(江苏版)2018年高考数学一轮复习(讲+练+测): 专题3.3 导数的综合应用(测)【精】
2018届高三数学文一轮总复习江苏专用课件:第三章 第二节 第三课时 导数与函数的综合问题 精品

解(2):依(题1)当意,m=f′-(x1)=时m,xfe(xx+)=m2(1<-xx2)+ex+(mx+2,2)x,x<0, 因为 x<0,所以 mex-x-m>0, 则令 fh′(x()x=)=mxex(-2-x-ex)m,,则 h′(x)=mex-1, 由当 fm′≤(x1)>时0,得h′,(0x<)≤x<ex-ln12<,0, 则 h(x)在(-∞,0)上单调递减, 由所以f′h((xx))<>0h得(0)=x<0,0 或符合x>题ln意;2,
[即时应用] 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄 水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假设 建造成本仅与表面积有关,侧面的建造成本为 100 元/平方米, 底面的建造成本为 160 元/平方米,该蓄水池的总建造成本为 12 000π 元(π 为圆周率). (1)将 V 表示成 r 的函数 V(r),并求该函数的定义域; (2)讨论函数 V(r)的单调性,并确定 r 和 h 为何值时该蓄水池 的体积最大.
第三课时 导数与函数的综合问题
考点一 利用导数研究生活中的优化问题
重点保分型考点——师生共研 [典例引领]
(2016·常州模拟)如图,某商业中心 O 有通往正东方向和北偏东
30°方向的两条街道.某公园 P 位于3,且与商
业中心 O 的距离为 21 km 处.现要经过公
考点二 利用导数研究函数的零点或方程的根 重点保分型考点——师生共研
[典例引领] (2015·广东高考节选)设 a>1,函数 f(x)=(1+x2)ex-a. (1)求 f(x)的单调区间; (2)证明:f(x)在(-∞,+∞)上仅有一个零点.
解:(1)f(x)的定义域为 R,由导数公式知 f′(x)=2xex+(1 +x2)ex=(x+1)2ex,x∈R. ∵对任意 x∈R,都有 f′(x)≥0,∴f(x)的单调递增区间为(- ∞,+∞),无单调递减区间. (2)证明:由(1)知 f(x)在(-∞,+∞)上单调递增, 且 f(0)=1-a<0,f( a-1)=ae a-1 -a=a(e a-1 -1). ∵a>1,∴a-1>0,∴ a-1>0,∴e a-1 >1, ∴e a-1 -1>0,故 f( a-1)>0, ∴∃x0∈(0, a-1)使得 f(x0)=0. 又∵f(x)在(-∞,+∞)上是单调函数, ∴f(x)在(-∞,+∞)上仅有一个零点.
精选江苏专用2018版高考数学专题复习专题3导数及其应用第23练导数综合练练习理

(江苏专用)2018版高考数学专题复习 专题3 导数及其应用 第23练 导数综合练练习 理1.(2016·河北衡水中学调考)f (x )是定义在R 上的函数,其导函数为f ′(x ),若f (x )-f ′(x )<1,f (0)=2 016,则不等式f (x )>2 015·e x+1(其中e 为自然对数的底数)的解集为________.2.(2017·福建“四地六校”联考)已知曲线f (x )=23x 3-x 2+ax -1存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为________________.3.(2016·泰州二模)若函数f (x )=x 2|x -a |在区间[0,2]上单调递增,则实数a 的取值范围是________________.4.(2016·扬州期末)若函数f (x )=ln x -mx(m ∈R )在区间[1,e]上取得最小值4,则实数m 的值是________.5.(2016·南京调研)已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________________. 6.函数y =ln 2xx的极小值为________.7.某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为p 元,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2.问该商品零售价定为________元时毛利润最大(毛利润=销售收入-进货支出).8.(2016·盐城模拟)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是__________.9.已知函数f (x )=⎩⎪⎨⎪⎧x -x 2x,x ≤0,-x 2+4x +3,x >0,g (x )=f (x )+2k ,若函数g (x )恰有两个不同的零点,则实数k 的取值范围为________________.10.(2016·苏州模拟)已知函数f (x )=ln 1+x1-x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33; (3)设实数k 使得f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立,求k 的最大值. 答案精析1.(0,+∞) 2.⎝ ⎛⎭⎪⎫3,72 3.(-∞,0]∪[3,+∞) 4.-3e 5.(32,4)解析 因为函数f (x )在(1,2)上有极值,则需函数f (x )在(1,2)上有极值点.方法一 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1∉(1,2),因此需1<x 2<2,即1<-1+1+2a <2,即4<1+2a <9,所以32<a <4,故实数a 的取值范围为(32,4).方法二 f ′(x )=x 2+2x -2a 的图象是开口向上的抛物线,且对称轴为x =-1,则f ′(x )在(1,2)上是单调递增函数,因此⎩⎪⎨⎪⎧f=3-2a <0,f =8-2a >0,解得32<a <4,故实数a 的取值范围为(32,4).6.0解析 函数的定义域为(0,+∞). 令y =f (x ),f ′(x )=2ln x -ln 2x x2=-ln xx -x2.令f ′(x )=0,解得x =1或x =e 2.f ′(x )与f (x )随x 的变化情况如下表:故当x =1时,函数y =x取到极小值0.7.30解析 由题意知,毛利润=销售收入-进货支出,设该商品的毛利润为L (p ),则L (p )=pQ -20Q =Q (p -20)=(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700. 令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0.所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值. 8.[-6,-2]解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=x -x 3-x 2-4x -x 2x 6=-x 2-8x -9x4=-x -x +x4>0,∴φ(x )在(0,1]上递增, φ(x )max =φ(1)=-6, ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-x -x +x 4.当x ∈[-2,-1)时,φ′(x )<0, 当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.9.⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2解析 由y =(2x -x 2)e x (x ≤0)求导,得y ′=(2-x 2)e x ,故y =(2x -x 2)e x(x ≤0)在(-2,0]上单调递增,在(-∞,-2)上单调递减,且当x <0时,恒有y =(2x -x 2)e x<0. 又y =-x 2+4x +3(x >0)在(0,2)上单调递增,在(2,+∞)上单调递减,所以可作出函数y =f (x )的图象,如图.由图可知,要使函数g (x )恰有两个不同的零点,需-2k =0或-2k =-22-2e 2或3<-2k<7,即实数k 的取值范围为⎝ ⎛⎭⎪⎫-72,-32∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,2+1e 2. 10.(1)解 因为f (x )=ln(1+x )-ln(1-x ), 所以f ′(x )=11+x +11-x,f ′(0)=2.又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x .(2)证明 令g (x )=f (x )-2⎝ ⎛⎭⎪⎫x +x 33, 则g ′(x )=f ′(x )-2(1+x 2)=2x41-x2.因为g ′(x )>0(0<x <1), 所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2⎝ ⎛⎭⎪⎫x +x 33.(3)解 由(2)知,当k ≤2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33对x ∈(0,1)恒成立. 当k >2时,令h (x )=f (x )-k ⎝ ⎛⎭⎪⎫x +x 33, 则h ′(x )=f ′(x )-k (1+x 2)=kx 4-k -1-x2.所以当0<x < 4k -2k时,h ′(x )<0,因此h (x )在区间⎝⎛⎭⎪⎫0, 4k -2k 上单调递减.当0<x < 4k -2k时,h (x )<h (0)=0,即f (x )<k ⎝ ⎛⎭⎪⎫x +x 33.所以当k >2时,f (x )>k ⎝ ⎛⎭⎪⎫x +x 33并非对x ∈(0,1)恒成立. 综上可知,k 的最大值为2.。
江苏版2018年高考数学一轮复习专题3.4导数的实际应用讲20171129359

专题3.4 导数的实际应用【考纲解读】要求备注内容A B C对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解导数及导数在实际问题中的应√决相关的简单问题.其应用用理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.【知识清单】考点1 利用导数研究生活中的优化问题利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.【考点深度剖析】以实际生活为背景,通过求面(容)积最大、用料最省、利润最大、效率最高等问题考查学生分析问题、解决问题以及建模的能力,常与函数关系式的求法、函数的性质(单调性、最值)、不等式、导数、解析几何中曲线方程、空间几何体等知识交汇考查.【重点难点突破】考点1 利用导数研究生活中的优化问题【1-1】如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE- 1 -满足函数 yx 2 2(0 x 2 的图象,且点 M 到边 OA 距离为 (2 4)t t .332 (1)当t 时,求直路l 所在的直线方程;3(2)当t 为何值时,地块 OABC 在直路l 不含泳池那侧的面积取到最大,最大值是多少?【答案】(1)12x 9y 22 0 ;(2)t1时, max2S .面积S 11 4 (1) 2(22t,当t 1, max2tt1) 2 4 t S .11 4 ( 1)2 22 t 2t t【1-2】放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现 象称为衰变.假设在放射性同位素铯 137的衰变过程中,其含量 M (单位:太贝克)与时间 t (单t位:年)满足函数关系: M (t ) M 2 30 ,其中 M为 t=0时铯 137的含量.已知 t=30时,铯137含量的变化率是-10In2(太贝克/年),则 M (60)=_______太贝克 【答案】150ttM t M 11130【解析】M(t)M230,∴()ln,002302当t=30时,即11tMln210ln2,∴0600.M tM∴()600230,当t=60时0230- 2 -60M(t)6002150.30585 【1-3】某种产品每件成本为6元,每件售价为x元(6<x<11),年销售为u万件,若已知-821u与(x-4)2成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于售价x的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.【答案】(1)y=-2x3+33x2-108x-108(6<x<11).(2)售价为9元时,年利润最大,最大年利润为135万元.当x∈(9,11)时,y′<0.∴函数y=-2x3+33x2-108x-108在(6,9)上是递增的,在(9,11)上是递减的.∴当x=9时,y取最大值,且y max=135,- 3 -∴售价为9元时,年利润最大,最大年利润为135万元.【1-4】一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设BOC q,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求q的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.p【答案】(1) V(q)10(sinqcosq sinq),q(0,);(2);(3)是.23- 4 -【思想方法】利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.【温馨提醒】①分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.②构造分段函数时,要力求准确、简洁,做到分段合理不重不漏.【易错试题常警惕】求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. 用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.- 5 -。
(江苏版)2018年高考数学一轮复习(讲+练+测): 专题3.4 导数的实际应用(练)-数学备课大师【全免费】

专题3.4 导数的实际应用1.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【答案】(1) a=2. (2) x=42.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1 000万元的投资收益.现准备制订一个对科研课题组的奖励方案:奖金y(万元)随投资收益x(万元)的增加而增加,且资金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数f(x)模型制订奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(2)现有两个奖励函数模型:①y =x150+2;②y =4lg x -3.试分析这两个函数模型是否符合公司要求? 【答案】(1)详见解析(2) ①不符合②符合则f (x )max =f (1 000)=4lg 1 000-3=9. 所以f (x )≤9恒成立.设g (x )=4lg x -3-x 5,则g ′(x )=4x ln 10-15.当x ≥10时,g ′(x )=4x ln 10-15≤2-ln 105ln 10<0, 所以g (x )在[10,1 000]上是减函数, 从而g (x )≤g (10)=-1<0.所以4lg x -3-x 5<0,即4lg x -3<x5,所以f (x )≤x5恒成立. 故该函数模型符合公司要求.3.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总营业收入R 与年产量x 的年关系是R =R (x )=⎩⎪⎨⎪⎧400x -12x 2 x,x ,则总利润最大时,每年生产的产品是_______. 【答案】3004.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 【答案】(1) 17.5(2) 80千米/小时,11.25升【解析】(1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升. (2)当速度为x 千米/小时时, 汽车从甲地到乙地行驶了100x小时,设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数; 当x ∈(80,120)时,h ′(x )>0,h (x )是增函数, ∴当x =80时,h (x )取得极小值h (80)=11.25. 易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升. 5.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 【答案】2∶1【解析】设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1.6.用长为90cm ,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折900角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大的容积是多少?【答案】该容器的高为10cm 时,容器有最大容积196003cm7.某厂生产某种产品x 件的总成本37521200)(x x c +=(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,产量定为多少时总利润最大? 【答案】258.某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4 m ,这种薄板须沿其对角线折叠后使用.如图所示,四边形ABCD (AB >AD )为长方形薄板,沿AC 折叠后AB ′交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB ′PD 的面积最大时制冷效果最好.(1)设AB =x m ,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?【答案】(1) y =2⎝ ⎛⎭⎪⎫1-1x ,1<x <2. (2) 长为32 m ,宽为(2-32)m【解析】(1)由题意AB =x ,BC =2-x . 因为x >2-x ,所以1<x <2. 设DP =y ,则PC =x -y .因为△ADP ≌△CB ′P ,所以PA =PC =x -y .9.轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1 m的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轮迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:m.(1)求助跑道所在的抛物线方程;(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4 m到6 m之间(包括4 m和6 m),试求运动员飞行过程中距离平台最大高度的取值范围.(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)【答案】(1) f (x )=x 2-4x +4,x ∈[0,3]. (2) 在2 m 到3 m 之间【解析】(1)设助跑道所在的抛物线方程为f (x )=a 0x 2+b 0x +c 0,依题意⎩⎪⎨⎪⎧c 0=4,4a 0+2b 0+c 0=0,9a 0+3b 0+c 0=1,解得 a 0=1,b 0=-4,c 0=4,所以助跑道所在的抛物线方程为10. 一位创业青年租用了一块边长为1百米的正方形田地ABCD 来养蜂、产蜜与售蜜,他在正方形的边,BC CD 上分别取点,E F (不与正方形的顶点重合),连接,,AE EF FA ,使得45EAF ∠=︒. 现拟将图中阴影部分规划为蜂源植物生长区,AEF ∆部分规划为蜂巢区,CEF ∆部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为5210⨯元/百米2,蜂巢区与蜂蜜交易区的投入约为510元/百米2,则这三个区域的总投入最少需要多少元?510从而三个区域的总投入T510元. ...............14分 (说明:这里S 的最小值也可以用导数来求解:因为2(1))(1))2(1)x x S x +-'=+,则由0S '=,得1x =.C E第17题图当1)x ∈时,0S '<,S递减;当1,1)x ∈时,0S '>,S 递增.所以当1x =时,S取得最小值为1).)解法二:设阴影部分面积为S ,三个区域的总投入为T . 则55521010(1)10(1)T S S S =⨯⋅+⋅-=⋅+,从而只要求S 的最小值. ...............2分因为9045EAF αβ+=︒-∠=︒,所以tan tan tan()11tan tan αβαβαβ++==-,........8分 所以2tan tan tan tan 1tan tan 1()2αβαβαβ++=-≥-, ..............10分即221S S ≥-,解得1S ≥,即S 取得最小值为1),从而三个区域的总投入T 510元. ...............14分11. 经市场调查,某商品每吨的价格为(114)x x <<百元时,该商品的月供给量为1y 万吨,217(0)2y ax a a a =+->;月需求量为2y 万吨,22111224112y x x =--+. 当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1)若17a =,问商品的价格为多少时,该商品的月销售额最大? (2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a 的取值范围.【答案】(1)8(2)1(0,]7【解析】 (1) 若17a =,由21y y >,得221117111()2241127277x x x --+>+-. 解得406x -<< . …………………………………………………………………3分 因为114x <<,所以16x <<.(2)若该商品的均衡价格不低于每吨6百元,实数a 的取值范围是1(0,]7.12. 某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x (单位:元,0x >)时,销售量()q x (单位:百台)与x 的关系满足:若x 不超过20,则1260()1q x x =+;若x 大于或等于180,则销售量为零;当20180x ≤≤时,()q x a =-a ,b 为实常数). (1)求函数()q x 的表达式;(2)当x 为多少时,总利润(单位:元)取得最大值,并求出该最大值.【答案】(1)1260,020,1()90180,0,180x x q x x x ⎧<⎪+⎪⎪-<⎨⎪>⎪⎪⎩≤=≤(2)当x 等于80元时,总利润取得最大值240000元当20180x <≤时,()9000f x x -=()9000f x '-=令()0f x '=,得80x =. …………10分 当2080x <<时,()0f x '>,()f x 单调递增,当8080x <≤1时,()0f x '<,()f x 单调递减,所以当80x =时,()f x 有最大值240000. …………12分 当180x <时,()0f x =﹒答:当x 等于80元时,总利润取得最大值240000元. …………14分13.如图,已知海岛A 到海岸公路BC 的距离AB 为50㎞,B ,C 间的距离为100㎞,从A 到C必须先坐船到BC 上的某一点D ,船速为25㎞/h ,再乘汽车到C ,车速为50㎞/h ,记∠BDA =θ.(1)试将由A 到C 所用的时间t 表示为θ的函数t (θ);(2)问θ为多少时,由A 到C 所用的时间t 最少?【答案】(1)t (θ)=2cos sin θθ-+2(θ0<θ<2π,其中tan θ0=12)(2)θ=3π14.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m 的围墙.现有两种方案: 方案① 多边形为直角三角形AEB (90AEB ∠=),如图1所示,其中30m AE EB +=; 方案② 多边形为等腰梯形AEFB (AB EF >),如图2所示,其中10m AE EF BF ===. 请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.BACD θ【答案】方案①,②苗圃的最大面积分别为222252m ,建苗圃时用方案②,且3BAE π∠=所以当3θ=时,()2max S = ................................................12分因为2252<3BAE π∠=.答:方案①,②苗圃的最大面积分别为222252m ,建苗圃时用方案②,且3BAE π∠=.。
(江苏版)2018年高考数学一轮复习(讲+练+测)_专题3.3导数的综合应用(测)

专题3.3 导数的综合应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 【2017课标3,理11改编】已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =_________【答案】12【解析】2. 【江苏省南通市如东县、徐州市丰县2017届高三10月联考】已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<- 3. 【泰州中学2016-2017年度第一学期第一次质量检测】若函数()y f x =的定义域为R ,对于x R ∀∈,'()()f x f x <,且(1)f x +为偶函数,(2)1f =,则不等式()xf x e <的解集为 . 【答案】(0,)+∞ 【解析】试题分析:令()()x f x g x e =,则()()()0xf x f xg x e'-'=<,因为(1)f x +为偶函数,所以(1)(1)(0)(2)1g(0)1f x f x f f +=-+⇒==⇒=,因此()()1(0)0x f x e g x g x <⇒<=⇒>4. 【2017届高三七校联考期中考试】若()1ln ,(),0xexf x x a xg x a e =--=<,且对任意[]()1212,3,4,x x x x ∈≠121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为 ▲ . 【答案】22[3,0)3e - 【解析】则()'21()10xe x a h x x ex-=--≤在(3,4)x ∈上恒成立,[]11,3,4x x e a x e x x --∴≥-+∈恒成立 令[]11(),3,4x x e u x x ex x--=-+∈,[]21112(1)113'()11,3,424x x x e x u x ee x x x ---⎡⎤-⎛⎫∴=-+=--+∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 21211331,'()0244x e e u x x -⎡⎤⎛⎫-+>>∴<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦Q ,()u x ∴为减函数,()u x ∴在[]3,4x ∈的最大值为22(3)33u e =-综上,实数a 的取值范围为22[3,0)3e -.5. f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则af (b )与bf (a )的大小关系为________.【答案】af (b )≤bf (a )【解析】∵xf ′(x )≤-f (x ),f (x )≥0,∴⎝ ⎛⎭⎪⎫f x x ′=xfx -f x x 2≤-2fxx 2≤0.则函数f x x在(0,+∞)上是单调递减的,由于0<a <b ,则f a a≥f b b.即af (b )≤bf (a ).6.设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”,若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是________.【答案】⎝⎛⎦⎥⎤-∞,127.电动自行车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 【答案】40【解析】由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0; 当x >40时,y ′>0.所以当x =40时,y 有最小值.8.函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________. 【答案】(-∞,0)【解析】f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,则a <0.9.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.【答案】2110.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1、x 2∈(0,+∞),不等式g x 1k ≤f x 2k +1恒成立,则正数k 的取值范围是________. 【答案】[1,+∞)解析】因为对任意x 1、x 2∈(0,+∞), 不等式g x 1k≤f x 2k +1恒成立,所以kk +1≥⎣⎢⎡⎦⎥⎤g x 1f x 2max . 因为g (x )=e 2xex ,所以g ′(x )=(x e 2-x )′=e 2-x +x e 2-x ·(-1)=e 2-x (1-x ). 当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e ; 因为f (x )=e 2x 2+1x,当x ∈(0,+∞)时,f (x )=e 2x +1x ≥2e,当且仅当e 2x =1x,即x =1e时取等号,故f (x )min =2e.所以⎣⎢⎡⎦⎥⎤g x 1f x 2max =e 2e =12. 所以kk +1≥12.又因为k 为正数,所以k ≥1.二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指.定区域内....。
江苏专用2018版高考数学一轮复习第三章导数及其应用3.3利用导数研究函数的最(极)值课件文

考点一 用导数研究函数的极值(多维探究) 命题角度一 根据函数图象判断极值 【例1-1】 设函数f(x)在R上可导,其导函数为f′(x),且函数y =(1-x)f′(x)的图象如图所示,则下列结论:
①函数f(x)有极大值f(2)和极小值f(1); ②函数f(x)有极大值f(-2)和极小值f(1); ③函数f(x)有极大值f(2)和极小值f(-2);
4 的取值范围是3,+∞.
考点二 利用导数求函数的最值 【例2】 (2017·徐州模拟)已知函数f(x)=(x-k)ex. (1)求f(x)的单调区间;
(2)求f(x)在区间[0,1]上的最小值.
解 (1)由f(x)=(x-k)ex,得f′(x)=(x-k+1)ex, 令f′(x)=0,得x=k-1.
规律方法 求实际问题中的最大值或最小值时,一般是先设 自变量、因变量,建立函数关系式,并确定其定义域,利用 求函数的最值的方法求解,注意结果应与实际情况相结
合.用导数求解实际问题中的最大(小)值时,如果函数在开
区间内只有一个极值点,那么依据实际意义,该极值点也就 是最值点.
【训练 3】 某商场销售某种商品的经验表明,该商品每日的销售量 a y(单位: 千克)与销售价格 x(单位: 元/千克)满足关系式 y= + x-3 10(x-6)2,其中 3<x<6,a 为常数,已知销售价格为 5 元/千克 时,每日可售出该商品 11 千克. (1)求 a 的值; (2)若该商品的成本为 3 元千克,试确定销售价格 x 的值,使商 场每日销售该商品所获得的利润最大.
的体积最大.
解 (1)因为蓄水池侧面的总成本为 100·2πrh=200πrh 元,底面的总 成本为 160πr2 元. 所以蓄水池的总成本为(200πrh+160πr2)元. 又根据题意得 200πrh+160πr2=12 000π, 1 所以 h=5r(300-4r2), π 从而 V(r)=πr h=5(300r-4r3).
江苏专版2018高考数学大一轮复习第三章导数及其应用20导数的综合应用课件文

4.(选修22P27习题15改编)如图,水波的半径以50 cm/s的速 度向外扩张,当半径为250 cm时,水波面的圆面积的膨胀率是 _2_5_0_0_0_π__cm2/s.
(第4题) 【解析】设时间t对应的水波面的圆的半径为r,面积为S, 则 r = 50t, S = πr2= 2 500πt2, 当 r = 250 时 ,t= 5, 故 S′= (2 500πt2)′=5 000π·t=25 000π(cm2/s).
2. 实际应用题 (1) 解题的一般步骤:理解题意,建__立__函__数__模__型__,使用导数 方法求解函数模型,根据求解结果回答实际问题. (2) 注意事项:注意实际问题的__定__义__域___;实际问题中的 函数多数是单峰函数(即在定义域内只有一个极值点的函数),这 样的极值点也是__最__值__点___.
_f_(x_)_m_in_>_g_(_x_)m_i_n _ 任意的x∈D1,任意的x∈D2,
f(x1)>g(x2) 存在x1∈D1,存在x2∈D2,
_f_(_x)_m_a_x>__g_(x_)_m_ax_ 任意的x∈D1,任意的x∈D2,
f(x1)>g(x2)
_f_(x_)_m_a_x>_g_(_x_)_m_in_
知识梳理
1. 最值与不等式 各类不等式与函数最值的关系如下表:
不等式类型 任意的x∈D,f(x)>M 任意的x∈D,f(x)<M
存在x∈D,f(x)>M 存在x∈D,f(x)<M 任意的x∈D,f(x)>g(x) 任意的x∈D,f(x)<g(x)
与最值的关系
任意的x∈D,__f(_x_)_m_in_>_M__ 任意的x∈D,_f_(_x)_m_a_x<_M___ 任意的x∈D,_f_(_x)_m_a_x>_M___ 任任任意意意的的的xx∈∈x∈DD,,D,__[[ff__((___xx___))f(--___x___)ggm___((i___nxx<___))]]___Mmm___ai___nx><__0__0
(新)江苏专用2018版高考数学大一轮复习第三章导数及其应用3_1导数的概念及运算教师用书理苏教版

第三章 导数及其应用 3.1 导数的概念及运算教师用书 理 苏教版1.导数与导函数的概念(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0).(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=C (C 为常数) f ′(x )=0 f (x )=x α(α为常数)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln af (x )=ln x f ′(x )=1xf (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=f ′x g x -f x g ′xg 2x(g (x )≠0).5.复合函数的导数若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[1f x]′=-f ′xf 2x(f (x )≠0).3.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)若f (x )=x ·e x,则f ′(1)= . 答案 2e解析 f ′(x )=e x+x ·e x,∴f ′(1)=2e.2.(教材改编)①(cos x )′=sin x ;②若y =1x 2,则y ′=-1x ;③(-1x )′=12x x .其中正确的个数是 .答案 1解析 因为(cos x )′=-sin x ,所以①错误; (1x2)′=(x -2)′=-2x -3,所以②错误;(-1x )′=(12x --)′=3212x -=12x x ,所以③正确.3.(教材改编)曲线y =-5e x+3在点(0,-2)处的切线方程为 . 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.4.(教材改编)若过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为 . 答案 (12,2)或(-12,-2)解析 ∵y ′=(x -1)′=-1x2=-4,∴x 2=14,x =±12.∴切点坐标为(12,2)或(-12,-2).5.(教材改编)函数f (x )=x 3的斜率等于1的切线有 条. 答案 2解析 ∵y ′=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点(33,39)和点(-33,-39)处有斜率为1的切线.题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos x e x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x)′=1x -1x2.(3)y ′=(cos xex )′=cos x ′·e x-cos x e x′e x 2=-sin x +cos x ex. (4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2即y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u ,则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2017,则x 0= .(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)= . 答案 (1)1 (2)-2解析 (1)f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017,得2 017+lnx 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2016·南通一调)在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为 .(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .答案 (1)43(2)x -y -1=0解析 (1)方法一 由题设可知曲线y =x 2在A (x 1,y 1)处的切线方程为y =2x 1x -x 21,曲线y=x 3在B (x 2,y 2)处的切线方程为y =3x 22x -2x 32,所以⎩⎪⎨⎪⎧2x 1=3x 22,x 21=2x 32,解得x 1=3227,x 2=89,所以x 1x 2=43.方法二 由题设得⎩⎪⎨⎪⎧2x 1=3x 22,x 32-x 21x 2-x 1=2x 1,解得x 1=3227,x 2=89,所以x 1x 2=43.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=1+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值例3 (1)(2016·徐州模拟)函数y =e x的切线方程为y =mx ,则m = .(2)(2016·苏州暑假测试)已知函数f (x )=x -1+1e x ,若直线l :y =kx -1与曲线y =f (x )相切,则实数k = . 答案 (1)e (2)1-e解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x, 得00|e xx x y '==, 从而切线方程为000ee ()x x y x x -=-,又切线过定点(0,0),从而000e e ()x x x -=-,解得x 0=1,则m =e.(2)设切点为(x 0,y 0).因为f ′(x )=1-1e x ,则f ′(x 0)=k ,即1-01e x =k ,且kx 0-1=x 0-1+01ex ,所以x0=-1,所以k=1-1e-1=1-e.命题点3 导数与函数图象的关系例4 如图,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的 .答案④解析函数的定义域为[0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS 大于0且越来越大,即斜率f′(x)在[0,2]内大于0且越来越大,因此,函数S=f(x)的图象是上升的且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS大于0且越来越小,即斜率f′(x)在(2,3)内大于0且越来越小,因此,函数S=f(x)的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面 (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)(2016·泰州模拟)已知曲线y =x 24-3lnx 的一条切线的斜率为12,则切点的横坐标为 .(2)(2016·昆明模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a = . 答案 (1)3 (2)-1解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3.(2)∵y ′=-1-cos xsin 2x ,∴2|x y π='=-1. 由条件知1a=-1,∴a =-1.3.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0|x x y '==3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.(2016·天津)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 答案 3解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为 . 答案 1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则0|x x y '==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为 . 答案 1或134解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎪⎨⎪⎧x 0=32,p =134.4.若f (x )=2xf ′(1)+x 2,则f ′(0)= . 答案 -4解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.5.(2016·江苏扬州中学期中)若x 轴是曲线f (x )=ln x -kx +3的一条切线,则k = . 答案 e 2解析 由f (x )=ln x -kx +3,得f ′(x )=1x-k ,设点M (x 0,y 0)是曲线f (x )上的一点,则曲线f (x )=ln x -kx +3在点M 处的切线方程为y -(ln x 0-kx 0+3)=(1x 0-k )(x -x 0),∵x 轴是曲线f (x )=ln x -kx +3的一条切线, ∴⎩⎪⎨⎪⎧ln x 0-kx 0+3=0,1x 0-k =0,解得k =e 2.6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为 . 答案 14解析 由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得12×121()4-=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a = . 答案 1解析 f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2.所以函数在(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=1+3a , 解得a =1.8.(2016·南京模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于 . 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.*10.已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为 . 答案 -1解析 f ′(x )=(n +1)x n,k =f ′(1)=n +1, 点P (1,1)处的切线方程为y -1=(n +1)(x -1), 令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015 =log 2 016(x 1x 2…x 2 015)=-1.11.(2016·江苏五校联考)已知曲线y =x 与y =8x的交点为P ,两曲线在点P 处的切线分别为l 1,l 2,则切线l 1,l 2与y 轴所围成的三角形的面积为________. 答案 6解析 由⎩⎪⎨⎪⎧y =x ,y =8x, 解得⎩⎪⎨⎪⎧x =4,y =2,即P (4,2),由y =x ,得y ′=(x )′=12x ,则直线l 1的斜率k 1=14,∴l 1:y =14x +1.同理可得l 2:y =-12x +4,如图,易知S △PAB =12×3×4=6,即所求的面积为6.12.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________. 答案 -1解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.13.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×(-13)=0.14.曲边梯形由曲线y =x 2+1,y =0,x =1,x =2所围成,过曲线y =x 2+1 (x ∈[1,2])上一点P 作切线,使得此切线从曲边梯形上切出一个面积最大的普通梯形,则这一点的坐标为____________.答案 ⎝ ⎛⎭⎪⎫32,134解析 设P (x 0,x 20+1),x 0∈[1,2],则易知曲线y =x 2+1在点P 处的切线方程为y -(x 20+1)=2x 0(x -x 0),∴y =2x 0(x -x 0)+x 20+1,设g (x )=2x 0(x -x 0)+x 20+1,则g (1)+g (2)=2(x 20+1)+2x 0(1-x 0+2-x 0),∴S 普通梯形=g 1+g 22×1=-x 20+3x 0+1=-⎝⎛⎭⎪⎫x 0-322+134,∴P点坐标为⎝ ⎛⎭⎪⎫32,134时,S 普通梯形最大.15.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为y ′|0x x ==x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.*16.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3 x 20(x -x 0),即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3 x20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎪⎫0,-6x. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.3 导数的综合应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 【2017课标3,理11改编】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =_________【答案】12【解析】2. 【江苏省南通市如东县、徐州市丰县2017届高三10月联考】已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 3. 【泰州中学2016-2017年度第一学期第一次质量检测】若函数()y f x =的定义域为R ,对于x R ∀∈,'()()f x f x <,且(1)f x +为偶函数,(2)1f =,则不等式()x f x e <的解集为 . 【答案】(0,)+∞ 【解析】试题分析:令()()x f x g x e =,则()()()0xf x f xg x e'-'=<,因为(1)f x +为偶函数,所以(1)(1)(0)(2)1g(0)1f x f x f f +=-+⇒==⇒=,因此()()1(0)0x f x e g x g x <⇒<=⇒>4. 【2017届高三七校联考期中考试】若()1ln ,(),0xexf x x a xg x a e =--=<,且对任意[]()1212,3,4,x x x x ∈≠121211|()()|||()()f x f xg x g x -<-的恒成立,则实数a 的取值范围为 ▲ . 【答案】22[3,0)3e - 【解析】则()'21()10xe x a h x x ex-=--≤在(3,4)x ∈上恒成立,[]11,3,4x x e a x e x x --∴≥-+∈恒成立 令[]11(),3,4x x e u x x ex x--=-+∈,[]21112(1)113'()11,3,424x x x e x u x ee x x x ---⎡⎤-⎛⎫∴=-+=--+∈⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21211331,'()0244x ee u x x -⎡⎤⎛⎫-+>>∴<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦Q ,()u x ∴为减函数,()u x ∴在[]3,4x ∈的最大值为22(3)33u e =-综上,实数a 的取值范围为22[3,0)3e -.5. f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则af (b )与bf (a )的大小关系为________. 【答案】af (b )≤bf (a )【解析】∵xf ′(x )≤-f (x ),f (x )≥0, ∴⎝⎛⎭⎪⎫f x x ′=xfx -f x x 2≤-2f xx 2≤0. 则函数f x x 在(0,+∞)上是单调递减的,由于0<a <b ,则f a a ≥f bb.即af (b )≤bf (a ). 6.设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”,若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是________. 【答案】⎝⎛⎦⎥⎤-∞,127.电动自行车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 【答案】40【解析】由y ′=x 2-39x -40=0, 得x =-1或x =40, 由于0<x <40时,y ′<0;当x >40时,y ′>0.所以当x =40时,y 有最小值.8.函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________. 【答案】(-∞,0)【解析】f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,则a <0.9.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.【答案】2110.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1、x 2∈(0,+∞),不等式g x 1k ≤f x 2k +1恒成立,则正数k 的取值范围是________. 【答案】[1,+∞)解析】因为对任意x 1、x 2∈(0,+∞), 不等式g x 1k ≤f x 2k +1恒成立,所以k k +1≥⎣⎢⎡⎦⎥⎤g x 1f x 2max. 因为g (x )=e 2xe x ,所以g ′(x )=(x e2-x)′=e2-x+x e2-x·(-1)=e2-x(1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0,所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e ; 因为f (x )=e 2x 2+1x,当x ∈(0,+∞)时,f (x )=e 2x +1x ≥2e,当且仅当e 2x =1x,即x =1e 时取等号,故f (x )min =2e.所以⎣⎢⎡⎦⎥⎤g x 1f x 2max =e 2e =12.所以kk +1≥12.又因为k 为正数,所以k ≥1. 二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指.定区域内....。
(共4题,每小题10分,共计40分). 11. 【2016-2017学年度江苏苏州市高三期中调研考试】(本题满分16分)已知()()32310f x ax x a =-+>,定义()()(){}()()()()()(),max ,,f x f x g x h x f x g x g x f x g x ≥⎧⎪==⎨<⎪⎩.(1)求函数()f x 的极值;(2)若()()g x xf x '=,且存在[]1,2x ∈使()()h x f x =,求实数a 的取值范围; (3)若()ln g x x =,试讨论函数()()0h x x >的零点个数. 【答案】(1)()f x 的极大值为1,极小值为241a -;(2)2a ≤;(3)当02a <<时, ()h x 有两个零点;当2a =时,()h x 有一个零点;当2a >时,()h x 有无零点. 【解析】数,可得存在0x 使得00x x <<时,()()h x f x =,在一个零点,当01x x <<时()()h x g x =无零点,最终可得零点个数为2.试题解析:(1)∵函数()3231f x ax x =-+,................................1分∴()()33632f x ax x x ax '=-=-..................... 1分令()0f x '=,得10x =或22x =,∵0a >,∴12x x <,列表如下:∴24a ≤,即2a ≤...........................7分 (3)由(1)知,()f x 在()0,+∞上的最小值为2241f a a ⎛⎫=- ⎪⎝⎭, ①当2410a ->,即2a >时,()0f x >在()0,+∞上恒成立, ∴()()(){}max ,h x f x g x =在()0,+∞上无零点...................8分 ②当2410a -=即2a =时,()()min 10f x f ==,又()10g =, ∴()()(){}max ,h x f x g x =在()0,+∞上有一个零点,..............9分③当2410a-<,即02a <<时,设()()()()3231ln 01x f x g x ax x x x ϕ=-=-+-<<, ∵()()21136610x ax x x x x xϕ'=--<--<,∴()x ϕ在()0,1上单调递减,12.【江苏省苏州市2017届高三暑假自主学习测试】(本小题满分16分) 已知函数2()ln ,()f x x x g x x ax =-=-.(1)求函数()f x 在区间[],1(0)t t t +>上的最小值()m t ; (2)令1122()()(),(,()),(,())h x g x f x A x h x B x h x =-12()x x ≠是函数()h x 图象上任意两点,且满足1212()()1,h x h x x x ->-求实数a 的取值范围;(3)若(0,1]x ∃∈,使()()a g x f x x-≥成立,求实数a 的最大值. 【答案】(1)当01t <<时,()1m t =;当1t ≥时,()ln m t t t =-.(2)2a ≤(3)1. 【解析】试题分析:(1)先求导数1()1f x x'=-,再求导函数零点1x =,根据零点与定义区间位置关系分类讨论函数单调性:当1t ≥时,()f x 在[],1t t +上单调递增,当01t <<时,()f x 在区间(),1t 上为减函数,在区间()1,1t +上为增函数,最后根据单调性确定函数最小值(2)先转化不等式1212()()1,h x h x x x ->-不妨取当01t <<时,()f x 在区间(),1t 上为减函数,在区间()1,1t +上为增函数,()f x 的最小值为(1)1f =.综上,当01t <<时,()1m t =;当1t ≥时,()ln m t t t =-. …………………3分(2)2()(1)ln h x x a x x =-++,对于任意的12,(0,)x x ∈+∞,不妨取12x x <,则120x x -<,则由1212()()1,h x h x x x ->-可得1212()()h x h x x x -<-, 变形得1122()()h x x h x x -<-恒成立, ………………………5分 令2()()(2)ln F x h x x x a x x =-=-++,则2()(2)ln F x x a x x =-++在(0,)+∞上单调递增, 故1()2(2)0F x x a x'=-++≥在(0,)+∞恒成立, ………………………7分 12(2)x a x∴+≥+在(0,)+∞恒成立. 12x x+≥2x =时取""=, 2a ∴≤. ………………………10分13. 【江苏省泰州中学2017届高三摸底考试】已知函数()xexf x e =(e 为自然对数的底数). (1)求()f x 的单调区间;(2)是否存在正实数x 使得(1)(1)f x f x -=+,若存在求出x ,否则说明理由; (3)若存在不等实数1x ,2x ,使得12()()f x f x =,证明:12'()02x x f +<. 【答案】(1)单调递减区间是()1,+∞,单调递增区间为(),1-∞.(2)不存在(3)详见解析 【解析】试题分析:(1)先求导数(1)()xe xf x e -'=,再求导函数符号确定单调区间:单调递减区间是()1,+∞,单调递增区间为(),1-∞.(2)构造函数1()(1)(1)(1)x x x F x f x f x x e e+=+--=+-,x (0,1)∈,确定其是否有零点即可,先求导1'()()x x F x x e e=-,确定()F x 为(0,1)上的增函数,因此()(0)0F x F >=,无零点()(0)0F x F >=,即(1)(1)f x f x +>-,故不存在正实数x 使得(1)(1)f x f x -=+成立.(3)若存在不等实数1x ,2x ,使得12()()f x f x =,则1x 和2x 中,必有一个在()0,1,另一个在()1,+∞,不妨设()10,1x ∈,()21,x ∈+∞. ①若22x ≥,则()121,2x x +∈+∞,由(1)知:函数()y f x =在()1,+∞上单调递减,所以12'()02x x f +<; ②若2(1,2)x ∈,由(2)知:当()0,1x ∈,则有(1)(1)f x f x +>-,而()110,1x -∈,所以[][]11112(2)1(1)1(1)()()f x f x f x f x f x -=+->--==,即12(2)()f x f x ->,而12x -,2(1,2)x ∈,由(1)知:函数()y f x =在(1,)+∞上单调递减,∴122x x -<,即有12(1,)2x x +∈+∞, 由(1)知:函数()y f x =在(1,)+∞上单调递减,所以12'()02x x f +<; 综合①,②得:若存在不等实数1x ,2x ,使得12()()f x f x =,则总有12'()02x x f +<.14. 【南京市2017届高三年级学情调研】(本小题满分16分) 已知函数2()ln ,(,)f x ax bx x a b R =-+∈.(1)当1a b ==时,求曲线()y f x =在1x =处的切线方程; (2)当21b a =+时,讨论函数()f x 的单调性;(3)当1,3a b =>时,记函数()f x 的导函数'()f x 的两个零点是1x 和2x (12x x <),求证:123()()ln 24f x f x ->-. 【答案】(1)2x -y -2=0.(2)详见解析(3)详见解析 【解析】试题分析:(1)由导数几何意义得曲线()y f x =在1x =处的切线斜率为f ′(1),所以先求导f ′(x )=2x -1+1x,再求斜率k=f ′(1)=2,最后由f (1)=0,利用点斜式可得切线方程:2x -y -2=0.(2)先求函数导数:f ′(x )=2ax -(2a +1)+1x=(21)(1)ax x x --.再分类讨论导函数在定义区间上的零点:当a ≤0时,一个零即2x-y-2=0.…………………… 3分(2)因为b=2a+1,所以f(x)=ax2-(2a+1)x+ln x,从而 f ′(x)=2ax-(2a+1)+1x=22(21)1ax a xx-++=(21)(1)ax xx--,x>0.………… 5分当a≤0时,x∈(0,1)时,f ′(x)>0,x∈(1,+∞)时,f ′(x)<0,所以f (x )在区间(0,12a )和区间(1,+∞)上单调递增,在区间(12a,1)上单调递减. …………………… 10分(3)方法一:因为a =1,所以f (x )=x 2-bx +ln x ,从而f ′(x )=221x bx x-+ (x >0).由题意知,x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12. 记g (x ) =2x 2-bx +1,因为b >3,所以g (12)=32b -<0,g (1)=3-b <0,所以x 1∈(0,12),x 2∈(1,+∞),且bx i =22i x +1 (i =1,2). …………………… 12分f (x 1)-f (x 2)=(2212x x -)-(bx 1-bx 2)+ln12x x =-(2212x x -)+ln 12x x . 因为x 1x 2=12,所以f (x 1)-f (x 2)=22x -2214x -ln(222x ),x 2∈(1,+∞). ……………… 14分令t =222x ∈(2,+∞),φ(t )=f (x 1)-f (x 2)=122t t--ln t . 因为φ′(t )=22(1)2t t-≥0,所以φ(t )在区间(2,+∞)单调递增, 所以φ(t )>φ(2)=34-ln2,即f (x 1)-f (x 2)>34-ln2. …………………… 16分。