⨯----⨯。

相关文档
最新文档