2019-2019深圳市宝安区高三调研测试文科数学试卷,
广东省深圳市宝安区2019届高三9月摸底考试试题(数学文)

广东省深圳市宝安区2019届高三摸底考试试题数学试题(文) 2019.9命题 韩元彬 审核(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效. 3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.参考公式:棱柱的体积公式为sh =V ,其中S 为棱柱的底面积,h 为棱柱的高。
一组数据x 1,x 2,…,x n 的方差2222121[()()...()]n s x x x x x x n=-+-++-,其中x 表示这组数据的平均数。
一 、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的 1、设i 为虚数单位,则复数43ii+的虚部为 ( ) A .-4 B .-4i C .4 D .4i2、设集合},{},,{R x x y y B R x x y x A ∈+==∈+==112,则A B ⋂=( )A .{(0,1),(1,2)}B . {1}x x ≥C .{(1,2)}D .R 3、设向量()1,0=a ,()1,1=b ,则下列结论中正确的是( )A 、=a b B、2∙=a b C 、-a b 与a 垂直 D 、a ∥b 4、下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A .1y x=-B .2lg(4)y x =-C . ||e x y =D .cos y x = 5、对于函数()cos f x x x =+,下列命题中正确的是 ( )A .,()2x R f x ∀∈=B .,()2x R f x ∃∈=C .,()2x R f x ∀∈>D .,()2x R f x ∃∈>6 、某班4个小组的人数为10,10,,x 8,已知这组数据的中位数与平均数相等,方差等于2,则x 的值为 ( )A .9 B. 8 C. 12 D. 8或127、执行如图所示的程序框图,输出的S 值为( ) A .1 B .1- C . 2- D .08、已知双曲线22221x y a b-=的一个焦点与抛物线24y x =则该双曲线的方程为( )A.224515y x -= B.22154x y -= C.22154y x -= D.225514y x -= 9、已知点),(y x 满足⎪⎩⎪⎨⎧≤--≥-≥+2211y x y x y x ,目标函数y ax z 2+=仅在点(1,0)处取得最小值,则a 的范围为( )A .)2,1(-B .)2,4(-C .)1,2(-D .)4,2(-10、已知集合{(,)|,,}A x y x n y na b n ===+∈Z ,{(,)|,B x y x m ==2312,y m =+ m ∈Z }.若存在实数,a b 使得A B ≠∅成立,称点(,)a b 为“£”点,则“£”点在平面区域22{(,)|108}C x y x y =+≤内的个数是 ( )A. 0B. 1C. 2D. 无数个 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2019年深圳市高三年级第一次调研考试数学试题

绝密★启用前 试卷类型:(A )深圳市2019年高三年级第一次调研考试数 学(文科) 2019.2本试卷共6页,23小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答. 5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|12}A x x =-≤≤,{1,2,3}B =,则A B =2.设22i1iz -=+,则||z = 3.在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α终边过点(2,1)P -,则sin(π2)α-的值为(A ){1} (B ){2}(C ){1,2}(D ){1,2,3}(A(B )2(C(D )34.设x ,y 满足约束条件030426x y x y ≤≤⎧⎪≤≤⎨⎪+≥⎩,则3z x y =+的最大值为5.已知)(x f 是定义在R 上的偶函数,在区间(,0]-∞为增函数,且(3)0f =,则不等式(12)0f x ->的解集为6.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的 几何体的三视图,则该几何体的体积为72,则该圆锥的外接球表面积为 (A )25π4(B )16π (C )25π (D )32π8.古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:(1)取线段2AB =,过点B 作AB 的垂线,并用圆规在垂线上截取112BC AB ==,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD为半径画弧,交AB 于点E . 点E 即为线段AB 的黄金分割点.若在线段AB 上 随机取一点F ,则使得BE AF AE ≤≤的概率约为2.236≈)(A )0.236 (B )0.382 (C )0.472 (D )0.618(A ) 45-(B )35-(C )35(D )45(A )7(B )9(C )13(D )15(A )(1,0)-(B )(1,2)-(C )(0,2)(D )(2,)+∞(A )64 (B )68 (C )80 (D )109第(8)题图EDCB9.已知直线π6x =是函数()sin(2)f x x ϕ=+π(||)2ϕ<图象的一条对称轴,为了得到函数()y f x =的图象,可把函数sin 2y x =的图象10.在长方体1111ABCD A BC D -中,2AB =,BC =,1CC =M 为1AA 的中点,则异面直线AC 与1B M 所成角的余弦值为 11.已知1F ,2F 是椭圆12222=+by a x (0a b >>)的左,右焦点,过2F 的直线与椭圆交于P ,Q 两点,若1PF PQ ⊥且112QF PF =,则21F PF ∆与21F QF ∆的面积之比为12.已知函数ln ,0,()1,0,x x x f x x x >⎧=⎨+≤⎩若12x x ≠且12()()f x f x =,则12||x x -的最大值为(A )1(B(C )2(D)第Ⅱ卷本卷包括必考题和选考题两部分. 第13~21题为必考题,每个试题考生都必须作答. 第22~23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.曲线1e xy x=-在点()1(1)f ,处的切线的斜率为 . 14.已知平面向量a ,b 满足||2=a ,||4=b,|2|+=a b 则a 与b 的夹角为 . 15.已知1F ,2F 是双曲线的两个焦点,以线段12F F 为直径的圆与双曲线的两条渐近线交于,,,A B C D 四个点,若这四个点与1F ,2F 两点恰好是一个正六边形的顶点,则该双曲线的离心率为 .16.在ABC ∆中,︒=∠150ABC ,D 是线段AC 上的点,︒=∠30DBC ,若ABC ∆的面(A )向左平行移动π6个单位长度 (B )向右平行移动π6个单位长度 (C )向左平行移动π12个单位长度 (D )向右平行移动π12个单位长度 (A )6(B )23(C )34(D)3(A )2- (B1(C )(D)BD 取到最大值时,=AC .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)记n S 为等差数列{}n a 的前n 项和. 已知14a =,公差0d >,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列1{}nS 前n 项和为n T .18.(本小题满分12分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y 都在[]9.8, 10.2内的概率;(3)已知该厂产品的维护费用为300元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?19.(本小题满分12分)已知四棱锥P ABCD -的底面ABCD 为平行四边形,PD DC =,AD PC ⊥.(1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=︒,4AD DC ==,求点B 到平面PAC 的距离.20.(本小题满分12分)设抛物线C :24y x =,直线:l 20x my --=与C 交于A ,B 两点.(1)若AB =,求直线l 的方程;(2)点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N ,求证:以MN 为直径的圆必经过一定点,并求出该定点坐标.21.(本小题满分12分)已知函数()()2e 2xf x ax x =+--, 其中2a >-.(1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值;(2)若函数()f x 为R 上的单调函数,求实数a 的取值范围.请考生在第22、23两题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+-=,sin ,cos 2ααt y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=,直线l 与曲线C 交于A ,B 两个不同的点. (1)求曲线C 的直角坐标方程; (2)若点P 为直线l 与x 轴的交点,求2211PBPA+的取值范围.23.(本小题满分10分)选修4-5:不等式选讲设函数21)(-++=x x x f ,1)(2++-=mx x x g .(1)当4-=m 时,求不等式)()(x g x f <的解集;(2)若不等式)()(x g x f <在12,2--[]上恒成立,求m 的取值范围.深圳市2019年高三年级第一次调研考试 文科数学试题参考答案及评分标准第Ⅰ卷一.选择题(1) C (2) B (3) A (4) C (5) B (6) A (7) C (8) A (9) C(10)B (11)D (12)C12【解析】不妨设21x x <,由12()()f x f x =,要使12||x x -最大,即转化为求()12max x x -, 问题可转化为(如图所示)11(,)A x y 到1(0)y x x =+<距离的最大值问题. 此时需过A 点的切线与1y x =+平行.当0x >时,()ln 1f x x '=+,令()1f x '=,则11x =,(1,0)A ,21x =- 所以12||x x -的最大值为2.二.填空题:13.e 1+14.60︒ 15.2 16.16【解析】由题意可知 11sin15024ABC S ac ac ∆=︒==ac =.设BD x =,则14BCD ABD S S ax ∆∆+==可得x =,当且仅当a =时x 取到最大值,所以a =2c =,由余弦定理可得b = 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)记n S 为等差数列{}n a 的前n 项和.已知14a =,公差0d >,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列1{}nS 前n 项和为n T . 【解析】(1)∵2a ,4a ,8a 成等比数列, ∴2428a a a =,∴2111(3)()(7)a d a d a d +=++, ……………………………………2分 ∴2(43)(4)(47)d d d +=++,解得4d =或0d =, ∵0d >,∴4d =. ………………………………………………………4分 ∴数列{}n a 的通项公式1(1)4()n a a n d n n *=+-=∈N . …………………6分(2)∵21()222n n n a a S n n +==+, …………………………………………8分 ∴211111()2221n S n n n n ==-++, ………………………………………10分∴12111......nn T S S S =+++ 111111111()()()(1)21223121n n n ⎡⎤=-+-++-=-⎢⎥++⎣⎦. ……………12分 【命题意图】本题主要考查等差数列的通项公式、前n 项和公式、等比中项、裂项相消求和法等知识与技能,重点考查方程思想,考查数学运算、逻辑推理等数学核心素养.18.(本小题满分12分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y 都在[]9.8, 10.2内的概率;(3)已知该厂产品的维护费用为300元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?【解析】(1) 指标Y 的平均值132=9.6+10+10.410.07666⨯⨯⨯≈.……………2分 (2)由分层抽样法知,先抽取的6件产品中,指标Y 在[]9.8,10.2内的有3件,记为123A A A 、、;指标Y 在(]10.2,10.6内的有2件,记为12B B 、;指标Y 在[)9.4,9.8内的有1件,记为C . …………………3分从6件产品中随机抽取2件产品,共有基本事件15个:()()()121311A A A A A B ,、,、,、()()121A B A C ,、,、()()()()2321222,,,,A A A B A B A C 、、、、()()()31323,,,A B A B A C 、、、 ()()()1212,,,B B B C B C 、、. …………………5分其中,指标Y 都在[]9.8,10.2内的基本事件有3个:()()()121323,A A A A A A ,、,、.…………………6分所以由古典概型可知,2件产品的指标Y 都在[]9.8,10.2内的概率为31155P ==. …………………7分(3)不妨设每件产品的售价为x 元,假设这48件样品每件都不购买该服务,则购买支出为48x 元.其中有16件产品一年内的维护费用为300元/件,有8件产品一年内的维护费用为600元/件,此时平均每件产品的消费费用为()1=4816300+8600=20048x x η⨯+⨯⨯+元; …………………9分 假设为这48件产品每件产品都购买该项服务,则购买支出为()48100x +元,一年内只有8件产品要花费维护,需支出8300=2400⨯元,平均每件产品的消费费用()1=48100+830015048x x ξ⨯+⨯=+⎡⎤⎣⎦元.…………………11分 所以该服务值得消费者购买. …………………12分【命题意图】本题主要考查通过用样本估计总体(平均数)、古典概型、概率决策等知识点,重点体现数学运算、数据分析等数学核心素养.19.(本小题满分12分)已知四棱锥P ABCD -的底面ABCD 为平行四边形,PD DC =,AD PC ⊥.(1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=︒,4AD DC ==,求点B 到平面PAC 的距离.【解析】(1)证明:取PC 中点M ,连接AM ,DM ,……1分PD DC =,且M 为PC 中点,∴DM PC ⊥, ………………………………2分AD PC ⊥,ADDM D =, …………………3分∴PC⊥平面ADM , ………………………………4分AM ⊂平面ADM ,∴PC AM ⊥, ……………………………………5分M 为PC 中点,∴AC PA =. ……………………………………6分(2)过点P 作PH 垂直AD 延长线于点H ,连接CH , ……………………7分 平面APD ⊥平面ABCD ,平面APD平面ABCD AD =,PH ⊂平面APD ,PH ⊥AD ,∴PH ⊥平面ABCD ,……………………………8分CH ⊂平面ABCD ,∴PH ⊥CH , ………………………………9分PD DC =,AD AD =,AC AP =,∴ADP ADC ∆≅∆, ∴120ADC ADP ∠=∠=︒,∴4PD CD AD ===,AC AP ==PH CH ==PC =…………………10分设B h 为点B 到平面PAC 的距离, 由于P ABC B ACP V V --=,可得1133ABC ACP B S PH S h ∆∆⋅=⋅,1442ABC S ∆=⨯⨯=12ACP S ∆=⨯= …………………………………………11分所以B h =.即点B 到平面PAC .…………………………………………12分 【命题意图】本题主要考查了线面垂直的判定定理、线面垂直的定义、面面垂直的性质、等体积法求点到面的距离等知识,重点考查等价转换思想,体现了直观想象、数学运算、逻辑推理等核心素养.20.(本小题满分12分)设抛物线C :24y x =,直线:l 20x my --=与C 交于A ,B 两点.(1)若AB =,求直线l 的方程;(2)点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N ,求证:以MN 为直径的圆必经过一定点,并求出该定点坐标.【解析】(1)由22,4,x my y x =+⎧⎨=⎩消去x 并整理,得2480y my --=,……………1分显然216320m ∆=+>,设),(11y x A ,),(22y x B ,由韦达定理可得,124y y m +=,821-=⋅y y ,…………………………………3分12AB y y =-=AB ∴== ………………………………………4分 24m ∴=-(舍去)或21m =,1m ∴=±,∴直线方程为02=--y x 或02=-+y x . ………………………………5分(2)设AB 的中点M 的坐标为),(M M y x ,则1222M y y y m +==, 又21212()444x x m y y m +=++=+,212222M x x x m +∴==+, ……………………………………………………6分 2(22,2)M m m ∴+,由题意可得(0,2)N m , …………………………………7分设以MN 为直径的圆经过点),(00y x P则200(22,2)PM m x m y =+--,00(,2)PN x m y =--,…………………8分 由题意可得,0=⋅PN PM ,即22200000(42)420x m y m x y x --++-=, ………………………………9分由题意可知00220004204020x y x y x ⎧-=⎪=⎨⎪+-=⎩,,,……………………………………………10分 20=∴x ,00=y , …………………………………………………11分∴定点)0,2(即为所求. ………………………………………………………12分【命题意图】本题主要考查抛物线方程、直线与抛物线位置关系、弦长公式、定点问题等知识,重点考查数形结合思想,体现了数学运算、数学建模、逻辑推理等数学核心素养. 21.(本小题满分12分)已知函数()()2e 2xf x ax x =+--, 其中2a >-.(1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值;(2)若函数()f x 为R 上的单调函数,求实数a 的取值范围.【解析】(1)当0a =时,()=2e 2x f x x --,()=2e 1x f x '-.………………1分 由()0f x '>解得ln 2x >-,由()0f x '<解得ln 2x <-.故函数()f x 在区间[]1,ln 2--上单减,在区间[]ln2,0-上单增. …………2分 ∴ ()min ()ln 2ln 21f x f =-=-. ……………………3分 ∵2(1)=10ef --<,(0)=0f , ∴ max ()(0)0f x f ==. ……………………………………4分 (2)法一: 令()()()2e 1xg x f x ax a '==++-,则()()22e xg x ax a '=++.(i )当=0a 时,由(1)知,与题意不符; …………………5分 (ii )当0a >时,由2()0 2g x x a ⎛⎫'>⇒>-+⎪⎝⎭,2()0 2g x x a ⎛⎫'<⇒<-+ ⎪⎝⎭. ∴ 22min 2()=g 2=e 10a g x a a --⎛⎫----< ⎪⎝⎭,∵ (0)=+10g a >,∴ 此时函数()f x '存在异号零点,与题意不符. ……………………6分 (iii )当20a -<<时,由()0 g x '>,可得2 2x a ⎛⎫<-+ ⎪⎝⎭, 由()0 g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭. ∴()g x 在2,2a ⎛⎫-∞--⎪⎝⎭上单调递增,在22+a ⎛⎫--∞ ⎪⎝⎭,上单调递减.故22max 2()=g 2=e 1a g x a a --⎛⎫---- ⎪⎝⎭. ……………………7分由题意知,22e 10aa ----≤恒成立. ……………………8分令22t a --=,则上述不等式等价于e 12t t≤+,其中1t >-.……………9分 易证,当0t >时,e 112ttt >+>+, 又由(1)的结论知,当(]10t ∈-,时,e 12tt≤+成立. …………………11分 由2120a-<--≤,解得21a -<≤-. 综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减. …12分(2)法二:因为2(1)10ef '-=-<,所以函数()f x 不可能在R 上单调递增.…6分 所以,若函数()f x 为R 上单调函数,则必是单调递减函数,即()0f x '≤恒成立. 由(0)10f a '=+≤可得1a ≤-,故()0f x '≤恒成立的必要条件为21a -<≤-. ……………………………7分 令()()()2e 1xg x f x ax a '==++-,则()()22e xg x ax a '=++.当21a -<≤-时,由()0 g x '>,可得2 2x a ⎛⎫<-+ ⎪⎝⎭, 由()0 g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭, ∴()g x 在2,2a ⎛⎫-∞--⎪⎝⎭上单调递增,在22+a ⎛⎫--∞⎪⎝⎭,上单调递减. 故22max 2()=g 2=e1ag x a a --⎛⎫---- ⎪⎝⎭. ………………………………………9分 22()=e1ah a a ----令,下证:当21a -<≤-时,22()=e10ah a a ----≤.即证221eaa--≤-.令22t a --=,其中(]1,0t ∈-,则112t a -=+.则原式等价于证明:当(]1,0t ∈-时,e 12tt≤+. ……………………11分 由(1)的结论知,显然成立.综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减. ………12分 【命题意图】本题主要考查利用导数研究函数的单调性和最值问题,以及不等式恒成立问题,重点考查分类讨论、化归转化等数学思想,体现了数学运算、逻辑推理等核心素养.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+-=,sin ,cos 2ααt y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=,直线l 与曲线C 交于A ,B 两个不同的点.(1)求曲线C 的直角坐标方程;(2)若点P 为直线l 与x 轴的交点,求2211PBPA+的取值范围.【解析】(1)∵ θρcos 2= ∴ θρρcos 22=, …………………………………1分 ∵222y x +=ρ,x =θρcos , …………………………………3分∴ 曲线C 的直角坐标方程为0222=-+x y x . …………………………………5分 (2)将⎩⎨⎧=+-=,sin ,cos 2ααt y t x 代入曲线C 的直角坐标方程,可得08cos 62=+-t t α, …………………………………6分由题意知236cos 320α∆->=,故98cos2>α,又1cos 2≤α,⎥⎦⎤⎝⎛∈∴1,98cos 2α, …………………………………7分设这个方程的两个实数根分别为1t ,2t ,则αcos 621=+t t ,821=⋅t t , …………………………………8分 1t ∴与2t 同号,由参数t 的几何意义可得:αcos 62121=+=+=+t t t t PB PA ,821=⋅=⋅t t PB PA ,22222()211PA PB PA PBPAPBPA PB+-⋅∴+=⋅221212212()29cos 4()16t t t t t t α+-⋅-==⋅, ……………………………………9分 ⎥⎦⎤⎝⎛∈1,98cos 2α ,⎥⎦⎤ ⎝⎛∈-∴165,41164cos 92α,2211PBPA+∴的取值范围为⎥⎦⎤⎝⎛165,41. ………………………………10分 【命题意图】本题主要考查极坐标方程与直角坐标方程互化、直线的参数方程、直线与圆的位置关系、函数的最值问题等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养.23.(本小题满分10分)选修4-5:不等式选讲设函数21)(-++=x x x f ,1)(2++-=mx x x g .(1)当4-=m 时,求不等式)()(x g x f <的解集;(2)若不等式)()(x g x f <在⎥⎦⎤⎢⎣⎡--21,2上恒成立,求m 的取值范围.【解析】(1)21)(-++=x x x f ,⎪⎩⎪⎨⎧≥-<<--≤+-=∴,2,12,21,3,1,12)(x x x x x x f ……………………………………………………1分当4-=m 时,14)(2+--=x x x g ,① 当1-≤x 时,原不等式等价于022<+x x ,解得,02<<-x ,12-≤<-∴x . ………………………………………………2分② 当21<<-x 时,原不等式等价于0242<++x x , 解得,2222+-<<--x ,221+-<<-∴x . ……………………………………………………3分③ 当2≥x 时,11)2()(-=≤g x g ,而3)2()(=≥f x f ,∴不等式)()(x g x f <解集为空集. ………………………………………………4分综上所述,不等式)()(x g x f <的解集为),(222+--. ……………………5分 (2)① 当12-≤≤-x 时,)()(x g x f <恒成立等价于x x mx 22->,又0<x , 2-<∴x m ,故4-<m ; …………………………………………………7分② 当211-≤<-x 时,)()(x g x f <恒成立等价于3)(>x g 恒成立,即3)(min >x g , 只需⎪⎩⎪⎨⎧>->-3)21(3)1(g g 即可,由此可得⎪⎩⎪⎨⎧-<-<,29,3m m29-<∴m , …………………………………………9分综上所述,9,2m⎛⎫∈-∞-⎪⎝⎭.……………………………………………………10分【命题意图】本题主要考查绝对值不等式以及一元二次不等式的解法、分段函数等知识点,重点考查分类讨论思想,体现了数学运算、逻辑推理等核心素养.。
广东省深圳市2019届高三第二次(4月)调研考试数学文试题

深圳市 2019 年高三年级第二次调研考试数学文2019.4一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A{ x | x22x 0},B{ x |1x3},则 A I B ().(A )( 0, 1)( B)( 0, 3)( C)( 1, 2)(D )(2, 3)2 复数2的共轭复数是().1 i( A ) 1+ i ( B) 1- i( C)-1+ i( D)- 1-i3.已知双曲线C:x2y21(a 0) 的渐近线方程为y3a2x,则该双曲线的焦距为3(A) 2 (B)2(C) 22 ( D) 44.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.若从每周使用时间在[15,20),[ 20,25),[25 ,30)三组内的学生中用分层抽样的方法选取8 人进行访谈,则应从使用时间在[20, 25)内的学生中选取的人数为(A )1 ( B)2 ( C)3 ( D) 45.已知角α为第三象限角,若tan( ) = 3,则 sin α=4(A )- 2 5(B )- 5 (C) 5 ( D) 2 55 5 5 56.如图所示,网格纸卜小正方形的边长为1,粗实(虚)线画出的是某几何体的三视图,则该几何体的体积为(A )8(B )10(C)14( D) 103 3 37.若函数 f ( x) sin( x )( 0) 图象的两个相邻最高点的距离为,则函数f (x) 的6一个单调递增区间为1 x2 8、函数 f( x) 的图象大致为lg | x |9.十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”,即“在一个圆内任意选一贝特朗用“随机半径” 、“ 随机端点”、“随机中点”三个合理的求解方法,但结果都不相同. 该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化. 已知“随机端点”的方法如下:设 A 为圆 O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB 大于圆O 的内接等边三角形边长的概率. 则由“随机端点”求法所求得的概率为() .1 1 1 1A. B. C. D.5 4 3 210.己知正方体–A 1B 1C1D1, P 为棱 CC1的动点, Q 为棱 AA 1m 为平面ABCD的中点,设直线 BDP与平面 B 1D1P 的交线,以下关系中正确的是(A )m ∥D 1Q (B ) m// 平面 B1D1Q (C) m ⊥ B 1Q (D) m ⊥平面 A BB 1 A 111.己知 F 1、 F 2 分别是椭圆 C : x2y 21(a b 0) 的左、右焦点,点 A 是 F1 关于直a 2b 2线 bx + ay = ab 的对称点,且AF 2⊥ x 轴,则椭圆 C 的离心率为12 若函数 f (x)= x 一 x a ln x 在区间问 (1, +∞ )上存在零点,则实数 a 的取值范围为(A) (0 , 1 )(B) ( 1 , e) (C) (0 ,+∞ )(D) ( 1, +∞ ) 2 2 2第 II 卷(非选择题 共 90 分)本卷包括必考题和选考题两部分, 第 13-21 题为必考题, 每个考生都必须作答, 第 22-23 题为选 考题,考生根据要求作答 .二、填空题:本大题共4 个小题,每小题5 分,满分 20 分 . 13. x 23x, x 0 3) = _______.设函数 f ( x) 2),x ,则f (f ( x 0 14. 设△ ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c ,且 c = 6 , cos c =- 1 , 4 sin A = 2 sin B ,则 b =uuu r uuur uuur uuur 15. 已知等边△ ABC 的边长为 2,若点 D 满足 AD 2DC ,则 BDgAC =16 .如图 (1),在等腰直角△ ABC 中,斜边 AB = 4, D 为 AB 的巾点,将△ACD 沿 CD折叠得到如图 (2)所示的三棱锥 C-A'BD ,若三棱锥 C一 A'BD 的外接球的半径为 5 ,则 A'DB =。
深圳市2019届高三第一次调研考试数学(文)试题-含答案

深圳市2019届高三第一次调研考试数学(文)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1≤x≤2},B={1, 2, 3},则A∩B=(A) {1} (B) {2} (C) {1,2} (D) {1,2,3}2.设z=221ii-+,则|z|=(A(B) 2(C) (D) 33.在平面直角坐标系xoy中,设角α的顶点与原点O重合,始边与x轴的非负半轴重合,若角α终边过点P(2,-1),则sin(π-2α)的值为(A)一45(B)一35(C)35(D)454.设x,y满足约束条件030426xyx y≤≤⎧⎪≤≤⎨⎪+≥⎩,则z=3x+y的最大值为(A) 7 (B)9 (C) 13(D) 155.己知()f x是定义在R上的偶函数,在区间(一∞,0]为增函数,且f(3)=0,则不等式f (1一2x)>0的解集为(A)(-l,0)(B) (-1,2)(C) (0,2) (D) (2,+∞)6.如图所示,网格纸上小正方形的边长为1.粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为(A) 64(B) 68(C) 80 (D) 1097.2,则该圆锥的外接球表面积为(A)254π(B) 16π(C) 25π(D) 32π8. 古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己 知线段的黄金分割点,具体方法如下:(l )取线段AB =2,过点B 作AB 的垂线,并用圆规在垂线上截取BC =12AB =1,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC于点D ;(3)以A 为圆心,以AD 为半径画弧,交AB 于点E .则点E 即为线段AB 的黄金分割点.若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为≈2.236)(A )0.236 (B )0.382 (C )0.472 (D )0.6189. 己知直线6x π=是函数f (x )=sin(2)(||)2x πϕϕ+<与的图象的一条对称轴,为了得到函数 y =f (x )的图象,可把函数y =sin2x 的图象(A )向左平行移动6π个单位长度 (B )向右平行移动6π个单位长度(C )向左平行移动12π个单位长度 (D )向右平行移动12π个单位长度10.在长方体ABCD 一A 1B 1C 1D 1中,AB =2,BC=CC 1=M 为AA 1的中点,则异面直线AC 与B 1M 所成角的余弦值为(A) (B )23 (C )34 (D)11.己知F 1,F 2是椭圆22221(0)x y a b a b +=>>的左,右焦点,过F 2的直线与椭圆交于P ,Q 两点,PQ ⊥PF 1,且|QF 1|=2|PF 1|,则△PF 1F 2与△QF 1F 2的面积之比为(A )2(B1 (C(D )12.己知函数ln ,0()1,0x x x f x x x >⎧=⎨+≤⎩,若12x x ≠,且12()()f x f x =,则|12x x -|的最大值为 (A) 1(B) (C) 2第II卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题.考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13、曲线1xy ex=-在点(1, f(1))处的切线的斜率为14.已知平面向量a,b满足|a|=2,|b|=4,|2a+b|=a与b的夹角为.15.己知F1,F2是双曲线的两个焦点,以线段F1F2为直径的圆与双曲线的两条渐近线交于A,B,C,D四个点,若这四个点与F1,F2两点恰好是一个正六边形的顶点,则该双曲线的离心率为.16.在△ABC中,∠ABC=150°,D是线段AC上的点,∠DBC=30°,若△ABC的BD取到最大值时,AC=三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12 分)记S n为等差数列{a n}的前n 项和.已知a1 = 4,公差d > 0 ,a4是a2与a8的等比中项.(1)求数列{a n}的通项公式;(2)求数列{1nS}前n 项和为Tn .18.(本小题满分12 分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48 件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y 有关,具体见下表.(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6 件产品,再从6 件产品中随机抽取2 件产品,求这2 件产品的指标Y 都在[9.8, 10.2]内的概率;(3)已知该厂产品的维护费用为300 元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100 元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48 件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?19.(本小题满分12 分)已知四棱锥P-ABCD的底面ABCD为平行四边形,PD=DC,AD⊥PC.(1)求证:AC=AP;(2)若平面APD ⊥平面ABCD,∠ADC = 120︒,AD= DC = 4 ,求点B 到平面PAC 的距离.20.(本小题满分12 分)设抛物线C:y 2 = 4x ,直线l : x-my-2= 0与C 交于A,B 两点.(1)若|AB|,求直线l 的方程;(2)点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N 。
2019届广东省深圳市宝安区高三9月调研考试数学文试题(解析版)

2019届广东省深圳市宝安区高三9月调研考试数学文★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数是()A. B. C. D.【答案】B【解析】【分析】先化形式,再根据共轭复数概念求解.【详解】因为,所以共轭复数是,选B.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2.已知集合,,若,则实数的取值集合为()A. B. C. D.【答案】D【解析】【分析】先求出集合M={x|x2=1}={﹣1,1},当a=0时,N=∅,成立;当a≠0时,N={},由N⊆M,得或=1.由此能求出实数a的取值集合.【详解】∵集合M={x|x2=1}={﹣1,1},N={x|ax=1},N⊆M,∴当a=0时,N=∅,成立;当a≠0时,N={},∵N⊆M,∴或=1.解得a=﹣1或a=1,综上,实数a的取值集合为{1,﹣1,0}.故选:D.【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.定义某种运算的运算原理如右边的流程图所示,则()A. B. C. D.【答案】A【解析】【分析】根据流程图知运算为分段函数,根据分段函数进行计算.【详解】由流程图得所以,选A.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A. B. C. D.【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,所以概率.故选B.5.已知函数的零点是和,则()A. B. C. D.【答案】C【解析】【分析】先求函数零点得零点关系,再根据两角和正切公式求结果.【详解】由得,,所以,因此,选C.【点睛】本题考查两角和正切公式以及韦达定理,考查基本求解能力.6.若实数,满足,,,,则,,的大小关系为()A. B. C. D.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.【详解】∵实数a,b满足a>b>1,m=log a(log a b),,,∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,0<<1,1>=2log a b>.∴m,n,l的大小关系为l>n>m.故选:B.【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.在中,“”是“为锐角三角形”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.8.为美化环境,从黄、白、红、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率为()A. B. C. D.【答案】D【解析】【分析】先根据组合确定总事件数,再确定红色和紫色的花不在同一花坛的事件数,最后根据古典概型概率公式求解.【详解】从黄、白、红、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有种基本事件,红色和紫色的花在同一花坛有2种基本事件数,所以红色和紫色的花不在同一花坛有6-2=4种基本事件数,因此概率为选D.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.9.若实数,满足,则的最小值为()A. B. C. D.【答案】D【解析】【分析】先确定所表示区域,再根据M表示区域内点到定点(1,0)距离平方减去1求最小值【详解】,而表示正方形及其外部(如图),所以的最小值为点(1,0)到AB:y=-x+2的距离平方减去1,即,选D.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.10.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.【答案】A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。
广东省深圳市2019届高三年级第一学期调研考试文科数学试卷(Word版,含答案)

深圳市2019届高三第一次调研考试数学文试题2019.02.21一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1≤x≤2},B={1, 2, 3},则A∩B=(A) {1} (B) {2} (C) {1,2} (D) {1,2,3}2.设z=221ii-+,则|z|=(A(B) 2(C) (D) 33.在平面直角坐标系xoy中,设角α的顶点与原点O重合,始边与x轴的非负半轴重合,若角α终边过点P(2,-1),则sin(π-2α)的值为(A)一45(B)一35(C)35(D)454.设x,y满足约束条件030426xyx y≤≤⎧⎪≤≤⎨⎪+≥⎩,则z=3x+y的最大值为(A) 7 (B)9 (C) 13(D) 155.己知()f x是定义在R上的偶函数,在区间(一∞,0]为增函数,且f(3)=0,则不等式f (1一2x)>0的解集为(A)(-l,0)(B) (-1,2)(C) (0,2) (D) (2,+∞)6.如图所示,网格纸上小正方形的边长为1.粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为(A) 64(B) 68(C) 80(D) 1097.2,则该圆锥的外接球表面积为(A)254π(B) 16π(C) 25π(D) 32π8. 古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出己 知线段的黄金分割点,具体方法如下:(l )取线段AB =2,过点B 作AB 的垂线,并 用圆规在垂线上截取BC =12AB =1,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD 为半径画弧,交AB 于点E .则点E 即为线段AB 的黄金分割点.若在线段AB 上随机取一点F ,则使得BE ≤AF ≤AE 的概率约为≈2.236)(A )0.236 (B )0.382 (C )0.472 (D )0.6189. 己知直线6x π=是函数f (x )=sin(2)(||)2x πϕϕ+<与的图象的一条对称轴,为了得到函数y =f (x )的图象,可把函数y =sin2x 的图象(A )向左平行移动6π个单位长度 (B )向右平行移动6π个单位长度 (C )向左平行移动12π个单位长度 (D )向右平行移动12π个单位长度10.在长方体ABCD 一A 1B 1C 1D 1中,AB =2,BC =CC 1=M 为AA 1的 中点,则异面直线AC 与B 1M 所成角的余弦值为(B )23 (C )34 (D )311.己知F 1,F 2是椭圆22221(0)x y a b a b+=>>的左,右焦点,过F 2的直线与椭圆交 于P ,Q 两点,PQ ⊥PF 1,且|QF 1|=2|PF 1|,则△PF 1F 2与△QF 1F 2的面积之比为(A )2 (B 1 (C (D ) 12.己知函数ln ,0()1,0x x x f x x x >⎧=⎨+≤⎩,若12x x ≠,且12()()f x f x =,则|12x x -|的最大值为(A) 1 (B)(C) 2 第II 卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题.考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13、曲线1x y e x=-在点(1, f(1))处的切线的斜率为14.已知平面向量a ,b 满足|a |=2,|b |=4,|2a +b |=a 与b 的夹角为 .15.己知F 1,F 2是双曲线的两个焦点,以线段F 1F 2为直径的圆与双曲线的两条渐近线交 于A ,B ,C ,D 四个点,若这四个点与F 1,F 2两点恰好是一个正六边形的顶点,则该 双曲线的离心率为 .16.在△ABC 中,∠ABC =150°,D 是线段AC 上的点,∠DBC =30°,若△ABC 的BD 取到最大值时,AC =三、解答题: 解答应写出文字说明,证明过程或演算步骤.17. (本小题满分 12 分)记S n 为等差数列{a n }的前 n 项和.已知a 1 = 4,公差 d > 0 , a 4 是 a 2 与 a 8 的等比中项.(1)求数列{a n }的通项公式;(2)求数列{1nS }前 n 项和为Tn .18. (本小题满分 12 分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标 Y 进行检测,一 共抽取了 48 件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标 Y 有关,具体见下表.(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量 指标 Y 的平均值(保留两位小数);(2) 用分层抽样的方法从上述样本中先抽取 6 件产品,再从 6 件产品中随机抽取 2 件 产品,求这 2 件产品的指标 Y 都在[9.8, 10.2]内的概率;(3)已知该厂产品的维护费用为 300 元/次. 工厂现推出一项服务:若消费者在购买该厂产品时每件多加 100 元,该产品即可一年内免费维护一次. 将每件产品的购买支出和一年 的维护支出之和称为消费费用. 假设这 48 件产品每件都购买该服务,或者每件都不购买该 服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据, 判断消费者在 购买每件产品时是否值得购买这项维护服务?19. (本小题满分 12 分)已知四棱锥 P -ABCD 的底面 ABCD 为平行四边形, PD =DC , AD ⊥PC .(1) 求证: AC =AP ;(2) 若平面 APD ⊥ 平面 ABCD , ∠ ADC = 120︒ , AD = DC = 4 ,求点 B 到平面 PAC 的距离.20. (本小题满分 12 分)设抛物线C :y 2 = 4x ,直线l : x -my -2= 0与C 交于 A , B 两点.(1)若|AB | ,求直线l 的方程;(2)点 M 为 AB 的中点,过点 M 作直线 MN 与 y 轴垂直, 垂足为 N 。
2019年广东省深圳市高三第二次调研测试数学【文】试题及答案
高考数学精品复习资料2019.5广东省深圳市20xx届高三4月第二次调研考试数学(文科)一、选择题1.i为虚数单位,复数z=1+i的模为A. 1 22.已知集合M={x|-2<x<1} ,N={x|-1<x<2},则M∩N=A、{x|-2<x<2}B、{x|-1<x<2}C、{x|-1<x<1}D、{x|-2<x<1}3、已知函数的值为4、已知命题p:“学生甲通过了全省美术联考”;q:“学生乙通过了全省美术联考”,则表示A、甲、乙都通过了B、甲、乙都没有通过C、甲通过了,而乙没有通过D、甲没有通过,而乙通过了5、若实数a,b满足a>b,则下列不等式成立的是6.两条异面直线在同一个平面上的正投影不.可能是A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点7、执行如图1所示的程序框图,则输出0的概率为8、在△ABC中,AB=AC=2,BC=,则AB AC=A、B、2C、-D、-29、过点(0,-1)的直线l与两曲线y=lnx和x2=2py均相切,则p的值为A、14B、12C、2D、410.如图2,我们知道,圆环也可看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积22)()(22r R r R r R S +⨯⨯-=-=ππ.所以,圆环的面积等于是以线段r R AB -=为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长22r R +⨯π为长的矩形面积.请将上述想法拓展到空间,并解决下列问题:若将平面区域d)r 0}()(|),{(222<<≤+-=其中r y d x y x M 绕y 轴旋转一周,则所形成的旋转体的体积是A. d r 22πB. d r 222πC. 22rd πD. 222rd π二、填空题(一)必做题:11、数列{n a }满足12、若角α的终边过点(1,2),则sin (πα+)的值为____13、当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为___(二)选做题:14.(坐标系与参数方程选做题)极坐标系(,)(02)ρθθπ≤<中,点(1,0)关于直线2sin ρθ=1对称的点的极坐标是 .15.(几何证明选讲选做题)如图3,在梯形ABCD 中,AB ∥DC ,∠DAB =90°,DB ⊥BC ,AH ⊥BD ,垂足为H ,若DC =BC =3,则DH =____ .三、解答题:16.(本小题满分12分)已知函数)6cos(sin )(πωω++=x x x f ,其中R x ∈,ω>0. (1) 当ω=1时,求)3(πf 的值; (2) 当)(x f 的最小正周期为π,求f (x )在区间[0,]4π上取得最大值时x 的值.17.( 本小题满分13分)某企业通过调查问卷(满分50分)的形式对本企业900名员土的工作满意度进行调查, 并随机抽取了其中30名员工(16名女员工,14名男员工)的得分,如下表:(1)根据以上数据,估计该企业得分大于45分的员工人数;(2)现用计算器求得这30名员工的平均得分为40.5分,若规定大于平均得分为‘满意’,否则为“不满意”,请完成下列表格:〔3)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1% 的前提下,认为该企业员工“性别”与“工作是否满意”有关?18.( 本小题满分13分)如图4,在四棱锥P-ABCD 中,底面ABCD 为菱形,PB ⊥平面ABCD.(l )若AC =6,BD =8,PB =3,求三棱锥A 一PBC 的体积;(2)若点E 是DP 的中点,证明:RD ⊥平面ACE .19.( 本小题满分14分)设等差数列}{n a 的公差为d ,n S 是}{n a 中从第12-n 项开始的连续12-n 项的和,即(1)当13,2a d ==时,求4S(2)若1S ,2S ,3S 成等比数列,问:数列}{n S 是否成等比数列?请说明你的理由;(1) 若04151>=d a ,证明:*),14121(981111321N n d S S S S n n ∈+-≤++++ .20.(本小题满分14分)如图5,椭圆E:22221(0)x y a b a b +=>>的离心率为12,F 为右焦点,点A 、B 分别为左、 右顶点,椭圆E 上的点到F 的最短距离为1(l)求椭圆E 的方程;(2)设t ∈R 且t ≠0,过点M(4, t)的直线MA, MB 与椭圆E 分别交于点P ,Q . 求证:点P ,F,Q 共线.20.( 本小题满分14分)已知a 为正常数,点A,B 的坐标分别是)0,(),0,(a a -,直线AM,BM 相交于点M,且它们的斜率之积是21a-. (1) 求懂点M 的轨迹方程,并指出方程所表示的曲线; (2) 当2=a 时,过点)0,1(F 作直线AM l ∥,记l 与(1)中轨迹相交于两点P,Q,动直线AM 与y 轴交与点N,证明AN AM PQ为定值.21.( 本小题满分14分)设f (x )是定义在[a ,b ]上的函数,若存在c (,)a b ∈,使得f (x )在[a ,c ]上单调递减,在[c ,b ]上单调递增,则称f (x )为[a ,b ]上单谷函数,c 为谷点。
2019年深圳市高三年级第一次调研考试数学试题(文科)(20190117)
绝密★启用前 试卷类型:(A )深圳市2019年高三年级第一次调研考试数 学(文科) 2019.2第Ⅰ卷一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|12}A x x =-≤≤,{1,2,3}B =,则A B =2.设22i1iz -=+,则||z = 3.在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α终边过点(2,1)P -,则sin(π2)α-的值为 4.设x ,y 满足约束条件030426x y x y ≤≤⎧⎪≤≤⎨⎪+≥⎩,则3z x y =+的最大值为5.已知)(x f 是定义在R 上的偶函数,在区间(,0]-∞为增函数,且(3)0f =,则不等式(12)0f x ->的解集为6.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的 几何体的三视图,则该几何体的体积为(A ){1} (B ){2}(C ){1,2}(D ){1,2,3}(A(B )2(C(D )3(A ) 45-(B )35-(C )35(D )45(A )7(B )9(C )13(D )15(A )(1,0)-(B )(1,2)-(C )(0,2)(D )(2,)+∞(A )64(B )6872,则该圆锥的外接球表面积为 (A )25π4(B )16π (C )25π (D )32π8.古希腊雅典学派算学家欧道克萨斯提出了“黄金分割”的理论,利用尺规作图可画出已知线段的黄金分割点,具体方法如下:(1)取线段2AB =,过点B 作AB 的垂线,并用圆规在垂线上截取112BC AB ==,连接AC ;(2)以C 为圆心,BC 为半径画弧,交AC 于点D ;(3)以A 为圆心,以AD为半径画弧,交AB 于点E . 点E 即为线段AB 的黄金分割点.若在线段AB 上 随机取一点F ,则使得BE AF AE ≤≤的概率约为2.236≈)(A )0.236 (B )0.382 (C )0.472 (D )0.6189.已知直线π6x =是函数()sin(2)f x x ϕ=+π(||)2ϕ<图象的一条对称轴,为了得到函数()y f x =的图象,可把函数sin 2y x =的图象10.在长方体1111ABCD A BC D -中,2AB =,BC =,1CC =M 为1AA 的中点,则异面直线AC 与1B M 所成角的余弦值为 11.已知1F ,2F 是椭圆12222=+by a x (0a b >>)的左,右焦点,过2F 的直线与椭圆交于(C )80 (D )109(A )向左平行移动π6个单位长度 (B )向右平行移动π6个单位长度 (C )向左平行移动π12个单位长度 (D )向右平行移动π12个单位长度 (A )6(B )23(C )34(D )3第(8)题图EDCP ,Q 两点,若1PF PQ ⊥且112QF PF =,则21F PF ∆与21F QF ∆的面积之比为12.已知函数ln ,0,()1,0,x x x f x x x >⎧=⎨+≤⎩ 若12x x ≠且12()()f x f x =,则12||x x -的最大值为(A )1(B(C )2(D)第Ⅱ卷本卷包括必考题和选考题两部分. 第13~21题为必考题,每个试题考生都必须作答. 第22~23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.曲线1e xy x=-在点()1(1)f ,处的切线的斜率为 . 14.已知平面向量a ,b 满足||2=a ,||4=b,|2|+=a b 则a 与b 的夹角为 . 15.已知1F ,2F 是双曲线的两个焦点,以线段12F F 为直径的圆与双曲线的两条渐近线交于,,,A B C D 四个点,若这四个点与1F ,2F 两点恰好是一个正六边形的顶点,则该双曲线的离心率为 .16.在ABC ∆中,︒=∠150ABC ,D 是线段AC 上的点,︒=∠30DBC ,若ABC ∆的面BD 取到最大值时,=AC .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)记n S 为等差数列{}n a 的前n 项和. 已知14a =,公差0d >,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列1{}nS 前n 项和为n T .(A )2- (B1(C )(D)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y 都在[]9.8, 10.2内的概率;(3)已知该厂产品的维护费用为300元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?19.(本小题满分12分)已知四棱锥P ABCD -的底面ABCD 为平行四边形,PD DC =,AD PC ⊥.(1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=︒,4AD DC ==,求点B 到平面PAC 的距离.设抛物线C :24y x =,直线:l 20x my --=与C 交于A ,B 两点.(1)若AB =,求直线l 的方程;(2)点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N ,求证:以MN 为直径的圆必经过一定点,并求出该定点坐标.21.(本小题满分12分)已知函数()()2e 2xf x ax x =+--, 其中2a >-.(1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值;(2)若函数()f x 为R 上的单调函数,求实数a 的取值范围.请考生在第22、23两题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+-=,sin ,cos 2ααt y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=,直线l 与曲线C 交于A ,B 两个不同的点. (1)求曲线C 的直角坐标方程; (2)若点P 为直线l 与x 轴的交点,求2211PBPA+的取值范围.23.(本小题满分10分)选修4-5:不等式选讲设函数21)(-++=x x x f ,1)(2++-=mx x x g .(1)当4-=m 时,求不等式)()(x g x f <的解集;(2)若不等式)()(x g x f <在12,2--[]上恒成立,求m 的取值范围.深圳市2019年高三年级第一次调研考试 文科数学试题参考答案及评分标准第Ⅰ卷一.选择题(1) C (2) B (3) A (4) C (5) B (6) A (7) C (8) A (9) C(10)B (11)D (12)C12【解析】不妨设21x x <,由12()()f x f x =,要使12||x x -最大,即转化为求()12max x x -, 问题可转化为(如图所示)11(,)A x y 到1(0)y x x =+<距离的最大值问题. 此时需过A 点的切线与1y x =+平行. 当0x >时,()ln 1f x x '=+,令()1f x '=,则11x =,(1,0)A ,21x =- 所以12||x x -的最大值为2.二.填空题:13.e 1+14.60︒ 15.2 16.16【解析】由题意可知 11sin15024ABC S ac ac ∆=︒==ac =.设BD x =,则14BCD ABD S S ax ∆∆+==可得x =,当且仅当a =时x 取到最大值,所以a =2c =,由余弦定理可得b = 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)记n S 为等差数列{}n a 的前n 项和.已知14a =,公差0d >,4a 是2a 与8a 的等比中项.(1)求数列{}n a 的通项公式; (2)求数列1{}nS 前n 项和为n T . 【解析】(1)∵2a ,4a ,8a 成等比数列, ∴2428a a a =,∴2111(3)()(7)a d a d a d +=++, ……………………………………2分 ∴2(43)(4)(47)d d d +=++,解得4d =或0d =, ∵0d >,∴4d =. ………………………………………………………4分 ∴数列{}n a 的通项公式1(1)4()n a a n d n n *=+-=∈N . …………………6分(2)∵21()222n n n a a S n n +==+, …………………………………………8分 ∴211111()2221n S n n n n ==-++, ………………………………………10分 ∴12111......nn T S S S =+++ 111111111()()()(1)21223121n n n ⎡⎤=-+-++-=-⎢⎥++⎣⎦. ……………12分 【命题意图】本题主要考查等差数列的通项公式、前n 项和公式、等比中项、裂项相消求和法等知识与技能,重点考查方程思想,考查数学运算、逻辑推理等数学核心素养.18.(本小题满分12分)工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标Y 进行检测,一共抽取了48件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标Y(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标Y 的平均值(保留两位小数);(2)用分层抽样的方法从上述样本中先抽取6件产品,再从6件产品中随机抽取2件产品,求这2件产品的指标Y 都在[]9.8, 10.2内的概率;(3)已知该厂产品的维护费用为300元/次.工厂现推出一项服务:若消费者在购买该厂产品时每件多加100元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这48件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?【解析】(1) 指标Y 的平均值132=9.6+10+10.410.07666⨯⨯⨯≈.……………2分 (2)由分层抽样法知,先抽取的6件产品中,指标Y 在[]9.8,10.2内的有3件,记为123A A A 、、;指标Y 在(]10.2,10.6内的有2件,记为12B B 、;指标Y 在[)9.4,9.8内的有1件,记为C . …………………3分从6件产品中随机抽取2件产品,共有基本事件15个:()()()121311A A A A A B ,、,、,、()()121A B A C ,、,、()()()()2321222,,,,A A A B A B A C 、、、、()()()31323,,,A B A B A C 、、、 ()()()1212,,,B B B C B C 、、. …………………5分其中,指标Y 都在[]9.8,10.2内的基本事件有3个:()()()121323,A A A A A A ,、,、. …………………6分所以由古典概型可知,2件产品的指标Y 都在[]9.8,10.2内的概率为31155P ==. …………………7分(3)不妨设每件产品的售价为x 元,假设这48件样品每件都不购买该服务,则购买支出为48x 元.其中有16件产品一年内的维护费用为300元/件,有8件产品一年内的维护费用为600元/件,此时平均每件产品的消费费用为()1=4816300+8600=20048x x η⨯+⨯⨯+元; …………………9分 假设为这48件产品每件产品都购买该项服务,则购买支出为()48100x +元,一年内只有8件产品要花费维护,需支出8300=2400⨯元,平均每件产品的消费费用()1=48100+830015048x x ξ⨯+⨯=+⎡⎤⎣⎦元.…………………11分 所以该服务值得消费者购买. …………………12分【命题意图】本题主要考查通过用样本估计总体(平均数)、古典概型、概率决策等知识点,重点体现数学运算、数据分析等数学核心素养.19.(本小题满分12分)已知四棱锥P ABCD -的底面ABCD 为平行四边形,PD DC =,AD PC ⊥.(1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=︒,4AD DC ==,求点B 到平面PAC 的距离.【解析】(1)证明:取PC 中点M ,连接AM ,DM ,……1分PD DC =,且M 为PC 中点,∴DM PC ⊥, ………………………………2分AD PC ⊥,ADDM D =, …………………3分∴PC⊥平面ADM , ………………………………4分AM ⊂平面ADM ,∴PC AM ⊥, ……………………………………5分M 为PC 中点,∴AC PA =. ……………………………………6分(2)过点P 作PH 垂直AD 延长线于点H ,连接CH , ……………………7分 平面APD ⊥平面ABCD ,平面APD平面ABCD AD =,PH ⊂平面APD ,PH ⊥AD ,∴PH ⊥平面ABCD ,……………………………8分CH ⊂平面ABCD ,∴PH ⊥CH , ………………………………9分PD DC =,AD AD =,AC AP =,∴ADP ADC ∆≅∆, ∴120ADC ADP ∠=∠=︒,∴4PD CD AD ===,AC AP ==PH CH ==PC =…………………10分设B h 为点B 到平面PAC 的距离, 由于P ABC B ACP V V --=,可得1133ABC ACP B S PH S h ∆∆⋅=⋅,14422ABC S ∆=⨯⨯⨯=12ACP S ∆=⨯= …………………………………………11分所以B h =.即点B 到平面PAC .…………………………………………12分 【命题意图】本题主要考查了线面垂直的判定定理、线面垂直的定义、面面垂直的性质、等体积法求点到面的距离等知识,重点考查等价转换思想,体现了直观想象、数学运算、逻辑推理等核心素养.20.(本小题满分12分)设抛物线C :24y x =,直线:l 20x my --=与C 交于A ,B 两点.(1)若AB =,求直线l 的方程;(2)点M 为AB 的中点,过点M 作直线MN 与y 轴垂直,垂足为N ,求证:以MN 为直径的圆必经过一定点,并求出该定点坐标.【解析】(1)由22,4,x my y x =+⎧⎨=⎩消去x 并整理,得2480y my --=,……………1分显然216320m ∆=+>,设),(11y x A ,),(22y x B ,由韦达定理可得,124y y m +=,821-=⋅y y ,…………………………………3分12AB y y =-=AB ∴== ………………………………………4分 24m ∴=-(舍去)或21m =,1m ∴=±,∴直线方程为02=--y x 或02=-+y x . ………………………………5分(2)设AB 的中点M 的坐标为),(M M y x ,则1222M y y y m +==, 又21212()444x x m y y m +=++=+,212222M x x x m +∴==+, ……………………………………………………6分 2(22,2)M m m ∴+,由题意可得(0,2)N m , …………………………………7分设以MN 为直径的圆经过点),(00y x P则200(22,2)PM m x m y =+--,00(,2)PN x m y =--,…………………8分 由题意可得,0=⋅,即22200000(42)420x m y m x y x --++-=, ………………………………9分由题意可知00220004204020x y x y x ⎧-=⎪=⎨⎪+-=⎩,,, ……………………………………………10分 20=∴x ,00=y , …………………………………………………11分∴定点)0,2(即为所求. ………………………………………………………12分【命题意图】本题主要考查抛物线方程、直线与抛物线位置关系、弦长公式、定点问题等知识,重点考查数形结合思想,体现了数学运算、数学建模、逻辑推理等数学核心素养. 21.(本小题满分12分)已知函数()()2e 2xf x ax x =+--, 其中2a >-.(1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值;(2)若函数()f x 为R 上的单调函数,求实数a 的取值范围.【解析】(1)当0a =时,()=2e 2x f x x --,()=2e 1x f x '-.………………1分 由()0f x '>解得ln 2x >-,由()0f x '<解得ln 2x <-.故函数()f x 在区间[]1,ln 2--上单减,在区间[]ln2,0-上单增. …………2分 ∴ ()min ()ln 2ln 21f x f =-=-. ……………………3分 ∵2(1)=10ef --<,(0)=0f , ∴ max ()(0)0f x f ==. ……………………………………4分 (2)法一: 令()()()2e 1xg x f x ax a '==++-,则()()22e xg x ax a '=++.(i )当=0a 时,由(1)知,与题意不符; …………………5分 (ii )当0a >时,由2()0 2g x x a ⎛⎫'>⇒>-+⎪⎝⎭,2()0 2g x x a ⎛⎫'<⇒<-+ ⎪⎝⎭. ∴ 22min 2()=g 2=e 10ag x a a --⎛⎫----< ⎪⎝⎭,∵ (0)=+10g a >,∴ 此时函数()f x '存在异号零点,与题意不符. ……………………6分 (iii )当20a -<<时,由()0 g x '>,可得2 2x a ⎛⎫<-+ ⎪⎝⎭, 由()0 g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭. ∴()g x 在2,2a ⎛⎫-∞--⎪⎝⎭上单调递增,在22+a ⎛⎫--∞ ⎪⎝⎭,上单调递减.故22max 2()=g 2=e 1a g x a a --⎛⎫---- ⎪⎝⎭. ……………………7分由题意知,22e 10aa ----≤恒成立. ……………………8分令22t a --=,则上述不等式等价于e 12t t≤+,其中1t >-.……………9分 易证,当0t >时,e 112ttt >+>+, 又由(1)的结论知,当(]10t ∈-,时,e 12tt≤+成立. …………………11分 由2120a-<--≤,解得21a -<≤-. 综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减. …12分 (2)法二:因为2(1)10ef '-=-<,所以函数()f x 不可能在R 上单调递增.…6分 所以,若函数()f x 为R 上单调函数,则必是单调递减函数,即()0f x '≤恒成立. 由(0)10f a '=+≤可得1a ≤-,故()0f x '≤恒成立的必要条件为21a -<≤-. ……………………………7分令()()()2e 1x g x f x ax a '==++-,则()()22e xg x ax a '=++.当21a -<≤-时,由()0 g x '>,可得2 2x a ⎛⎫<-+ ⎪⎝⎭, 由()0 g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭, ∴()g x 在2,2a ⎛⎫-∞--⎪⎝⎭上单调递增,在22+a ⎛⎫--∞ ⎪⎝⎭,上单调递减.故22max 2()=g 2=e 1a g x a a --⎛⎫---- ⎪⎝⎭. ………………………………………9分22()=e1ah a a ----令,下证:当21a -<≤-时,22()=e10ah a a ----≤.即证221eaa--≤-.令22t a --=,其中(]1,0t ∈-,则112t a -=+.则原式等价于证明:当(]1,0t ∈-时,e 12tt≤+. ……………………11分 由(1)的结论知,显然成立.综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减. ………12分 【命题意图】本题主要考查利用导数研究函数的单调性和最值问题,以及不等式恒成立问题,重点考查分类讨论、化归转化等数学思想,体现了数学运算、逻辑推理等核心素养.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧=+-=,sin ,cos 2ααt y t x (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=,直线l 与曲线C 交于A ,B 两个不同的点.(1)求曲线C 的直角坐标方程; (2)若点P 为直线l 与x 轴的交点,求2211PBPA+的取值范围.【解析】(1)∵ θρcos 2= ∴ θρρcos 22=, …………………………………1分 ∵222y x +=ρ,x =θρcos , …………………………………3分∴ 曲线C 的直角坐标方程为0222=-+x y x . …………………………………5分(2)将⎩⎨⎧=+-=,sin ,cos 2ααt y t x 代入曲线C 的直角坐标方程,可得08cos 62=+-t t α, …………………………………6分由题意知236cos 320α∆->=,故98cos 2>α,又1cos 2≤α, ⎥⎦⎤⎝⎛∈∴1,98cos 2α, …………………………………7分设这个方程的两个实数根分别为1t ,2t ,则αcos 621=+t t ,821=⋅t t , …………………………………8分 1t ∴与2t 同号,由参数t 的几何意义可得:αcos 62121=+=+=+t t t t PB PA ,821=⋅=⋅t t PB PA ,22222()211PA PB PA PBPAPBPA PB+-⋅∴+=⋅221212212()29cos 4()16t t t t t t α+-⋅-==⋅, ……………………………………9分⎥⎦⎤⎝⎛∈1,98cos 2α ,⎥⎦⎤ ⎝⎛∈-∴165,41164cos 92α,2211PBPA+∴的取值范围为⎥⎦⎤⎝⎛165,41. ………………………………10分 【命题意图】本题主要考查极坐标方程与直角坐标方程互化、直线的参数方程、直线与圆的位置关系、函数的最值问题等知识点,重点考查数形结合思想,体现了数学运算、逻辑推理等核心素养.23.(本小题满分10分)选修4-5:不等式选讲设函数21)(-++=x x x f ,1)(2++-=mx x x g .(1)当4-=m 时,求不等式)()(x g x f <的解集;(2)若不等式)()(x g x f <在⎥⎦⎤⎢⎣⎡--21,2上恒成立,求m 的取值范围. 【解析】(1)21)(-++=x x x f ,⎪⎩⎪⎨⎧≥-<<--≤+-=∴,2,12,21,3,1,12)(x x x x x x f ……………………………………………………1分当4-=m 时,14)(2+--=x x x g ,① 当1-≤x 时,原不等式等价于022<+x x ,解得,02<<-x ,12-≤<-∴x . ………………………………………………2分② 当21<<-x 时,原不等式等价于0242<++x x , 解得,2222+-<<--x ,221+-<<-∴x . ……………………………………………………3分③ 当2≥x 时,11)2()(-=≤g x g ,而3)2()(=≥f x f ,∴不等式)()(x g x f <解集为空集. ………………………………………………4分综上所述,不等式)()(x g x f <的解集为),(222+--. ……………………5分 (2)① 当12-≤≤-x 时,)()(x g x f <恒成立等价于x x mx 22->,又0<x , 2-<∴x m ,故4-<m ; …………………………………………………7分② 当211-≤<-x 时,)()(x g x f <恒成立等价于3)(>x g 恒成立,即3)(min >x g , 只需⎪⎩⎪⎨⎧>->-3)21(3)1(g g 即可,由此可得⎪⎩⎪⎨⎧-<-<,29,3m m29-<∴m , …………………………………………9分 综上所述,9,2m ⎛⎫∈-∞-⎪⎝⎭. ……………………………………………………10分 【命题意图】本题主要考查绝对值不等式以及一元二次不等式的解法、分段函数等知识点,重点考查分类讨论思想,体现了数学运算、逻辑推理等核心素养.命题组长:李志敏(深圳市教科院) 副组长:董正林(深圳中学), 命题组成员:金宁(深圳市第三高级中学中学), 吴振文(深圳市翠园中学), 陈林(深圳大学附中)。
深圳市宝安区2019届高三9月调研考试(文数)
深圳市宝安区2019届高三9月调研考试数学(文科)本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数52i -的共轭复数是( ) A .2i + B .2i -+ C .2i -- D .2i -2.已知集合2{|1}M x x ==,{|1}N x ax ==,若N M ⊆,则实数a 的取值集合为( )A .{1}B .{1,1}-C .{1,0}D .{1,1,0}- 3. 定义某种运算:S m n ⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=( )A.3B.1C.4D. 04.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( ) A .110B .16C .15D .565.已知函数2lg(54)y x x =++的零点是1tan x α=和2tan x β=,则tan()αβ+=( ) A .53B .53-C .52D .52-6.若实数a ,b 满足1a b >>,log (log )a a m b =,2(log )a n b =,2log a l b =,则m ,n ,l 的大小关系为( )A .m l n >>B .l n m >>C .n l m >>D .l m n >> 7. 在ABC ∆中,“tan tan 1B C >”是“ABC ∆为锐角三角形”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既不充分也不必要条件 8.为美化环境,从黄、白、红、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率为( )A .12 B .13 C .56 D .239. 若实数x ,y 满足||||2x y +≥,则222M x y x =+-的最小值为( )A .2-B .0C .21- D .12- 10. 如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116 B. 32 C. 2516D. 3 11.函数()2sin()(0)3f x x πωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为( )A .[2,4]ππB .9[2,)2ππ C .1325[,)66ππ D .25[2,)6ππ 12. 已知,,A F P 分别为双曲线22221(0,0)x y a b a b-=>> 的左顶点、右焦点以及右支上的动点,若2PFA PAF ∠=∠恒成立,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 13+二、填空题:本题共4小题,每小题5分,共20分. 13.已知2)4πtan(-=+α,则=-αα2cos 2sin 114.过双曲线2222:1(,0)x y E a b a b-=>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是________.15.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为 直角三角形的四面体).在如图所示的堑堵111C B A ABC - 中,4,3,51====BC AB AC AA ,则阳马111A ABB C -的外接球的表面积是16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是三、解答题:共70分。
宝安区2019--学第一学期调研考试高三数学(文科)参考答案
宝安区 2021-2021 学年第一学期调研考试高三数学〔文科〕参考答案一、:本大共12 小,每小 5 分,共 60 分。
在每小出的四个中,只有一是符合目要求的.1~5 BABAD 6~10 CDACB 11~12 CD局部目解如下:7.【解答】解:大灯下 2 个小灯x个,大灯下 4 个小灯有y个,根据意可得x y360,解得 x120 , y240,2 x 4 y 1200灯球的数x y360 个,故个灯球是大灯下 4 个小灯的概率240 2 ,3603故: B .8.【解答】解:班学生成的平均分是85,79 78 8080x8592 96 857 ,即 x 5 .乙班学生成的中位数是83,假设y, 1,中位数81,不成立.假设 y 1 ,中位数80 y 83 ,解得 y 3 .x y 5 3 8 ,故:A.9【. 解答】解:由向量加法的三角形法及三角形重心的性可得,AG 2AD1( AB AC ) 33A120 , AB AC 2 ,根据向量的数量的定可得,AB AC| AB || AC | cos1202| AB |x,| AC |y| A B | | A C |4即 xy4| AG |1| AB AC |1( AB AC )212AC2 2 AB AC1x2y24AB3333x2y2⋯2xy8 〔当且当 x y 取等号〕| AG |⋯2即 | AG | 的最小233故: C .10.【解答】解:根据意,假设1*23, 2*34,有a2b2c3,形可得 b22c, a16c .2a3b6c4又由 x * m ax bm cmx x 对于任意实数x 恒成立,那么有acm 1, m 为非零实数,那么 b 0,bm0又由 b22c,那么有 c1.又由 a cm( 1 6c) cm 5 m 1 .解可得: m 4 .应选: B .x x1x1x= 1,即 x 11.【解析】:因为 e >0 ,所以 y e e x a 2 e e x a 2 a ,当且仅当e=0 时取等号.故所求函数的值域A=[2 - a,+∞).又 A? [0,+∞),所以 2- a≥0,即 a≤2.12.【答案】: (1)(4)【解析】由条件可证 BC∥ DF ,那么 BC∥平面 PDF ,从而 (1)正确;因为DF 与 AE 相交,所以 (2) 错误;取DF 中点 M,那么 PM⊥ DF ,且可证 PM 与 AE 不垂直,所以(3)错误;而DM ⊥ PM, DM ⊥AM.二、填空题:本大题共 4 小题每题5分,共20分.π13.2x- y-2= 014.(x- 1)2+ y2= 415. 316.5,6局部详解如下:13.【解析】:因为y′= 1+sinx,所以k切= 2,所以所求切线方程为y2( x) ,即 2x22π-y-2= 0.14.【答案】: ( x- 1) 2+y2= 4【解析】:首先由线性约束条件作出可行域,面积最大的圆 C 即为可行域三角形的内切圆(如图 ) ,由对称性可知,圆 C 的圆心在x 轴上,设半径为 r,那么圆心 C(3- r,0),且它与直线x-3y+ 3= 0 相切,所以|3-r+3|1+ 3=r ,解得 r= 2,所以面积最大的圆 C 的标准方程为 (x- 1)2+y2= 4.三、解答题:共 70 分.解容许写出文字说明、证明过程或演算步骤.17.解:〔 1〕如图,在ECD 中, S ECD 1CE CD sin DCE15 3 sin DCE 3 6 ,22所以 sin DCE2 6 ,〔 2 分〕5因为 0DCE90,所以 cos DCE1( 2 6 )2 1 ,〔 4 分〕55由余弦定理得:DE 2CE 2CD 2 2 CE CD cos DCE259 2 53128 ,5解得: DE27〔 7 分〕〔2〕因为ACB90,所以 sin ACD sin(90O DCE )cos DCE 1 ,〔 9 分〕5在 ADC ,由正弦定理得sin AD CD,即35,所以 sin A1〔 12 分〕ACD sin A1sin A3518.【解答】证明:〔1〕取PD的中点E,连结AE,EM,M 是棱PC的中点,EM / /CD ,且 EM 1CD ,2AB / /CD ,AB 2 ,CD 4 ,EM/ / AB ,EM AB ,四边形 ABME 是平行四边形,BM / / AE ,BM平面 PAD , AE平面 PAD ,BM/ / 平面PAD.解:〔 2〕取AD中点F,连结BF,那么BF AD ,又 PD底面 ABCD ,PD BF ,PD AD D ,BF平面 PAD .由〔 1〕知 BM / / 平面PAD,M点到平面PAD的距离等于B点到平面PAD的距离,由 AB AD2,DAB60,得 BF 3 ,M 点到平面 PAD 的距离为 3 .19.解:〔 1〕由y22 px,消 x 可得y22py2p0 ,y x1y1y2 2 p , y1 y2 2 p ,弦长为 1 12 ( y 1 y)2 4y 1 y 22 4 p 28p 8 ,解得 p2 或 p4 〔舍去〕, p2 ,证明:〔 2〕由〔 1〕可得 y 2 4x ,设 M ( 1y 02 , y 0 ) ,4直线 OM 的方程 y4 x ,y 0当 x1 时, y H4 ,y 0代入抛物线方程y 24x ,可得 x N42 , N ( 42 , 4 ) ,y 0y 0 y 0y 08y 04 y 0直线 MN 的斜率 k,y 0216 y 02442y 0直线 MN 的方程为 yy 04 y 0 (x 1 y 02 ) ,整理可得 y 4 y 0 4( x 1) ,y 02 44 y 02故直线 MN 过点 (1,0) .20.解:〔 1〕对 y a x b , (a 0,b 0) ,两边取对数得 lnylnablnx ,令 u ilnx i , v ilny i ,得 vlna b u ,由题目中的数据,计算u, v,6 66(u i v i ) 6(lnx i lny i ) 75.3 ,且i 1i 162 6 (lnx i )2u i101.4 ;i 1i 16i 1(u i v i ) 6u v61 ,那么 b62622u6 x 2i 1 ilnav lnu11 ,2得出 a e ,所以 y 关于 x 的回归方程是 y e x ;〔2〕由题意知这种产品的年利润z 的预测值为z2 yex e 2 xe x e( x 14 2x )e( x 7 2) 27e ,14141414所以当 x 7 2 ,即 x 98 时, z 取得最大值,即当 2021 年的年宣传费用是 98 万元时,年利润有最大值.21.解:〔 1〕 f (x)1x a〔1 分〕x曲线 y f ( x) 在 x 1 处的切线为 y f 〔 1〕 f 〔 1〕 (x 1) 〔 2 分〕即 y (1a)(2 a)( x 1) , y(2a) x 3 当 x 0 时, y3 ,22 2即切线过定点3〔 3 分〕(0,)2〔2〕 ○1当a,2 时, f (x)1xa 厖2a 0〔 4 分〕xf ( x) 单调递增,根据对数函数与幂函数性质, 当 x 是充分小的正数时, f (x) 0 ,当 x 是充分大的正数时,f ( x) 0 ,所以, f ( x) 有且仅有一个零点〔 6 分〕24, x 22○2 当 a 2 时,解 f ( x) 1 x a 0 得, x 1 aa aa 4x22x111,222 , )(0, x )x(xx )x ( xf ( x) 0f ( x)极大值极小值.......〔8 分〕f ( x 1 ) lnaa 24 1 ( aa 24 ) 2 a 2a a 24lnaa 2 4 1 (aa 2 4) 2 1 ,222 22 8其中aa 2 421 ,所以 f ( x 1 ) 0 〔 9 分〕2aa24所以,任意 x (0 , x 2 ] , f ( x) 0 , f ( x) 在区间 (0 , x 2 ] 无零点 〔 10 分〕取 x2a1 ,那么 x e , f ( x )lnx12a)0 ,x (x2 0所以, f (x) 在区间 (x 2 , x 0 ) 有零点〔 11 分〕由 f ( x) 的单调性知,f (x) 在区间 ( x 2 , ) 有且仅有一个零点综上所述,函数 f ( x) 有且仅有一个零点〔 12 分〕22. 解:〔 1〕曲线 C 的标准方程为x 2y 2 1 ,点 P 的坐标为 ( 2,0) ,12 4x22 tx2y2将直线 l 的参数方程 .2〔 t 为参数〕与曲线 C 的标准方程2121 联立,y4t2得 t 22t 4 0 ,那么PA PBt 1 t 2 4 .〔 2〕由曲线 C 的标准方程x 2y 2 1 ,可设曲线 C 上的动点的 A(23cos ,2 sin ) ,那么以 A 为124顶点的内接矩形周长为 4(2 3cos2sin ) 16sin() , 0 .3 2因此该内接矩形周长的最大值为16,当且仅当6 时等号成立 .2 x, x1,23. 解:〔 1〕当 a 1 时, f ( x)x1 x12, 1 x 1,2x, x 1,当 x 1,x 2x2 x, x 1 .当 1x 1,x 2x 2, x 1或x 2 ,舍去 .当 x 1,x 2x 2 x, x 3 .综上,原不等式的解集为xx| 1,或 x3 .(a1)x 1 a, x1 ,a〔 2〕 f ( x)ax1x a(a 1)x 1 a,1xa,a(a 1)x 1 a, x a ,当 0 a 1 时, f (x)min f (a)a 2 1 2 , a 1; 当 a 1时, f ( x)min 1 )a1 2 , a1.f ( aa 综上, a [1, ) .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年第一学期深圳市宝安区高三调研测试卷数学(文科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合},2,1,0,1,2{},1|1||{--=>+=B x x A 则=B A C R )( ( ).A. }2{-B. }1,2{-C. }1,0{D. }0,1,2{-- 2.下列函数中,既是偶函数又在区间),0(+∞上是单调递减函数的是( ).A. x x f 1)(=B. 1)(2+-=x x fC. |21|)(x x f = D. ||lg )(x x f =3.设i 是虚数单位,若复数iai --310是实数,则a 的值为( ).A.3-B. 1-C. 3D. 14.等差数列}{n a 中,,26,2491321=-=++a a a a 则此数列}{n a 前20项和等于( ). A.220 B. 200 C. 180 D. 1605.已知向量),,2(),,1(m m =-=若1=⋅,则实数=m ( ).A. ,1或1-B. 1-C. 0D. 2-6.若点(,)x y 位于曲线2||y x =与2y =所围成的封闭区域,则2x y -的最小值为( ). A.4- B.6- C. 0 D. 17.将函数)32cos(2π+=x y 的图像向右平移)0(>m m 个单位长度后,所得到的图像关于y 轴对称,则y x -2的最小值为( ).A. 2πB. 3πC. 6π D. 12π8.椭圆)0(122>=+m my x 的离心率大于21的充分必要条件是( ). A. 41<m B. 3443<<m C. 43>mD. 340<<m ,或43>m9.阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则 输出的结果为=i ( ).A. 3B. 4C. 5D. 610.给出下列关于互不相同的直线n l m ,,和平面βα,的四个命题: ①若,,A l m =⊂αα 点m A ∉,则l 与m 不共面;②若l m ,是异面直线,αα//,//m l ,且m n l m ⊥⊥,,则α⊥n ;③若βαβα//,//,//m l ,则m l //;④若,//,//,,,ββααm l A m l m l =⊂⊂ ,则βα//. 其中为假命题的是( ).A. ①B. ②C.④D. ③二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分 (一)必做题(9—13题)11.右图中的三个直角三角形是一个体积为20cm 3的几何体的三视图, 则h=______cm.12.据统计,高三年级男生人数占该年级学生人数60%.男、女生数学平均分数分别为115,120,则这次考试该年级学生平均 分数为_________.13.设常数0>a ,若192+≥+a xa x 对一切正实数x 成立,则 a 的取值范围为_________.(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,在Rt ABC 中, 90,30,C A ∠=∠=圆O 经过B 、C ,且与AB 、AC分别相交于C 、D 。
若AE=EC=则圆O 的半径r=________. 15.(坐标系与参数方程选做题)在平面直角坐标系中, 直线l 的参数方程为3,3x t y t=+⎧⎨=-⎩(参数)t ∈R ,圆的参数方程为2cos ,(2sin 2x y θθ=⎧⎨=+⎩(参数[0,2π)),θ∈则圆心到直线l 的距离为为_______.三、解答题:本题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.本小题12分)已知函数()2sin cos cos 2,.f x x x x x =+∈R(1)当x 为何值时,()f x 取得最大值,并求出其最大值; (2)若0,()483f ππθθ<<-=求sin(2)6πθ-的值.17.(本小题12分)随着工业化的发展,环境污染愈来愈严重.某市环保部门随机抽取60名市民对本市空气质量满意度(1)(2)用分层抽样的方法在分数[60,80)的市民中抽取容量为6的样本,将该样本看成一个总体,从中任取1人在分数段[70,80)的概率. 18. (本小题14分)在如图的多面体中,EF ⊥平面AEB,AE ⊥EB,AD//EF, EF//BC,BC=2AD=4,EF=3,AE=BE=2,G 是BC 的中点. (1)求证:AB//平面DEG ; (2)求证:BD ⊥EG ;(3)求三棱锥A-BED 的体积.侧视图俯视图正视图cm)A DFEED CB A O•19.(本小题14分)设数列{}n a 的前n 项和为n S ,且1122n n S -=-, (1)求数列{}n a 的通项公式; (2)设21222log log log ,n n T a a a =+++求证:121112(,2)nn n T T T +++>-∈≥*N 20. (本小题14分)已知点(0,1),F 直线:1,l y P =-为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅.(1)求动点P 的轨迹方程; (2),A B 是轨迹M 上异于坐标原点O 的不同两点,轨迹M 在点,A B 处的切线分别为12,l l ,且12l l ⊥, 12,l l 相交于点D ,求点D 的纵坐标.21.(本小题14分)已知函数21()(21)2ln 2f x ax a x x =-++. (1)若曲线()y f x =在1x =和4x =处的切线相互平行,求a 的值; (2)试讨论()y f x =的单调性;(3)设2()2,g x x x =-对任意的1(0,2]x ∈,均存在2(0,2]x ∈,使得12()(),f x g x <试求实数a 的取值范围.11、4 12、117分13、[,+)5∞141516解:(2)由()83fπθ-=-)+]=843ππθ,化简得1sin2=3θ又由04πθ<<得,22πθ<<,故3222sin12cos2=-=θθsin(2)6πθ-=62236sin2cos6cos2sin-=-πθπθ(12分)17、解:(1)x=1-0.1-0.15-0.15-0.25-0.05=0.3z=60x=18y=600.25=15⨯(2)∵[60,70)共9人,[70,80)共18人.∴分层所抽取的6人中[60,70)的2人,[70,80)的4人,分别编号a,b,1,2,3,4 设事件A为“从中任取2人,至多有1人在分数段[70,80)”。
∵从6人中任取两人的基本事件有15种:(ab)(a1)(a2)(a3)(a4)(b1)(b2)(b3)(b4)(12)(13)(14)(23)(24)(34)至多有1人在分数段[70,80)的基本事件有9种:(ab)(a1)(a2)(a3)(a4)(b1)(b2)(b3)(b4)∴53159)(==Ap18、(Ⅰ)证明:∵AD∥EF,EF∥BC,∴AD∥BC.又∵BC=2AD,G是BC的中点,∴AD//BG,∴四边形ADGB是平行四边形,∴AB.(4分)∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG.(Ⅱ)证明:∵EF⊥平面AEB,AE⊂平面AEB,∴EF⊥AE,又AE⊥EB,EB∩EF=E,EB,EF⊂平面BCFE,∴AE⊥平面BCFE.过D作DH∥AE交EF于H,则DH⊥平面BCFE.∵EG⊂平面BCFE,∴DH⊥EG.∵AD∥EF,DH∥AE,∴四边形AEHD平行四边形,∴EH=AD=2,∴EH=BG=2,又EH∥BG,EH⊥BE,∴四边形BGHE为正方形,∴BH⊥EG,又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD.A DFEB G C∵BD ⊂平面BHD ,∴BD ⊥EG .(10分)(3)∵EF ⊥平面AEB ,EF//AD,∴AD ⊥平面AEB ,故三棱锥A-BED 的高为AD∵AE EB ⊥,∴S △AEB =EB AE *21=22221=⨯⨯ ∴BED A V -=*AD 31 S △AEB =342231=⨯⨯(14分)【19】、解:解:(1)当1=n 时,111==S a .…………2分当2≥n 时,121121)212()212(----=---=-=n n n n n n S S a ,此式对1=n 也成立.121-=∴n n a )(*N n ∈.…………5分(2)证明:设2log n n b a =,则12log 21n n b n -==-.…………………………………(7分)所以{}n b 是首项为0,公差为1-的等差数列.(1)(1)2n n n T -=-=(1)-2n n n T -= …………………………(10分)23111222(n N ,n 2)1223(n 1)n 11111112()()()21212231n T T T n n n *⎛⎫∴++=-++∈≥ ⎪⋅⋅-⋅⎝⎭⎡⎤⎛⎫=--+-++-=-->- ⎪⎢⎥-⎣⎦⎝⎭【20】解:(1)解:设(),P x y ,则(),1Q x -,∵QP QF FP FQ ⋅=⋅,即()()()()0,1,2,1,2y x x y x +⋅-=-⋅-. 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹M 的方程24x y =. ……………4分(2) 解法一:设点A 、B 的坐标分别为()11,x y 、()22,x y ,∵ 1l 、2l 分别是抛物线C 在点A 、B 处的切线, ∴直线1l 的斜率1'112x x x k y ===,直线2l 的斜率2'222x x x k y ===. …………6分 ∵ 12l l ⊥,∴ 121k k =-, 得124x x =-. ① …………8分 ∵A 、B 是抛物线C 上的点,∴ 221212,.44x x y y == ………10分 ∴ 直线1l 的方程为()211142x x y x x -=-,直线2l 的方程为()222242x xy x x -=-. …………12分 由()()21112222,42,42x x y x x x x y x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩ 解得12,22 1.2x x x y +⎧=⎪⎪⎨⎪=-=-⎪⎩ ∴点D 的纵坐标为1-. ………… 14分【21】解:函数f (x )定义域为(0,)+∞(1)∵函数21f (x)(2a 1)x 2lnx (a R)2ax =-++∈2(x)(2a 1)(x 0)f ax x'∴=-++>依题意,f (1)=f (4)'',即a-(2a+1)+2=14-(2a+1)+2a ,解得1=2a (4分)(9分)(3) 由已知,在(0,2]上有f (x )max <g (x )max . 由已知,g (x )max =0,由(2)可知,①当a ≤12时,f (x )在(0,2]上单调递增,故f (x )max =f (2)=2a -2(2a +1)+2ln2 =-2a -2+2ln2,∴-2a -2+2ln2<0,解得a >ln2-1,ln2-1<0,故ln2-1<a ≤12.②当a >12时,f (x )在⎝⎛0,1a ]上单调递增,在]上单调递减, 故f (x )max =f ⎝⎛⎭⎫1a =-2-12a-2ln a . 由a >12可知ln a >ln 12>ln 1e=-1,2ln a >-2,-2ln a <2,∴-2-2l n a <0,即f (x )max <0,符合题意。