数学人教版八年级上册13.3.1等腰三角形第一课时
13.3.1 第1课时 等腰三角形的性质

A.BD=CE C.DA=DE
图 13-3-8 B.AD=AE D.BE=CD
6.[2017·天津]如图 13-3-9,在△ABC 中,AB=AC,AD,CE 是△ABC 的两
条中线,P 是 AD 上的一个动点,则下列线段的长等于 BP+EP 最小值的是( B )
A.BCBΒιβλιοθήκη CEC.ADD.AC
图 13-3-9
类型之二 运用方程思想进行等腰三角形的角度计算 如图 13-3-1,在△ABC 中,D 是 BC 边上一点,AD=BD,AB=AC=
CD,求∠BAC 的度数.
图 13-3-1
解:∵AD=BD,∴设∠BAD=∠DBA=x°. ∵AB=AC=CD, ∴∠CAD=∠CDA=∠BAD+∠DBA=2x°, ∠C=∠DBA=x°,∴∠BAC=3x°. ∵∠ABC+∠BAC+∠C=180°,∴5x°=180°, 解得 x°=36°, ∴∠BAC=3x°=108°. 【点悟】 根据等腰三角形的性质与三角形内角和定理,得到各角之间的关 系式,再列方程求解,是解决等腰三角形的角度计算问题的基本方法.
2.运用等腰三角形的概念及性质解决相关问题.
如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开, 得到的△ABC 有什么特点?
1.等腰三角形的概念
知识管 理
定 义:有 两边相等的三角形叫做等腰三角形.
相关定义:(1)相等的两条边叫做等腰三角形的 腰 ,另一条边叫做 底边;
(2)两腰所夹的角叫做等腰三角形的 顶角 ,底边与腰的夹角叫做 底角 .
9.如图 13-3-12,在△ABC 中,AB=AC,AD 是 BC 边上的中线,BE⊥AC 于点 E.求证:∠CBE=∠BAD.
图 13-3-12
人教版数学八年级上册13.3.1等腰三角形(第一课时)教学设计

-设计具有挑战性的问题,引导学生运用等腰三角形的性质解决问题,培养学生的创新思维。
3.采用小组合作学习,促进学生之间的交流与分享,提高学生的合作能力。
-将学生分成小组,让他们在小组内讨论、总结等腰三角形的性质和应用。
-鼓励学生积极发言,分享自己的见解和经验,互相学习,共同进步。
-如果一个三角形的两边相等,那么这个三角形就是等腰三角形。
-如果一个三角形的两个角相等,那么这个三角形也有可能是等腰三角形。
3.结合课本例题,讲解等腰三角形性质的应用,如求等腰三角形的面积、角度等。
(三)学生小组讨论
1.将学生分成小组,让他们结合课本和教师讲解的内容,讨论等腰三角形的性质和应用。
2.各小组分享讨论成果,总结等腰三角形的性质和判定方法。
-引导学生思考等腰三角形在平面几何中的地位和作用,提高学生的几何观念。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些生活中的等腰三角形实物图片,如埃及金字塔、三角形警告标志等,引导学生观察并思考:这些图形有什么共同特点?
2.学生通过观察和思考,发现这些图形都是由两条相等的线段和两个相等的角组成,从而引出等腰三角形的概念。
4.强化练习,巩固学生对等腰三角形性质的理解和应用。
-设计具有梯度性的练习题,让学生在解答过程中逐步提高自己的能力。
-对学生进行个别辅导,关注学困生的学习进度,给予他们针对性的指导。
5.拓展学生思维,引导学生发现等腰三角形与其他几何图形之间的联系。
-探讨等腰三角形与等边三角形、直角三角形等图形的关系,培养学生的联想和迁移能力。
3.教师提问:我们已经学过三角形的基本概念,那么等腰三角形有什么特殊的性质呢?今天我们就来学习等腰三角形的性质和应用。
人教版数学八年级上册13.3.1.1 等腰三角形的性质教案

13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质●悬念激趣(1)如图是一组含有等腰三角形的生活图片,这些图片有哪些共同点?(2)将一把等腰三角尺和一个铅锤按图放置,就能检查一根横梁是否水平,你知道为什么吗?要想解决这个问题我们需要先研究等腰三角形具有哪些性质.【教学与建议】教学:活跃课堂气氛,让学生带着问题进入学习,也为后面的学习打下基础.建议:尽量给学生制造疑问,如怎样检查一根横梁是否水平;测平仪能测平的道理是什么等.●归纳导入问题1:如图①,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?你能画出具有这种特点的三角形吗?图①图②学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=__AC__.归纳:有两边相等的三角形是__等腰三角形__,相等的两边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,底边和腰的夹角叫做__底角__(如图②).问题2:把问题1中剪下的△ABC沿折痕AD对折,找出其中重合的线段和角,你能填好下表吗?重合的线段重合的角AB=AC∠B=∠CBD=CD∠BAD=∠CADAD=AD∠ADB=∠ADC从上表中你能发现等腰三角形具有什么性质吗?(引入课题)【教学与建议】教学:创设问题情境,激发学生的学习兴趣,归纳等腰三角形的性质.建议:教师引导学生归纳.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).命题角度1利用等腰三角形的定义(两边相等)解决问题当已知边没有确定为底边或腰时,要分情况讨论求解,并注意三角形的三边关系这一隐含条件.【例1】一个等腰三角形的一边长为2 cm,另一边长为5 cm,那么这个等腰三角形的周长是(B)A.9 cm B.12 cmC.9 cm或12 cm D.以上都不对【例2】等腰三角形的底边长为8 cm,一腰上的中线把这个三角形分成周长差为2 cm的两部分,则腰长为__6__cm或10__cm__.命题角度2利用等腰三角形的性质进行角度计算(1)在等腰三角形中,当已知锐角不能确定是顶角还是底角时,需分类讨论;(2)在等腰三角形中,已知的直角或钝角只能是顶角,不需分类讨论.【例3】如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D 等于(B)A.40°B.50°C.60°D.80°【例4】等腰三角形的一个角是30°,则这个等腰三角形的底角为(C)A.75°B.30°C.75°或30°D.不能确定【例5】等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的顶角为__60°或120°__.命题角度3利用等腰三角形的性质证明有关结论(1)等腰三角形“等边对等角”的性质在证全等三角形时可以得到等角.(2)等腰三角形“三线合一”的性质可以用来证明角相等、线段相等和线段垂直.【例6】如图,已知AB=AC,BD⊥AC于点D.求证:∠BAD=2∠DBC.证明:过点A作AE⊥BC于点E.∵AB=AC,∴∠BAD=2∠2.∵BD⊥AC于点D,∴∠BDC=90°.∴∠2+∠C=∠C+∠DBC=90°.∴∠DBC=∠2.∴∠BAD=2∠DBC.【例7】如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:如图,过点A作AP⊥BC于点P.∵AB=AC,∴BP=PC.∵AD=AE,∴DP=PE.∴BP-DP=PC-PE.∴BD=CE.高效课堂教学设计1.探索并证明等腰三角形的性质.2.运用等腰三角形的性质证明两个角相等或两条线段相等.3.体会轴对称在研究几何问题中的作用.▲重点理解和掌握等腰三角形的性质.▲难点等腰三角形性质证明中辅助线的添加和对性质2的理解.◆活动1新课导入提出问题:(1)把一张长方形的纸片对折,并剪下阴影部分(教材P75图13.3-1),再把它展开,得到一个什么图形?(2)上述过程中得到的△ABC有什么特点?(3)除了剪纸的方法,还可以怎样作出一个等腰三角形?学生动手剪纸、观察,教师在学生观察的同时提出问题.学生讨论问题(3),教师在学生充分发表自己想法的基础上给出画图的方法,并画出图形.◆活动2探究新知1.如图,将一张长方形纸片对折,沿图中虚线剪下一个三角形,把得到的三角形记为△ABC,并将折线的另一端记为D.提出问题:(1)△ABC是什么特殊三角形?为什么?(2)把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:重合的线段 重合的角__AB __与__AC __ __∠B __与__∠C __ __BD __与__CD __ __∠BAD __与__∠CAD ____AD __与__AD __ __∠ADB __与__∠ADC __(3)图中有哪些相等的角?有哪些相等的线段? (4)△ABC 是不是轴对称图形?对称轴是什么?(5)等腰三角形ABC 除两腰相等外,角有什么性质? (6)在等腰三角形ABC 中,AD 有几种角色?各是什么? (7)等腰三角形具有哪些性质? 学生完成并交流展示. ◆活动3 知识归纳1.性质1:等腰三角形的两个__底角__相等(简写成“等边对__等角__”).2.性质2:等腰三角形的__顶角平分线____底边上的高____底边上的中线__互相重合(简写成“__三线合一__”).◆活动4 例题与练习 例1 教材P 76 例1.例2 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:BE =CE .证明:∵AB =AC ,点D 是BC 的中点,∴AD ⊥BC ,∴AD 是BC 的垂直平分线.又∵点E 在AD 上,∴BE =CE .例3 如图,在△ABC 中,AB =AC ,点E 在CA 的延长线上,且∠AEF =∠AFE ,试问直线EF 和BC 有何位置关系?并说明理由.解:EF ⊥BC .理由如下:过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠BAD =12∠BAC .∵∠BAC =∠AEF +∠AFE ,∠AEF =∠AFE ,∴∠AFE =12∠BAC =∠BAD ,∴EF ∥AD .又∵AD ⊥BC ,∴EF ⊥BC .练习1.教材P 77 练习第1,2,3题.2.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为(B ) A .30° B .45° C .50° D .75°(第2题图) (第3题图)3.如图,在△ABC 中,点D 在边BC 上,BD =AD =AC ,E 为CD 的中点.若∠CAE =16°,则∠B =__37°__.4.如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE .求证:BD =CE .证明:过点A 作AF ⊥BC 于点F ,则AF ⊥DE .∵AB =AC ,AD =AE ,∴BF =CF ,DF =EF ,∴BF -DF =CF -EF ,即BD =CE .◆活动5 课堂小结 1.等腰三角形的性质. 2.等腰三角形性质的运用.1.作业布置(1)教材P81~82习题13.3第1,3,4,6,7,9题;(2)对应课时练习.2.教学反思。
新人教版八年级数学上册13.3.等腰三角形

能力目标:
教学重难点
重点
等腰三角形的性质的探索和应用。
难点
等腰三角形的性质的证明。
教学过程:活动1 创设情景,认识等腰三角形
教学过程:活动1 创设情景,认识等腰三角形
1.如何画一个等腰三角形,自己动手画一画。
A
B
C
2.等腰三角形是轴对称图形吗?如果是画出它的对称轴。
教学过程:活动1 创设情景,认识等腰三角形
D
C
做底边的高
教学过程 :活动3 等腰三角形性质定理的判定证明
方法三:
证明: 作底边BC的中线AD. ∵AD是BC边上的中线 ∴ BD = CD 在△BAD和△CAD中, AB=AC ( 已知 ), BD = CD AD=AD (公共边) , ∴ △BAD ≌△CAD (SSS). 做底边的中线
A
12.3.1等腰三角形(第1课时)
等腰三角形的性质
徐闻县和安中学
林朝清
教学目标
知识目标:理解掌握等腰三角形的性质,会利用等腰三角形的性质,
进行简单的推理、判断和计算。 通过观察等腰三角形的对称性,培养学生观察、分析、 归纳问题的能力, 通过运用等腰三角形的性质解决有关的问题,培养学生 分类讨论的思想,以及添加辅助线解决问题的能力。 通过学生动手实践活动,激发学生的学习兴趣,在实际操 情感目标: 作中感受几何的应用美。
教学过程 :活动4等腰三角形性质定理的运用
例题:
如图,在三角形ABC中,AB=AC 点D在AC 上,且BD=BC=AD, (1)图中有几个等腰三角形,分别写出 它们的顶角和底角。 (2) 求出△ABC各角的度数。
B
A
D
C
教学过程 :活动4 等腰三角形性质定理的运用
2024年人教版八年级上册数学第13章第3节第1课时等腰三角形

感悟新知
知3-讲
特别提醒 1.等腰三角形的定义也是一种判定方法. 2.“等角对等边”是我们以后证明两条线段相
等的常用方法,在证明过程中,经常通过 计算三角形各角的度数,或利用角的关系 得到角相等,从而得到所对的边相等.
感悟新知
知3-讲
3. 已知底边及底边上的高作等腰三角形已知:一个等腰三 角形底边长为a,底边上的高为h(如图13 .3 -9). 求作:这个等腰三角形.
感悟新知
几何语言:如图13 .3 -3,在△ ABC 中, (1)∵ AB=AC,AD ⊥ BC, ∴ AD 平分∠ BAC(或BD=CD); (2)∵ AB=AC,BD=DC, ∴ AD ⊥ BC(或AD 平分∠ BAC); (3)∵ AB=AC,AD 平分∠ BAC, ∴ BD=DC(或AD ⊥ BC).
感悟新知
知2-练
3-1.[中考·宿迁] 如图,已知AB=AC=AD,且AD ∥ BC,求 证:∠ C=2 ∠ D.
感悟新知
证明:∵AB=AC=AD, ∴∠C=∠ABC,∠D=∠ABD. ∵∠ABC=∠ABD+∠CBD, ∴∠ABC=∠CBD+∠D. ∵AD∥BC,∴∠CBD=∠D. ∴∠ABC=∠D+∠D=2∠D. 又∵∠C=∠ABC,∴∠C=2∠D.
知3-讲
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求 证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边” 判定等腰三角形,只需证明三 角形两个内角相等即可.
感悟新知
知3-练
证明:∵ DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F, ∴∠ AED= ∠ CFD=9 0 °. ∵ D 为AC 的中点,∴ AD=DC.
人教版八年级数学上册第十三章 1 13. 第1课时 等腰三角形的性质

1
2
2.等腰三角形的性质及其应用 【例2如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点 E,DF⊥AC于点F.求证:DE=DF.
分析:利用等腰三角形三线合一的性质及角平分线的性质进行证 明.
1
2
证明:连接AD(图略). ∵D为BC的中点,AB=AC, ∴AD平分∠BAC. 又DE⊥AB,DF⊥AC, ∴DE=DF. 点拨:此题解法灵活,也可以直接利用等腰三角形的性质证明 △BDE≌△CDF.另外,作底边上的中线(或顶角的平分线、底边上的 高)是解决与等腰三角形有关问题时常用的辅助线.
相等
(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、 底边上的中线 、底边
上的高相互重合(简写成“三线合一”).
2.等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上
的高)所在的 直线 就是它的对称轴.
知识梳理 预习自测
1.下列说法正确的是( ). A.等腰三角形的高、中线、角平分线互相重合 B.顶角相等的两个等腰三角形全等 C.等腰三角形的一边不可以是另一边的2倍 D.等腰三角形的两个底角相等
.
66°
关闭
答案
1
2
1.等腰三角形的边、角的计算 【例1】 已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这 个等腰三角形各角的度数. 分析:应考虑3种情况,即(2x-2)°作顶角或(3x-5)°作顶角或(2x-2)° 和(3x-5)°均不是顶角. 解:若2x-2=3x-5,得x=3. 故三角形的三个内角分别为4°,4°,172°; 若2(2x-2)=180-(3x-5),得x=27. 故三角形的三个内角分别为52°,52°,76°; 若2(3x-5)=180-(2x-2),得x=24. 故三角形的三个内角分别为46°,67°,67°.
人教版八年级数学上册《等腰三角形》(第1课时)课件

底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.
人教版八上数学13.3.1《等腰三角形》(第一课时)教学设计

13.3.1《等腰三角形》(第一课时)教学设计教学任务的分析教学流程安排课前准备教学过程【活动二】复习回顾学生回忆等腰三角形的相关定义,进一步提出:“人们在生活中如此的喜欢等腰三角形,它到底还具有那些性质呢?”引出本节课的课题--等腰三角形的性质(板书课题)抛出问题,激发学生的兴趣【活动三】互动探究1.如图13-3-14,把一张长方形纸沿图中虚线对折,并剪去阴影部分,再把它展开铺平,得到的三角形是什么特殊三角形?它具有哪些性质?它是轴对称图形吗?如果是,它的对称轴是什么?图13-3-142.请同学们拿出剪好的等腰三角形,动手折一折,通过刚才的对折过程,你发现∠B 和∠C存在怎样的数量关系?由此你发现等腰三角形有什么性质?说说你的猜想.1.借助动手操作的过程,培养学生探究图形性质的基本能力,发展学生合情猜想的数学素养,体现“做中学”的教学理念.同时突破本节课的教学重、难点2.通过观察、思考、描述、证明,鼓励学生善于思考、勇于发现、大胆尝试,培养学生的语言表达能力、观察能力和归纳能力,养成自觉探索几何命题的良好习惯.【活动四】猜想论证①等腰三角形的两个底角相等提问:这是文字语言给出是命题,我们需要先把它转化成数学语言,写出已知、求证,画出图形。
这个命题的条件是什么?结论呢?已知:如图△ABC中,AB=AC求证:∠B=∠C提问:1.如何证明两个角相等呢?2.如何构造两个全等的三角形?下面请同学们结合刚刚的折纸过程中折痕的特殊位置自己思考,动手做一做。
随后找三位同学上黑板展示,教师随即在PPT上根据他们的讲解,展示对应方法的规范表达格式。
②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
得出性质1后继续提问:想一想:由刚才的“折一折”和性质1的证明过程,除了发现两腰相等,两底角相等之外,你还能发现图中有哪些相等的线段,学生自己思考,动手操作,过程中会出现三种不同的辅助线做法,学生通过展示、交流证明出猜想①,得到等腰三角形性质1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“13.3.1等腰三角形”第一课时教学设计
【教学目标】
1.知识与能力
会画等腰三角形、会通过剪纸得等腰三角形,理解等腰三角形的性质;能够
用等腰三角形的性质解决相应的数学问题.
2.过程与方法
在探索等腰三角形的性质的过程中体会知识间的关系,感受数学与生活的联
系.培养学生添加辅助线解决问题的能力。
3.情感、态度与价值观
培养学生分析解决问题的能力,使学生养成良好的学习习惯.
【教学重点】
探索等腰三角形的性质,能够利用等腰三角形的知识解决相应的数学问题.
【教学难点】
等腰三角形性质的证明和应用.
【教学方法】
创设情境-主体探究-合作交流-应用提高.
【教学工具】
长方形的纸片、三角板、圆规。
【教学过程】
一、 创设情境,引出课题
1、 同学们会画等腰三角形吗?
(学生操着,教师查看。
)
2、找学生代表展示自己的作品
(可能有:①先画两条相等的边,再画另一条边。
②先画一边,再用圆规画
出另外两条相等的边。
)
3、教师在黑板上分别用两种方法画出等腰三角形。
顺便复习:腰、底边、
顶角、底角。
4、剪纸得等腰三角形(教师带学生一起操着)
如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,
得到了一个什么图形?
D
C B
A
二、引导观察,猜想性质
提问1:活动中剪出的等腰三角形是轴对称图形吗?
(引导学生归纳出等腰三角形的性质)
性质1 等腰三角形的两个底角相等( 简写成“等边对等角” );
性质2 等腰三角形顶角平分线、底边上的中线、底边上的高互相重合.
三、引导推理,论证性质
1、提问:据我们一直来的方法,先观察,猜想性质,然后用几何知识论证
性质,那么要证明一个命题的第一步是什么?(引导学生分析性质(1)的题设
和结论,画出图形,写出已知和求证)
2、提问:证明两个角相等,我们一般用什么方法。
(引导学生观察折纸
添加辅助线,构造两个全等三角形)
3、分析三种辅助线作法,让三位学生上黑板写出证明过程。
已知△ABC 中,AB=AC 。
求证:∠B =∠C ;
证明: ① 作BC 上的中线AD ,②作A D ⊥BC ,垂足为D ③作∠A 的角平分线AD ∴BD=CD ∴∠ADB =∠ADC =90° ∴∠BAD =∠CAD ,
.
在△ABD 和△ACD 中 在△ABD 和△ACD 中 在△ABD 和△ACD 中
⎪⎩⎪⎨⎧===CD BD AD AD AC AB
⎪⎩⎪⎨⎧==AD AD AC AB ⎪⎩
⎪⎨⎧=∠=∠=AD AD CAD BAD AC AB ∴△ABD ≌△ACD (SSS ),∴△ABD ≌△ACD (HL ),∴△ABD ≌△ACD (SAS ) ∴∠B=∠C , ∴∠B=∠C , ∴∠B=∠C
4、以上证明论证了性质1,并引导学生用几何语言描述
在△ABC 中 AB=AC
∴∠B=∠C ,
(强调:证明两个角相等又多了一种方法)
5、提问由△ABD 与△ACD 全等还可得出哪些相等的角和边?
由证明①得∠BAD =∠CAD ,∠ADB =∠ADC =90°验证了等腰三角形的中线
平分顶角并且平分底边。
D C B
由证明②得∠BAD=∠CAD,BD=CD验证了等腰三角形的高平分顶角并且平分底边。
由证明③得∠ADB=∠ADC=90BD=CD验证了等腰三角形的角平分线平分底边并且垂直底边。
由以上三个结论论证了性质2。
6、如何论证:性质3呢?(让学生思考片刻,并教学口头表达)
(说明:性质3是性质1的推论;强调:它是证明角相等、600的又一个依据)
四、课堂分层练习
见分层练习试卷
五、课堂小结,知识梳理
通过这节课的学习,同学们知道了等腰三角形的什么性质?证明两个角相等有哪些方法?在证明等腰三角形时,我们一般添咖什么样的辅助线?
请同学们谈谈上这节课的收获。
六、布置作业
七、板书设计。