16.4分式的乘除法
《分式的乘除》实用ppt人教版1

两个分式相乘,把分子 相乘的积作为积的分子,把 分母相乘的积作为积的分 母;
结果通常要化成最简分式 或整式.
两个分式相除,把除式的分子和 分母颠倒位置后再与被除式相乘.
为了便于记忆,通俗地将除法法 则记为“除以一个数等于乘以这个 数的倒数”.
结果通常要化成最简分式或整式.
随堂练习
开启
b6(a b)
8a(a b)2
《分式的乘除》实用ppt人教版1
《分式的乘除》实用ppt人教版1
( x 2 y)2 ( x y)3 2 (3)( x 2 y)1 ( x y)2 2
( x 2 y)2 ( x y)3 2 • ( x 2 y)1( x y)2 2
把负整数指数写成 正整数指数的形式
( x 2 y)4 ( x y)6 • ( x 2 y)2 ( x y)4
积的乘方
《分式的乘除》实用ppt人教版1
《分式的乘除》实用ppt人教版1
( x 2 y)4 ( x y)6 • ( x 2 y)2 ( x y)4
( x 2 y)4(2) ( x y)64
《分式的乘除》实用ppt人教版1
已知球的体积公式为
V 4 R3(其中R为球的半径), 3
那么:
《分式的乘除》实用ppt人教版1
《分式的乘除》实用ppt人教版1
(1)西瓜瓤与西瓜的体积各是多少?
解:西瓜瓤的体积V1
4Rd3
3
整个西瓜的体积V4R3 3
(2)西瓜瓤与西瓜的体积的比是多少?
解:西瓜瓤与整西瓜的体积比是
VV1 1R d3
( x 2 y)2 ( x y)2
同底数幂相乘, 底数不变指数
(x 2 y)2 (x y)2
分式的乘除法掌握分式的乘除运算法则

分式的乘除法掌握分式的乘除运算法则分式是数学中的一种表示形式,它由分子和分母两部分组成。
分式的乘除法是对分式进行乘法和除法运算的方法。
正确掌握分式的乘除运算法则对于解决复杂的数学问题至关重要。
本文将介绍分式的乘除法,详细讲解分式的乘除运算法则。
一、分式乘法分式乘法是指两个分式相乘的运算。
当两个分式相乘时,我们将它们的分子相乘,分母相乘,然后将结果化简为最简分式。
具体操作步骤如下:1. 将两个分式相乘,将分子相乘得到新分子,将分母相乘得到新分母;2. 化简新分子和新分母,使其互质,得到最简分式。
例如,计算分式1/2和3/4的乘积。
解:1/2 * 3/4 = 1 * 3 / 2 * 4 = 3/8所以,1/2 * 3/4 = 3/8。
二、分式除法分式除法是指将一个分式除以另一个分式的运算。
当两个分式相除时,我们将被除数的分子乘以除数的分母,被除数的分母乘以除数的分子,然后将结果化简为最简分式。
具体操作步骤如下:1. 将被除数的分子乘以除数的分母,得到新分子;2. 将被除数的分母乘以除数的分子,得到新分母;3. 化简新分子和新分母,使其互质,得到最简分式。
例如,计算分式2/3除以4/5的结果。
解:2/3 ÷ 4/5 = 2/3 * 5/4 = 2 * 5 / 3 * 4 = 10/12化简得到最简分式:10/12 = 5/6所以,2/3 ÷ 4/5 = 5/6。
三、分式的乘除混合运算在实际应用中,我们经常会遇到分式的乘除混合运算。
在进行分式的乘除混合运算时,我们需要先进行分式的乘法,再进行分式的除法。
具体操作步骤如下:1. 先按照乘法法则计算所有的乘法运算;2. 再按照除法法则计算所有的除法运算;3. 若有多个乘法或除法运算,则按照从左到右的顺序进行计算。
例如,计算分式2/3 * 4/5 ÷ 1/2的结果。
解:2/3 * 4/5 ÷ 1/2 = (2/3 * 4/5) ÷ 1/2 = (2 * 4 / 3 * 5) ÷ 1/2 = 8/15 * 2/1 = 8/15 * 2 = 16/15所以,2/3 * 4/5 ÷ 1/2 = 16/15。
《分式的乘除法》说课稿(合集5篇)

《分式的乘除法》说课稿(合集5篇)第一篇:《分式的乘除法》说课稿下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。
下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。
一、说教材1、教材内容:我认为可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。
分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标知识目标:(1)、理解分式的乘除运算法则(2)、会进行简单的分式的乘除法运算能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)、能解决一些与分式有关的简单的实际问题。
情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。
新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。
启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
分式的乘除法

a 1 a 1 2 2 a 4a 4 a 4
2
化除法为乘法
a 1 a 4 2 解: 原式 2 a 4a 4 a 1
2
a 1 (a 2)(a 2) 2 (a 2) (a 1)(a 1)
a2 (a 2)(a 1)
分数的乘除法法则:
两个分数相乘,把分子相乘的积 做为积的分子,把分母相乘的积做为 积的分母; 两个分数相除,除以一个数等于 乘以它的倒数。
分式的乘除法运算法则: 两个分式相乘,把分子相乘的积做为积 的分子,把分母相乘的积做为积的分母;
与被除式相乘。
例1、计算:
2 2 2 2 2 2
例2、计算:
x 2 x 9 2 x3 x 4
2
x 2 x 9 2 解: x3 x 4
2
分子、分母是多项 式时,先将分子、 分母分别分解因式, 再约分。
x 2 ( x 3)(x 3) x 3 ( x 2)(x 2) x3 . x2
a x ay 2 (1 ) 2 by b x
2 2
2
例题讲解与练习
a xy a yz (2 ) 2 2 2 2 b z b x
2 2
2
解:
a x ay a a x ay (1) 2 2 3 2 2 by b x by b x b
2 2 2 2
3
a xy b x a xy a yz a xy b x 2 2 2 ( 2) 2 2 2 2 2 2 2 b z b x b z a yz b z a yz 3 x 3 z
分式的分子和分 母是多项式,先 要对分子和分母 进行因式分解
约分化为最 简分式
分式的乘除运算

分式的乘除运算在数学中,分式是一种特殊的数学表达式,它由分子和分母组成,中间用一条水平线分隔。
分式的乘除运算是指对分式进行乘法和除法的运算。
本文将详细介绍分式的乘除运算规则以及相关的解题方法。
一、分式的乘法运算分式的乘法运算可以通过分子相乘、分母相乘的方式进行。
具体步骤如下:步骤1:将两个分式的分子和分母分别相乘。
例如,对于分式a/b和c/d的乘法运算,乘积可以表示为:(a*c)/(b*d)。
步骤2:对乘积进行约分。
如果乘积的分子和分母有公因数,可以进行约分。
约分时,需要找到分子和分母的最大公因数,并将分子和分母分别除以最大公因数。
二、分式的除法运算分式的除法运算可以通过转化为乘法来进行。
具体步骤如下:步骤1:将除法转化为乘法。
将除法运算转化为乘法运算的方式是,将被除数乘以除数的倒数。
即,a/b ÷ c/d 可以转化为 a/b * d/c。
步骤2:按照乘法运算的规则进行计算。
按照分式的乘法运算规则,将分子和分母相乘,并进行约分。
三、分式乘除运算的综合应用在实际的问题中,分式乘除运算常常与整数运算相结合,需要注意分式与整数的运算顺序。
一般来说,先进行分式的乘除运算,然后再进行加减运算。
例如,计算表达式:2/3 * 4/5 ÷ 1/2。
按照分式乘除运算的规则,先进行乘法运算,然后进行除法运算。
2/3 * 4/5 = 8/15。
8/15 ÷ 1/2 = 8/15 * 2/1 = 16/15。
四、乘除运算的注意事项在进行分式的乘除运算时,需要注意以下几点:1. 约分:在进行乘除运算时,尽量进行约分,使结果更简洁。
2. 分母为零:分式的分母不能为零。
在进行计算时,要避免分母为零的情况。
3. 正确运算顺序:在实际问题中,要根据运算的先后顺序,合理安排乘除运算与加减运算的顺序。
综上所述,分式的乘除运算是数学中的重要概念之一。
通过对分式乘法和除法运算规则的了解,我们可以灵活运用在实际问题的解答中。
数学人教版八年级上册【课标分析】分式的乘除

课标分析
一、教材内容:
可以理解为探索法则——理解法则——应用法则,进一步体现了新课标中“情境引入——数学建模——解释、拓展与应用的模式”。
分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
二、教材地位:
分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
三、课标要求:
了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。
四、教学方法:
教学方法的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。
师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学
中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。
让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
《分式的乘除法》分式PPT课件 图文
例2、计算: a2 4a 4 a 1
a2 4a 4 a 1 a 2 2a 1 a 2 4
(1) a2 2a 1 a2 4
(a 2)2 (a 1)2
(a
a -1 2)(a
2)
(a
(a 2)2 (a -1) 1)2 (a 2)(a
2)
a2 (a 1)(a 2)
1
1 例2、计算:
(2)分子或分母是多项式的分式乘 除法的解题步骤是:
①将原分式中含同一字母的各多项 式按降幂(或升幂)排列;在乘除过 程中遇到整式则视其为分母为1,分 子为这个整式的分式;
小结
②把各分式中分子或分母里的 多项式分解因式;
③应用分式乘除法法则进行运 算;(注意:结果为最简分式或 整式.)
测验:
(1)
x3. x2
分析:①本题是几个分式在 进行什么运算?
②每个分式的分子和分 母都是什么代数式?
③在分式的分子、分母中 的多项式是否可以分解因式, 怎样分解?
④怎样应用分式乘法法则 得到积的分式?
观察 (1)
3
15
3 15
45
9
5 2 5 2 10 2
怎样用语言描述上述法则?
分数的乘法法则:
ac ? bd
4 3
x y
y 2x
3
;
ab3 5a2b2 (2) 2c2 4cd
a2 4a 4 a 1 (1) a2 2a 1 a2 4
(2)
49
1 m2
m2
1 7m
(2) x2 6x 9 3 x
x2
例1 计算
分果分 式要式 或化运 整成算 式最的
简结
7b 8a 3
(1)
分式的乘除法
x y x y y x y
x y
②
x2 z
y 3
x6 z3
y3 ;
③
x3 y2 z
2
x6 y4 ; z2
④
b2 a
2n
b4n a2n
(n为正整数);
⑤
2b3 3a 2
3
8b9 27a6
.
2、计算:
b d b c bc a c a d ad
分式的乘方法则:把分子、分母分别乘方.
n m
k
nk (k是正整数) mk
二、边学边导,基础过关:
计算:①
ay2 b2 x
a2x by2
ay2 a2 x b2 x by2
a3 b3
②
2b a
4a 2 4bc 2
三是运算顺序;
四是结果的符号.
五、拓展延伸,智力闯关:
3 2
(a b)2 8ab (a b)2 4ab
原式= x 2 1 y4 2
x2 x2
9 4
=
x x
2 3
(x (x
3)( x 2)( x
3) 2)
=
x x
3 2
②( xy x2 )
x y =x( y x) xy
xy x y
=
x2 y
③
m2 4m m2 4
4
最新分式的乘除法说课稿
《分式的乘除法》说课材料新华中学吉文虎一、教材分析(一)教材所处的地位及作用“分式的乘除法”是北师大版八年级下册第三章第二节的内容,本节课在学习了分式基本性质和因式分解的基础上进一步学习分式的乘除法,是为学习分式加减等作准备,具有承上启下的作用,在教材中处于重要的位置。
(二)学情分析学生在前面学习了分式基本性质,因式分解,现在所学的乘除法是分式基本性质的一个应用,一个实践。
学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。
(三)教学目标根据课程标准的要求和学生的实际情况,制定以下教学目标:知识与技能目标1、熟练掌握分式乘除法则。
2、学会对比、猜想、转化、归纳方法。
过程与方法目标通过对分数乘除法则的观察,归纳分式乘除法则,使学生感知数学知识具有普遍的联系性。
情感与态度目标1、培养学生与人合作、与人交流的良好品质。
2、体验数学活动充满着探索性,尝试在数学活动中获得成功的喜悦,树立自信心。
(四)教学的重点与难点教学重点:熟练掌握分式的乘除法法则教学难点:进行分式的乘除运算,正确体会具体的运算过程和一般步骤。
二、说教法、学法1、教法:根据教材特点和八年级学生的心理特点和认知水平,在课堂教学中要引导学生多观察,多合作、多交流、大胆猜想、验证归纳分式乘除法法则,并进行应用,数学知识来源于生活,数学知识具有普遍的联系性,大胆采用探索式教学,注重学生探究能力的培养,同时注意加强对学生的启发和引导,充分展示自己的观点和见解,创设一个宽松愉快的学习氛围。
2、学法通过本节课的教学,应引导学生学会观察类比猜想归纳的学习方法,培养学生与人合作,与人交流的良好品质,培养学生团队精神,充分调动学生的学习热情,让学生学会学习、学会探索问题的方法,培养学生自主学习的能力三、说教学程序四、教学反思1、学生对于法则的运用不难,但是较差的学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。
分式的乘除(基础)知识讲解
分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a bg ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.。