厦门一中2012年中考数学二模试卷999

合集下载

2012—2015学年(上)厦门市九年级质量检测数学附答案.

2012—2015学年(上)厦门市九年级质量检测数学附答案.

2012—2013学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接使用2B铅笔作图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列计算正确的是ABCD2.计算2的值是A.±5 B.5 C.D3. 掷一个均匀正方体骰子,当骰子停止后,朝上一面的点数为2的概率是A.1 B.12C.13D.164. 若2是方程x2-2x+c=0的根,则c的值是A.-3 B.-1 C.0 D.15. 下列事件,是随机事件的是A. 从0,1,2,3,…,9这十个数中随机选取两个数,和为20B.篮球队员在罚球线上投篮一次,未投中C.度量三角形的内角和,结果是360 °D.度量正方形的内角和,结果是360 °6. 如图1,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是A.30°B.45°C.60°D.90°F图1EDC BA7. 如图2,在△ABC 中,AB =AC,BC =2.以A 为圆心作 圆弧切BC 于点D ,且分别交边AB 、AC 于点E 、F , 则扇形AEF 的面积是A .π8B .π4C .π2 D .π二、填空题(本大题有10小题,每小题4分,共40分) 8.x 的取值范围是 . 9. 方程x 2=3的根是 .10.如图3,A 、B 、C 、D 是⊙O 上的四点,若∠ACD =30°,则∠ABD = 度. 11. 已知AB 、CD 是⊙O 的两条弦,若︵AB =︵CD ,且AB =2,则CD = .12. 若一元二次方程x 2+4x +c =0有两个相等的实数根,则c 的值是 . 13. 一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红 色区域的概率是 . 14. 已知点A (a ,-1)、A 1(3,1)是关于原点O 的对称点,则a = .15. 把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地面积的4倍.设小圆形场地的半径为x 米,若要求出未知数x则应列出方程(列出方程,不要求解方程). 16. 如图4,AB 是⊙O 的弦,AB =2,△AOB ,则∠AOB = 度. 17. 若1x =,1y =,x 2-y 2=8,则a = .三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1+-(2)如图5,画出△ABC 关于点C 对称的图形;(3)如图6,已知A 、B 、C 是⊙O 上的三点,∠ACB =90°, BC =3,AC =4,求⊙O 直径的长度.图3B图5CA图4图2C19.(本题满分7分)解方程x2+2x-2=0.20.(本题满分7分)第一盒乒乓球中有1个白球和2个黄球,第二盒乒乓球中有2个白球和1个黄球.(1)从第一盒乒乓球中随机取出1个球,求这个球恰好是黄球的概率;(2)分别从每盒中随机取出1个球,求这2个球恰好都是黄球的概率.21.(本题满分8分)我们知道,若两个有理数的积是1,则称这两个有理数互为倒数.同样的,当两个实数(a+与(a的积是1时,我们仍然称这两个实数互为倒数.(1)判断(4+与(4是否互为倒数,并说明理由;(2)若实数是的倒数,求点(x,y)中纵坐标随横坐标变化的函数解析式,并画出函数图象.22.(本题满分8分)某公司举办产品鉴定会,参加会议的是该公司的林经理和邀请的专家.在专家到会时,林经理和每位专家握一次手表示欢迎;在专家离会时,林经理又和他们每人握一次手表示道别.且参加会议的每两位专家都握了一次手.(1)若参加会议的专家有a人,求所有参加会议的人共握手的次数(用含a的代数式表示);(2)所有参加会议的人共握手10次的情况是否会发生,请说明理由.23.(本题满分9分)如图7,四边形ABCD是等腰梯形,AD∥BC,BC=2.以线段BC的中点O为圆心,以OB为半径作圆,连结OA交⊙O于点M.(1)若∠ABO=120°,AO是∠BAD的平分线,求︵BM的长;(2)若点E是线段AD的中点,AEOA=2,求证:直线AD与⊙O相切.图724.(本题满分10分)已知关于x 的方程(a 2+1) x 2-2(a +b ) x +b 2+1=0. (1)若b =2,且2是此方程的根,求a 的值;(2)若此方程有实数根,当-3<a <-1时,求b 的取值范围.25.(本题满分10分)已知双曲线y =kx (k >0),过点M (m ,m )(m)作MA ⊥x 轴,MB ⊥y 轴,垂足分别是A 和B ,MA 、MB 分别交双曲线y =kx (k >0)于点E 、F .(1)若k =2,m =3,求直线EF 的解析式;(2)O 为坐标原点,连结OF ,若∠BOF =22.5°,多边形BOAEF 的面积是2,求k 的值.26.(本题满分12分)已知A 、B 、C 、D 是⊙O 上的四点,︵CD =︵BD ,AC 是四边形ABCD 的对角线.(1) 如图8,连结BD ,若∠CDB =60°,求证:AC 是∠DAB 的平分线;(2) 如图9,过点D 作DE ⊥AC ,垂足为E , 若AC =7, AB =5 ,求线段AE 的长度.图9图82012—2013学年(上) 厦门市九年级质量检测数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)8. x ≥2; 9. ±3; 10. 30; 11. 2; 12. 4; 13. 13;14. -3; 15. 4πx 2=π(x +5)2; 16. 60; 17. 4.说明:☆ 第9题写对1个给2分; 第15题写成4x 2=(x +5)2不扣分. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:2×(3+2)-26;=6+2-26 ……………………………………………………4分 =2-6. …………………………………………………………6分 说明:☆ 写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分;☆ 没有写正确答案的,按步给分.(2)能在图中看出对称点是C 点 ……………2分 能画出对称图形是三角形 ……………4分以上两点都有 …………………6分(3)证明:∵ ∠ACB =90°,…………………………1分∴ AB 是直径. …………………………3分在Rt △ABC 中, ∵BC =3,AC =4,∴ AB =5. ……………………………6分19.(本题满分7分)解法一: x 2+2x -2=0,∵ b 2-4ac =22+8=12, …………………………………………2分∴ x =-b ±b 2-4ac2a………………………………………… 4分B C EDA=-2±122 …………………………………………5分=-1±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 解法二: x 2+2x -2=0,(x +1)2=3. ………………………………………………4分 x +1=±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 说明:☆ x 1=,x 2=,写错一个扣1分.☆ 写出正确答案(即写出x 1=,x 2=,)且至少有一步过程,不扣分. ☆ 只有正确答案,没有过程,只扣1分. ☆ 没有写正确答案的,按步给分.☆ 如果12没有化简(即x 1=-2+122,x 2=-2-122),只扣1分.20.(本题满分7分)(1)解: P ( 恰好是黄球) ……………………………………………1分=23. …………………………………………………………………3分 (2)解: P (两球恰好都是黄球)=29 . ………………………………………7分说明:☆ 第(2)若答案不正确,但分母写对,则只扣2分.☆ 两小题的答案正确,但格式不对,如“事件”没写或写不对,只扣1分.21.(本题满分8分) (1)解法一:(4+2)与(4-2)不是互为倒数. …………………………………1分∵(4+2)(4-2) ……………………………………………………2分 =14. ………………………………………………………3分 而14≠1,∴(4+2)与(4-2)不是互为倒数.解法二:(4+2)与(4-2)不是互为倒数. …………………………………1分14+2……………………………………………………2分=4-214………………………………………………………3分 ≠4-2.∴(4+2)与 (4-2)不是互为倒数.说明:☆ 若没有写“(4+2)与(4-2)不是互为倒数”但最后有写“(4+2)与(4-2)不是互为倒数”,则分数可不扣,若有写“(4+2)与(4-2)不是互为倒数”但最后没有“(4+2)与(4-2)不是互为倒数”,不扣分.☆ 若写成“(4+2)不是(4-2)的倒数”亦可.(2)解:∵实数(x +y )是(x -y )的倒数,∴(x +y )(x -y )=1. ……………4分 ∴ x -y =1. ………………………5分 ∴ y =x -1. ………………………6分 画出坐标系,正确画出图象 …………8分说明:若图象画成直线、或自变量的取值不对,可得1分.22.(本题满分8分)(1)解:2a +a (a -1)2……………………………………………………3分说明: 若没有写全对,则写出2a 得1分,写出a (a -1)2得2分.(2)解法一:不会发生. ……………………………………………………4分设参加会议的专家有x 人.若参加会议的人共握手10次,由题意 ……………………………5分2x +x (x -1)2=10. ……………………………………………………6分∴ x 2+3x -20=0.∴ x 1=-3-892,x 2=-3+892. …………………………………7分∵ x 1、x 2都不是正整数, …………………………………8分∴ 所有参加会议的人共握手10次的情况不会发生.解法二:不会发生. ……………………………………………………4分 由题意我们知道,参加会议的专家的人数越多,则所有参加会议的人握手 的次数就越多.当参加会议的专家有3人时,所有参加会议的人共握手9次; …6分 当参加会议的专家有4人时,所有参加会议的人共握手14次; …8分 故所有参加会议的人共握手10次的情况不会发生.说明:☆ 若没有写“不会发生”但最后有下结论,则分数可不扣,若有写“不会发生”但最后没有下结论,不扣分.☆ 若没有写“若参加会议的人共握手10次”但列对方程,则此分不扣,列对方程可得2分;☆ 没有写“x 1、x 2都不是正整数,不合题意”而是写“经检验,不合题意” 亦可.23.(本题满分9分)(1)解:∵ AD ∥BC ,∠ABO =120°,∴ ∠BAD =60°. …………………………………………………………1分∵ AO 是∠BAD 的平分线, ∴ ∠BAO =30°.∴ ∠AOB =30°. ………………2分 ∵ BC =2,∴ BO =1. ………………3分 ∴︵BM =30π180=π6. ……………4分(2)证明:由题意得,四边形ABCD 是等腰梯形, ∴ 四边形ABCD 是轴对称图形.∵ 点O 、E 分别是底BC 、AD 的中点,连结OE ,∴ OE 是等腰梯形ABCD 的对称轴. ………………………………………5分 ∴ OE ⊥AD . …………………………………………………………6分在Rt △AOE 中,∵ AE =3,OA =2,∴ OE =1. …………………………………………………………7分 即OE 是⊙O 的半径. ……………………………………………………8分 ∴ 直线AD 与⊙O 相切. …………………………………………………9分 24.(本题满分10分)(1)解:∵b =2,且2是方程的根,代入原方程得(a 2+1) 22-2(a +2) 2+1+22=0. ……………………………………1分 即 4a 2-4a +1=0. …………………………………………2分 ∴ a =12 . ………………………………………………………4分(2)解:△=4(a +b )2 -4(a 2+1)(1+b 2) ……………………………………5分 =8ab -4a 2b 2-4=-4(ab -1)2. ………………………………………………6分 ∵ 方程有实数根,∴ -4(ab -1)2≥0. 即 4(ab -1)2≤0.∴ 4(ab -1)2=0. ……………………………………………………7分 ∴ ab -1=0.∴b =1a . ……………………………………………………………8分∵1>0,∴ 在每个象限,b 随a 的增大而减小. ……………………………………9分 ∴ 当-3<a <-1时,-1<b <-13. ……………………………………………………………10分25.(本题满分10分)(1)解:∵k =2,m =3,∴ 点E (3,23),点F (23,3). …………………………………………2分设直线EF 的解析式为y =ax +b ,则得,⎩⎪⎨⎪⎧3a +b =23,23a +b =3. ……………………………………………………………3分解得, ⎩⎪⎨⎪⎧a =-1,b =113.∴直线EF 的解析式为y =-x +113…………4分(2)解法一:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形. 点E (m ,k m ),F (km,m ). ……………5分∴ OA =OB ,AE =BF .连结OE ,∴ Rt △OBF ≌Rt △OAE . ………………6分 ∴ ∠EOA =∠BOF =22.5°.∴ ∠FOE =45°.连结EF 、OM 交于点C . 又 ∵∠MOA =45°, ∴ ∠MOE =22.5°.同理得,∠FOM =22.5°. ∵ OF =OE ,∴ OC ⊥FE ,且点C 线段EF 的中点.∴ Rt △FOC ≌Rt △EOC . ………………………………………………7分Rt △COE ≌Rt △AOE . ………………………………………………8分 ∴ S △AOE =14S 五边形BOAEF . …………………………………………………9分∴ 12·m ·k m =12.∴k=1. …………………………………………………………10分解法二:由题意得,MA⊥OA,MB⊥OB,∠BOA=90°,∴四边形OAMB是矩形.又MA=MB=m,∴四边形OAMB正方形.点E(m,km),F(km,m). ………………………………………………5分∴OA=OB,AE=BF.连结OE,∴Rt△OBF≌Rt△OAE. ………………………………………………6分∴∠EOA=∠BOF=22.5°.OF=OE.将△OBF绕点O顺时针旋转90°,记点F的对应点是P. ……………7分则∠EOP=45°.∵∠EOF=45°,∴△EOF≌△EOP. …………………………………………………8分∴S△EOP=12S BOAEF. ……………………………………………………9分即S△EOP=1.1 2·m(km+km)=1∴k=1. …………………………………………………………10分解法三:由题意得,MA⊥OA,MB⊥OB,∠BOA=90°,∴四边形OAMB是矩形.又MA=MB=m,∴四边形OAMB正方形.点E(m,km),F(km,m). ………………………………………5分∴ME=MF=m-km.连结EF,则△MFE是等腰直角三角形.连结OM交EF于点C.则OM⊥EF.∵∠BOM=45°,∠BOF=22.5°∴∠FOC=22.5°.∴Rt△FOB≌Rt△FOC. …………………………………………6分∴OC=OB=m.∵点E(m,km),F(km,m).∴直线EF的解析式是y=-x+m+km.∵ 直线OM 的解析式是y =x ,∴ 点C (m 2+k 2m ,m 2+k2m ). ……………………………………7分过点C 作CN ⊥x 轴,垂足为N . 则(m 2+k 2m )2+(m 2+k 2m)2=m 2.解得,k =(2-1) m 2. ……………………………………8分 由题意得,m 2-12(m -km )2=2. ……………………………………9分即 m 2-12[ m -(2-1) m ] 2=2.解得,(2-1) m 2=1.∴ k =1. ……………………………………10分 26.(本题满分12分)(1)证明:∵ ︵CD =︵BD , ∴ CD =BD . ………………………1分 又∵∠CDB =60°,∴△CDB 是等边三角形. …………………2分 ∴ ∠CDB =∠DBC . …………………3分 ∴ ︵CD =︵BC .∴ ∠DAC =∠CAB .∴ AC 是∠DAB 的平分线. ………………………………………………4分 (2)解法一:连结DB .在线段CE 上取点F ,使EF =AE ,连结DF . ……………………………6分 ∵ DE ⊥AC ,∴ DF =DA ,∠DFE =∠DAE . ……………………………………7分∵ ︵CD =︵BD ,∴ CD =BD .∴∠DAC =∠DCB . ∴ ∠DFE =∠DCB .∵ 四边形ABCD 是圆内接四边形, ∴ ∠DAB +∠DCB =180°.………………8分又∵∠DFC +∠DFE =180°,∴ ∠DFC =∠DAB . ………………………9分 ∵∠DCA =∠ABD ,∴△CDF ≌△BDA . ……………………………………………………10分∴CF=AB. …………………………………………………………11分∵AC=7,AB=5,∴AE=1. …………………………………………………………12分解法二:在︵CD上取一点F,使得︵DF=︵DA,…………………………………5分连结CF,延长CF,过D作DG⊥CF,垂足为G. ……………6分∵︵DF=︵DA,∴∠GCD=∠DCE.∵DC=DC,∴Rt△CGD≌Rt△CED. ……………7分∴CG=CE.∴DG=DE.∵︵DF=︵DA,∴DF=DA.∴Rt△DGF≌Rt△DEA. ………………………………………8分∴FG=AE. ………………………………………9分∵︵CD=︵BD,︵DF=︵DA,∴︵CF=︵AB.∴CF=AB. ………………………………………10分∵CG=CE,∴CF+FG=AC-AE ………………………………………11分即AB+AE=AC-AE∵AC=7,AB=5,∴AE=1. …………………………………………………………12分参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)二、填空题(本大题共10小题,每题4分,共40分)8. 3; 9. 14; 10.1; 11. 10; 12. 517; 13. 1;14. 125; 15. 6; 16. π2; 17. 1.18.(本题满分21分) (1)(本题满分7分)计算:2×6+27- 3解:原式=23+33- 3 ……………………………4分 =43. ……………………………7分 (2)(本题满分7分)解: 正确画出△ABC . ……………………………3分正确画出△A ,B ,C .,……………………………7分(3) (本题满分7分)证明:∵直线AC ,BD 是⊙O 的切线,又∵AB 是⊙O 的直径, ……………………………3分 ∴OA ⊥AC .OB ⊥BD . ……………………………5分 ∴AC ∥BD . ……………………………7分19.(本题满分21分) (1)(本题满分7分)P (一个白球一个黄球) ……………………………1分=12. ……………………………7分 (2)(本题满分7分)解:∵a =1,b =3,c =-2,∴ △=b 2-4ac=17. ……………………………2分 ∴ x =-b ±b 2-4ac2a=-3±172. ……………………………5分∴x 1=-3+172,x 2=-3-172. ……………………………7分(3)(本题满分7分) 解:在⊙O 中,∵︵AB =︵AC ,∴∠B =∠C .……………………………3分∵∠A =30°,∠A +∠B +∠C =180°,∴∠B =75°.分20.(本题满分6分)解: ∵ △=b 2-4ac=p 2-4×1×(p -2)=p 2-4p +8 ……………………………2分=(p -2)2+4. ……………………………4分∵(p -2)2≥0,∴(p -2)2+4﹥0. ……………………………5分即△﹥0.∴方程x 2+px +(p -2)=0有两个不相等的实数根.…………………6分21.(本题满分6分)解: 过点A 作AD ⊥x 轴于点D ,∵A (1,n ),B (-1,-n ), ∴点A 与点B 关于原点O 对称.∴点A 、B 、O 三点共线. ……………1分∴AO =BO =5. …………………2分在Rt △AOD 中, n 2+1=5, ∴ n =±2. ∵ n >0,∴ n =2. ……………………………3分 若点C 在x 轴正半轴,设点C (a ,0),则CD =a -1. 在Rt △ACD 中,AC 2=AD 2+CD 2=4+(a -1)2. ……………………………4分 又∵OC =AC∴ a 2=4+(a -1)2.∴ a =52. ……………………………5分若点C 在x 轴负半轴,∵AC >CD >CO ,不合题意.∴点C (52,0). ……………………………6分22.(本题满分6分)答:不能. ……………………………1分 设该菜园与墙平行的一边的长为x 米,则该菜园与墙垂直的一边的长为12(20-x )米,若12(20-x ) x =48. 即 x 2-20x +96=0. ……………………………4分解得x 1=12,x 2=8. ……………………………5分∵墙长为7米,12﹥7且8﹥7, ……………………………6分 ∴ 用20米长的篱笆不能围出一个面积为48平方米的矩形菜园. 23.(本题满分6分)解:如图, 在⊙O 中,半径OB =4, 设∠POQ 为n °,则有 2π=8πn 360.n =90°.……………………………1分 ∴∠POQ =90°. ∵∠ADO =∠A ,∴AB =10.∵四边形ABCD 是平行四边形,∴DC =AB =10. ……………………………3分 ∴ CO =8. ……………………………4分 过点O 作OE ⊥CD 于点E , 则OD ×OC =OE ×CD .∴OE =4.8. ……………………………5分 ∵4.8>4,∴直线DC 与⊙O 相离. ……………………………6分 24.(本题满分6分) 解:∵A (m 1,n 1),B (m 2,n 2)在直线y =kx +b 上,∴ n 1=k m 1+b ,n 2=km 2+b . ……………………………1分 ∴ n 1+n 2=k (m 1+m 2) +2b . ∴ kb +4=3kb +2b .∴k +1=2b . ……………………………3分∵ b >2,∴ 0<2b <1. ……………………………4分∴ 0<k +1<1.∴ -1<k <0. ……………………………5分 ∵ m 1<m 2,∴ n 2<n 1. ……………………………6分 25.(本题满分6分)解:连结DA 、DB .∵D 是︵ACB 的中点,∴ DA =DB .∵∠ACB=60°,∴∠ADB=60°……………1分∴△ADB 是等边三角形. ∴∠DAB=∠DBA=60°. 连结DC .则∠DCB=∠DAB=60°. ∵ DE ∥BC ,∴∠E=∠ACB=60°.∴∠DCB=∠E . ……………………………2分 ∵ ∠ECD=∠DBA=60°, ∴ △ECD 是等边三角形.∵ ︵CD=︵CD ,∴∠EAD=∠DBC . ……………………………4分 ∴△EAD ≌△CBD . ……………………………5分 ∴ BC=EA=10. ……………………………6分 26.(本题满分11分) (1)(本小题满分4分)解:∵方程x 2+4x +m =0与x 2-6x +n =0互为“同根轮换方程”,∴ 4m =-6n . ……………………………1分设t 是公共根,则有t 2+4t +m =0,t 2-6t +n =0.解得,t =n -m10. ……………………………2分∵ 4m =-6n .∴ t =-m6. ……………………………3分∴(-m 6)2+4(-m6)+m =0.∴ m =-12. ……………………………4分(2)(本小题满分7分)解1:∵ x 2-x -6=0与x 2-2x -3=0互为“同根轮换方程”,它们的公共根是3. ……………………………1分 而 3=(-3)×(-1)=-3×(-1).又∵ x 2+x -6=0与x 2+2x -3=0互为“同根轮换方程” . 它们的公共根是-3. 而-3=-3×1.∴当p =q =-3a 时, ……………………………3分 有9a 2-3a 2+b =0. 解得,b =-6a 2.∴ x 2+ax -6a 2=0,x 2+2ax -3a 2=0.解得,p =-3a ,x 1=2a ;q =-3a ,x 2=a .……………………………4分∵b ≠0,∴-6a 2≠0,∴a ≠0.∴ 2a ≠a .即x 1≠x 2. ……………………………5分又∵ 2a ×12b =ab , ……………………………6分∴方程x 2+ax +b =0(b ≠0)与x 2+2ax +12b =0互为“同根轮换方程” .……………………………7分解2:∵ x 2-x -6=0与x 2-2x -3=0互为“同根轮换方程”;它们的非公共根是-2,-1. ……………………………1分 而-2=2×(-1), -1=1×(-1).又∵ x 2+x -6=0与x 2+2x -3=0互为“同根轮换方程” . 它们的非公共根是2,1. 而2=2×1,1=1×1.∴当p =2a ,q =a 时, ……………………………3分 有4a 2+2a 2+b =0. 解得,b =-6a 2.∴有 x 2+ax -6a 2=0,x 2+2ax -3a 2=0.解得,x 1=-3a ,p =2a ;x 3=-3a ,q =a .……………………………4分 ∵b ≠0,∴-6a 2≠0,∴a ≠0.∴2a ≠a .即p ≠q . ……………………………5分 且x 1=x 3=-3a .∵ 2a ×12b =ab , ……………………………6分∴方程x 2+ax +b =0(b ≠0)与x 2+2ax +12b =0互为“同根轮换方程” .……………………………7分 解3:若方程x 2+ax +b =0(b ≠0)与x 2+2ax +12b =0有公共根.则由x 2+ax +b =0,x 2+2ax +12b =0解得x =b2a . ……………………………1分∴ b 24a 2+b2+b =0.∴b =-6a 2. ……………………………3分 当b =-6a 2时,有 x 2+ax -6a 2=0,x 2+2ax -3a 2=0.解得,x 1=-3a ,x 2=2a ;x 3=-3a ,x 4=a .…………………………4分 若 p =q =-3a , ∵b ≠0,∴-6a 2≠0,∴a ≠0.∴2a ≠a .即x 2≠x 4. …………………………5分∵ 2a ×12b =ab , …………………………6分∴方程x 2+ax +b =0(b ≠0)与x 2+2ax +12b =0互为“同根轮换方程” .…………………………7分2014—2015学年(上)厦门市九年级质量检测数学试卷(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分,每小题都有四个选项,其中有且只有一个选项正确)1.下列事件中,属于必然事件的是( )A.任意画一个三角形,其内角和是180°B.某射击运动员射击一次,命中靶心C.在只装了红色的袋子中摸到白球D.掷一枚质地均匀的正方体骰子,向上的一面的点数是32.在下列图形中属于中心对称图形的是( )A.锐角三角形B.直角三角形C.钝角三角形D.平行四边形3.二次函数y=(x-2)2+5的最小值是( )A.2B.-2C.5D.-54.如图1,点A在⊙O上,点C在⊙O内,点B在⊙O外,则图中的圆周角是( )A.∠OABB.∠OACC.∠COAD.∠B图15.已知一个一元二次方程的二次项系数是3,常数项是1,则这个一元二次方程可能是( )A.3x+1=0B. x2+3=0C.3x2-1=0D. 3x2+6x+1=06.已知P (m,2m+1)是平面直角坐标系中的点,则点P的纵坐标随横坐标变化的函数解析式可以是 ( )A .y =xB . y =2xC . y =2x +1D .1122y x =- 7.已知点A (1,2)是坐标原点,将线段OA 绕点O 逆时针旋转90°,点A 旋转后的对应点是A 1,则点A 1的坐标是 ( )A . (-2,1)B . (2,-1)C . (-1,2)D . (-1,-2)8.抛物线y =(1-2x )2+3的对称轴是 ( )A .x =1B . x =-1C .12x =- D .12x =9.青山村种的水稻2010年平均每公顷产7200kg ,设水稻每公顷产量的年平均增长率为x ,则2012年平均每公顷比2010年增加的产量是 ( )A .7200(x +1)2kgB . 7200(x 2+1) kgC . 7200(x 2+x ) kgD . 7200(x +1) kg10.如图2,OA ,OB ,OC 都是⊙O 的半径,若∠AOB 是锐角,且∠AOB =2∠BOC 。

2012福建厦门中考数学

2012福建厦门中考数学

厦门市2012年初中毕业及高中阶段各类学校招生考试数学试题一、选择题 (本大题有 7 小题,每小题3分,共21分。

每小题都有四个选项,其中有且只有一个选项是正确的)1.(2012厦门,1,3分)-2的相反数是 ( )A.2B.-2C.2±D.1 2 -答案:A.2. (2012厦门,2,3分)下列事件中,是必然事件的是 ( )A.抛掷 1 枚硬币,掷得的结果是正面朝上B.抛掷 1 枚硬币,掷得的结果是反面朝上C.抛掷 1 枚硬币,掷得的结果不是正面朝上就是反面朝上D.抛掷 2 枚硬币,掷得的结果是 1 个正面朝上与 1 个反面朝上答案:C.3. (2012厦门,3,3分)图 1是一个立体图形的三视图,则这个立体图形是 ( )A.圆锥B.球C. 圆柱D. 三棱锥答案:A.4.(2012厦门,4,3分)某种彩票的中奖机会是 1%,下列说法正确的是 ( )A.买一张这种彩票一定不会中奖B. 买 1张这种彩票一定会中奖C.买 100张这种彩票一定会中奖D.当购买彩票的数量很大时,中奖的频率稳定在 1%答案:D.5.(2012厦门,5,3分)x的取值范围是()A.1x> B.1x≥ C. 1x< D.1x≤答案:B.规律总结:二次根式有意义,令被开方数大于或大于0,转化为解不等式的问题.关键词:二次根式 一元一次不等式6. (2012厦门,6,3分)如图 2,在菱形ABCD 中,AC 、BD 是对角线,若∠BAC =50°,则∠ABC 等于 ( )A.40°B.50°C.80°D.100° 答案:C .7. (2012厦门,7,3分)已知两个变量x 和y ,它们之间的 3组对应值如下表所示则y 与x 之间的函数关系式可能是 ( )A.y x =B.21y x =+C.21y x x =++D.3y x=答案:B .二、填空题 (本大题有 10小题,每小题4分,共40分) 8. (2012厦门,8,4分)计算:32a a -= . 答案:a9. (2012厦门,9,4分)已知∠A =40°,则∠A 的余角的度数是 . 答案:50°.10. (2012厦门,10,4分)计算:32m m ÷= . 答案:m11. (2012厦门,11,4分) 在分别写有整数 1 到 10 的 10张卡片中,随即抽取 1 张卡片,则该卡片的数字恰好是奇数的概率是 .答案:12.12. (2012厦门,12,4分)如图3,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,若OB =3,则 OC = .答案:3.13. (2012厦门,13,4分)“x 与y 的和大于 1”用不等式表示为 . 答案:1x y +>.14. (2012厦门,14,4分)如图 4,点D 是等边△ABC 内的一点,如果△ABD 绕点A 逆时针旋转后能与△ACE 重合,那么旋转了 度.答案:60°.15. (2012厦门,15,4分)五边形的内角和的度数是 . 答案:540°. 16. (2012厦门,16,4分)已知2a b +=,1ab =-,则33a ab b ++= ,22a b += . 答案:617. (2012厦门,17,4分)如图 5,已知∠ABC =90°,AB r π=,2rBC π=,半径为 r 的⊙O 从点A 出发,沿A B C →→方向滚动到点 C 时停止。

2012学年第二学期九年级中考数学模拟卷(一)

2012学年第二学期九年级中考数学模拟卷(一)

2012学年第二学期九年级中考数学模拟卷(一)数 学 试 题(全卷满分:150分;答卷时间:120分钟)考生须知:1.解答内容一律写在答题卡上,否则不得分. 2.答题、画线一律用0.5毫米的黑色签字笔...... 一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的) 1.下列计算正确的是(A )2·3= 6 (B) 2+3=6(C) 8=3 2 (D) 4÷2=22.已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米, 则⊙O 的半径是 (A )3厘米 (B) 4厘米 (C) 5厘米 (D) 8厘米3.已知:如图1, ⊙O 的两条弦AE 、BC 相交于点D,连结AC 、 BE.若∠ACB =60°,则下列结论中正确的是 (A ) ∠AOB =60° (B) ∠ADB =60° (C) ∠AEB =60° (D) ∠AEB =30°4.一定质量的干松木,当它的体积V =2m 3时,它的密度ρ=0.5×103kg/m 3,则ρ与V 的函数关系式是(A ) ρ=1000V (B) ρ=V +1000 (C) ρ=500V (D) ρ=1000V5.矩形ABCD 中的顶点A 、B 、C 、D 按顺时针方向排列,若在平面直角坐标系内, B 、D 两点对应的坐标分别是(2, 0), (0, 0),且 A 、C 两点关于x 轴对称.则C 点对应的坐标是 (A )(1, 1) (B) (1, -1) (C) (1, -2) (D) (2, -2)6.已知:如图2,△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP =∠B ;②∠APC =∠ACB ;③AC 2=AP ·AB ;④AB ·CP =AP ·CB ,能满足△APC 和△ACB 相似的条件是( ) A .①②④ B .①③④ C .②③④D .①②③图1图27.如图3,将矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于E,下列结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDBAEC.△ABE~△CBD D.sin ABE=ED图3二、填空题(本大题有10小题,每小题4分,共40分)8.-3的相反数是.9.计算:sin30°=.10.已知:∠A=30°,则∠A的补角是_____度.11.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连结DE、DF.在不再连结其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是______.12.在⊙O1中,圆心角∠AOB的度数100°,则弦AB所对的圆周角的度数是______.13.计算:3x2y+2x2y=.阅读下面一则材料,回答第14、15题:A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么AB=2×20 m=40 m.图414.也可由图5所求,用相似三角形知识来解,请根据题意填空:延长AC 到D ,使CD =21AC ,延长BC 到E ,使CE =______,则由相似三角形得,AB =______.图515.还可由三角形全等的知识来设计测量方案,求出AB 的长,请用上面类似的步骤,在图6中画出图形并叙述你的测量方案.图616.两个不相等的无理数,它们的乘积为有理数,这两个数可以是______.17.定义一种运算*,其规则为:当a ≥b 时,a *b =b 3;当a <b 时,a *b =b 2.根据这个规则,方程3*x =27的解是______.三、解答题(本大题有9小题,共89分)18.(本题满分8分)解不等式组 ⎩⎨⎧2x -1≥x +13x -1≥x +5并把解集在数轴上表示出来.19.(本题满分8分)如图7,⊙O 表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.图7(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法).(2)请你通过操作和猜想,将第3、第4和第n次裁剪后所得扇形的总个数(S)填入下表.20.(本题满分8分)如图8,在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上.(1)请在图中画一个△A1B1C1使△A2B2C2∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(2)请在图中画一个△A2B2C2使△A2B2C2∽△ABC(相似比为1),且点A2、B2、C2都在单位正方形的顶点上.图821.(本题满分9分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,需要用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来.(2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试写出y与x 之间的函数关系式,并利用函数性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?22.(本题满分10分)已知:图A、图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别为SA 、SB(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:S A ︰S B 的值是___________;(2)请在图C 的网格上画出一个面积为8个平方单位的中心对称图形;图A 图B 图C23.(本题满分10分)如图9,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变成△OA 2B 2,第三次将△OA 2B 2变成△OA 3B 3.已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).图9(1)观察每次变换前后的三角形有何变化,找出规律,按此变换再将△OA 3B 3变成△OA 4B 4,则A 4的坐标是______,B 4的坐标是______.(2)若按第(1)题找到的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是______,B n 的坐标是______. 24.(本题满分12分)已知x 1、x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根. (1)是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-23成立?若存在,求出k 的值;若不存在请说明理由. (2)求使1221x x x x -2的值为整数的实数k 的整数值.25.(本题满分12分) 如图10,已知⊙O 和⊙O ′都经过点A 和点B ,直线PQ 切⊙O 于点P ,交⊙O ′于点Q 、M ,交AB 的延长线于点N . (1)求证:PN 2=NM ·NQ .图10 图11 图12 图13(2)若M是PQ的中点,设MQ=x,MN=y,求证:x=3y.(3)若⊙O′不动,把⊙O向右或向左平移,分别得到图11、图12、图13,请你判断(直接写出判断结论,不需证明);①(1)题结论是否仍然成立?②在图11中,(2)题结论是否仍然成立?在图12、图13中,若将(2)题条件改为:M是PN的中点,设MQ=x,MN=y,则x =3y的结论是否仍然成立?26.(本题满分12分)已知,如图14,抛物线()02≠++=acbxaxy经过x轴上的两点A(1x,0)、B(2x,0)和轴上的点C(0,23-),⊙P的圆心P在y轴上,且经过B、C两点,若ab3=,AB=32,(1)求抛物线的解析式;(2)D在抛物线上,且C、D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P?并说明理由;(3)设直线BD交⊙P于另一点E,求经过点E的⊙P的切线的解析式。

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。

福建省厦门市中考数学模拟考试试题二

福建省厦门市中考数学模拟考试试题二

)(B 'C 福建省厦门市2012届中考数学模拟考试试题二一选择题:(本大题有7小题,每小题3分,共21分) 1、下列所给的数中,是无理数的是:( ) A、2C、12D、 0.1 2.函数y= x -2 中x 的取值范围是 ( )A. x >2B. x ≥2C. x <2D. x ≤2 3、不等式组{2139x x -≥->的解集在数轴上可表示为( )A 、、C 、、4.下列式子成立的是:( )A. 632a a a =⨯ B.623)(a a = C. 022=÷a a D. 6223)(b a b a -=⋅- 5、已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一定..正确的是( ) A .AE =OE B .CE =DE C .OE =12CE D .∠AOC =60°6.如图,在□ABCD 中,CE AB ⊥,E 为垂足,如果120A ∠=, 那么BCE ∠ 的度数是( ) A .60B .50C .40D .307、已知△ABC 的面积为36,将△ABC 沿BC 的方向平移到△A /B /C /的位置,使B /和C 重合,连结AC / 交A /C 于D ,则△C /DC 的面积为 ( )A 、 6B 、9C 、12D 、18 二、填空题:(每小题4分,共40分) 8、计算:8= .9、2011年春节黄金周来厦游客异常火爆,各项旅游接待指标均创历年春节黄金周新高.其中主要景点累计接待人数为946000,接待人数用科学计数法可以表示为 .10、因式分解:a 2-2a = .11、已知数据1,2,2,3,3,2,则这组数据的众数是________.12、如图,C O 是⊙上一点,O 是圆心.若35C ∠=,则AOB ∠的度数为( ) 13、已知⊙A 、⊙B 相外切,圆心距为10 cm ,其中⊙A 的半径为4 cm ,则⊙B 的半径为 cm .14、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 . 15、在△ABC 中,∠ACB =90°,c os A =23,AB =8,则AC= 16. 如下图,用黑白两色的正六边形地砖按下图所示的规律,拼成若干个地板图案,则第8 个图案中白色的地板砖有_____块,第n 个图案中白色的地板砖有_____块(12题)17.如图,在□ABCD 中,E 为AD 的中点.已知EC =9,△BCF 的面积为183. 则CF = ;△EFD 的面积为 . 三、解答题18.(1)先化简,再求值:23393x x x ++--,其中1x =-(2)利用尺规画出∠AOB 角平分线(不写画法,保留作图痕迹)(3)在矩形ABCD 中,P 是AD 上的一点,过C 作CQ ⊥PB , 垂足为Q . 求证:△ABP ∽△BCQ19.某商场摸奖促销活动规定:在一只不透明的箱子里放三个已搅均的相同小球,球上分别写有 “10元”、“20元”、“20元”.顾客每消费500元,就可以先从箱子里摸出一个小球,看过后放回箱内搅匀再摸出第二个球,商场根据顾客两次摸球所标的金额之和返回现金.(1)求返回现金20元的概率; (2)写出一个概率为94的事件.20.(本题满分8分)已知直线y 1=-x +b 与双曲线xky =2交于点P (-2, 1). (1)求直线、双曲线所对应的函数关系式;(2)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x 为何值时,y 1>y 2?21.(本题满分8分)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?22(8分)如图,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 、DC 的延长线相交于点F , 连结AC 、BF.(1)求证:AB =CF.(2)如果AF 平分∠BAC ,四边形ABFC 是什么样的特殊四边形?请证明你的结论.23.(本题满分10分)已知:如图,ABC △中,AB AC =,以AB 为直径的O 交BC 于点P ,PD AC ⊥于点D .(1)求证:PD 是O 的切线;(2)若1202CAB AB ∠==,,求BC 的值.24.(本题满分12分)已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)25.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边. (1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称(2)如图(1),已知格点(小正方形的顶点)(00)O ,,A (4,0),B (0,3),请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(2)如图(2),将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连结AD DC ,,30DCB =∠.求证:四边形ABCD 是以DC 、BC 为勾股边的勾股四边形.(1)解:正方形、长方形、直角梯形.(任选两个均可)(2分)(填正确一个得1分) (2)解:答案如图所示.M (2,4)或M (4,3).(没有写出不扣分) (2分)(根据图形给分,一个图形正确得1分)(2分)(根据图形给分,一个图形正确得1分)(3)证明:连接EC , ∵△ABC ≌△DBE ,(5分) ∴AC=DE ,BC=BE ,(6分) ∵∠CBE=60°,∴EC=BC ,∠BCE=60°,(7分) ∵∠DCB=30°,∴∠DCE=90°, ∴DC2+EC2=DE2,(8分) ∴DC2+BC2=AC2.即四边形ABCD 是勾股四边形.(10分)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠. 请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形 是等对边四边形; (3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论. 答案:解:(1)回答正确的给1分(如平行四边形、等腰梯形等). (2)答:与A ∠相等的角是BOD ∠(或COE ∠). 四边形DBCE 是等对边四边形.(3)答:此时存在等对边四边形,是四边形DBCE .证法一:如图1,作CG BE ⊥于G 点,作BF CD ⊥交CD 延长线于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边, 所以BCF CBG △≌△. 所以BF CG =.因为BDF ABE EBC DCB ∠=∠+∠+∠, BEC ABE A ∠=∠+∠,BO A DEC BOAD E CF 图1G所以BDF BEC ∠=∠. 可证BDF CEG △≌△. 所以BD CE =.所以四边形DBCE 是等边四边形.证法二:如图2,以C 为顶点作FCB DBC ∠=∠,CF 交BE 于F 点. 因为12DCB EBC A ∠=∠=∠,BC 为公共边,所以BDC CFB △≌△.所以BD CF =,BDC CFB ∠=∠. 所以ADC CFE ∠=∠.因为ADC DCB EBC ABE ∠=∠+∠+∠, FEC A ABE ∠=∠+∠, 所以ADC FEC ∠=∠. 所以FEC CFE ∠=∠. 所以CF CE =. 所以BD CE =.所以四边形DBCE 是等边四边形.说明:当AB AC =时,BD CE =仍成立.只有此证法,只给1分.。

厦门市2012-2013质量检测数学试卷及参考答案

厦门市2012-2013质量检测数学试卷及参考答案

2012—2013学年(上)厦门市九年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号考生注意:本学科考试有两张试卷,分别是本试题(共4页26题)和答题卡.试题答案要填在答题卡相应的答题栏内,否则不能得分.一、选择题(本大题有7小题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是( )A .03-3=B .333=+C .633=⨯ D .333=÷2.计算25)(的值是( ) A .±5 B .5 C .±5 D .53.掷一个均匀正方体骰子,当骰子停止后,朝上一面的点数为2的概率是( ) A .1 B .21 C .31 D .614.若2是方程022=+-c x x 的根,则c 的值是( ) A .3- B .1- C .0 D .1 5.下列事件,是随机事件的是( )A .从0,1,2,3,…,9这十个数中随机选取两个数,和为20B .篮球队员在罚球线上投篮一次,未投中C .度量三角形的内角和,结果是360°D .度量正方形的内角和,结果是360°6.如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE=30°, 若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( ) A .30° B .45° C .60° D .90°7.在△ABC 中,AB=AC=2,BC=2,以A 为圆心作圆弧切BC 于点D , 且分别交边AB 、AC 于点E 、F ,则扇形AEF 的面积是( )A . 8πB . 4πC . 2πD . πF AE BDC8.二次根式2-x 有意义,则x 的取值范围是 . 9.方程32=x 的根是 .10.如图,A 、B 、C 、D 是圆O 上的四点,若∠ACD =30°, 则∠ABD = .11.已知AB 、CD 是圆O 的两条弧,若弧AB =弧CD ,且AB =2,则CD = . 12.若一元二次方程042=++c x x 有两个相等的实数根,则c 的值是 .13.一个圆形转盘被平均分成红、黄、蓝3个扇形区域,向其投掷一枚飞镖,飞镖落在红色区域的概率 . 14.已知点A (a ,-1)、A (3,1)是关于原地O 的对称点,则a .15.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形 场地面积的4倍,设小圆形场地的半径为x 米,若要求出未知数x , 则应列出方程 (列出方程,不要求解除未知数) 16.如图,AB 是圆O 的弦,AB =2,△AOB 的面积是3,则∠AOB = . 17.1+=a x ,1-=a y ,8-22=y x ,则a = .三、解答题(本大题有9小题,共89分) 18.(本题满分18分)(1)计算62-232)(+⨯;(2)如图,画出△ABC 关于点C 对称的图形;(3)如图,已知A 、B 、C 是圆O 上的三点,∠ACB =90°,BC =3,AC =4,求圆O 直径的长度. DAB CBA CAC19.(本题满分7分)解方程x 2+2x -2=0.20.(本题满分7分)第一盒乒乓球中有1个白球和2个黄球,第二盒乒乓球中有2个白球和一个黄球. (1)从第一盒乒乓球中随机取出1个球,求这个球恰好是黄色球的概率; (2)分别从每盒中随机取出1个球,求这2个球恰好都是黄色球的概率.21.(本题满分8分)我们知道,若两个有理数的积是1,则称这两个有理数互为倒数,同样的,当两个实数)(b a +与)(b a -的积是1时,我们仍称这两个实数互为倒数.(1)判断)(24+与)(2-4是否互为倒数,并说明理由;(2)若实数)(y x +是)(y x -的倒数,求点(x ,y )中纵坐标随横坐标变化的函数解析式,并画出图象.22.(本题满分8分)某公司举办产品鉴定会,参加会议的是该公司的林经理和邀请的专家,在专家到会时,林经理和每位专家握一次手表示欢迎;在专家离会时,林经理又和他们每人握一次手表示道别, 且参加会议的每两位专家都握了一次手.(1)若参加会议的专家有a 人,求所有参加会议的人共握手的次数; (2)所有参加会议的人共握手10次的情况是否会发生,请说明理由.23.(本题满分9分)如图,四边形ABCD 是等腰梯形,AD ∥BC ,BC =2,以线段BC 的中点O 为圆心, 以OB 为半径作圆,连接OA 交圆O 于点M ,(1)若∠ABO =120°,AO 是∠BAD 的平分线,求弧BM 的长;(2)若点E 是线段AD 的中点,AE =3,OA =2,求证:直线AD 与圆O 相切 .24.(本题满分10分)已知关于x 的方程01)(2)1(222=+++-+b x b a x a . (1)若b =2,且2是此方程的根,求a 的值;(2)若此方程有实数根,当-3<a <-1,求b 的取值范围.25.(本题满分11分)已知双曲线)0(>=k xky 过点M (m ,m ))(k m >作MA ⊥x 轴,MB ⊥y 轴,垂足分别 是A 和B ,MA 、MB 分别交双曲线)0(>=k xky 于点E 、F .(1)若k =2,m =3,求直线EF 的解析式;(2)O 为坐标原点,若连接OF ,若∠BOF =22.5°,多边形BOAEF 的面积为2,求k 的值.26.(本题满分11分)已知A 、B 、C 、D 是圆O 上的四点,弧CD =弧BD ,AC 是四边形ABCD 的对角线, (1)如图,连接BD ,若∠CDB =60°,求证:AC 是∠DAB 的平分线;(2)如图,过点D 作DE ⊥AC ,垂足为E ,若AC =7,AB =5,求线段AE 的长度.2012—2013学年(上) 厦门市九年级质量检测数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 1 2 3 4 5 6 7 选项ABDCBAB8. x ≥2; 9. ±3; 10. 30; 11. 2; 12. 4; 13. 13;14. -3; 15. 4πx 2=π(x +5)2; 16. 60; 17. 4.说明:☆ 第9题写对1个给2分; 第15题写成4x 2=(x +5)2不扣分. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:2×(3+2)-26;=6+2-26 ……………………………………………………4分 =2-6. …………………………………………………………6分 说明:☆ 写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分;☆ 没有写正确答案的,按步给分.(2)能在图中看出对称点是C 点 ……………2分 能画出对称图形是三角形 ……………4分以上两点都有 …………………6分(3)证明:∵ ∠ACB =90°,…………………………1分 ∴ AB 是直径. …………………………3分在Rt △ABC 中, ∵BC =3,AC =4,∴ AB =5. ……………………………6分19.(本题满分7分)解法一: x 2+2x -2=0,∵ b 2-4ac =22+8=12, …………………………………………2分∴ x =-b ±b 2-4ac2a ………………………………………… 4分=-2±122 …………………………………………5分=-1±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 解法二: x 2+2x -2=0,(x +1)2=3. ………………………………………………4分 O C B C EDA即x 1=-1+3,x 2=-1-3. ……………………………………………7分 说明:☆ x 1=,x 2=,写错一个扣1分.☆ 写出正确答案(即写出x 1=,x 2=,)且至少有一步过程,不扣分. ☆ 只有正确答案,没有过程,只扣1分. ☆ 没有写正确答案的,按步给分.☆ 如果12没有化简(即x 1=-2+122,x 2=-2-122),只扣1分.20.(本题满分7分)(1)解: P ( 恰好是黄球) ……………………………………………1分=23. …………………………………………………………………3分 (2)解: P (两球恰好都是黄球)=29 . ………………………………………7分说明:☆ 第(2)若答案不正确,但分母写对,则只扣2分.☆ 两小题的答案正确,但格式不对,如“事件”没写或写不对,只扣1分.21.(本题满分8分) (1)解法一:(4+2)与(4-2)不是互为倒数. …………………………………1分∵(4+2)(4-2) ……………………………………………………2分 =14. ………………………………………………………3分 而14≠1,∴(4+2)与(4-2)不是互为倒数.解法二:(4+2)与(4-2)不是互为倒数. …………………………………1分14+2……………………………………………………2分=4-214………………………………………………………3分≠4-2.∴(4+2)与 (4-2)不是互为倒数.说明:☆ 若没有写“(4+2)与(4-2)不是互为倒数”但最后有写“(4+2)与(4-2)不是互为倒数”,则分数可不扣,若有写“(4+2)与(4-2)不是互为倒数”但最后没有“(4+2)与(4-2)不是互为倒数”,不扣分. ☆ 若写成“(4+2)不是(4-2)的倒数”亦可.(2)解:∵实数(x +y )是(x -y )的倒数,∴(x +y )(x -y )=1. ……………4分 ∴ x -y =1. ………………………5分 ∴ y =x -1. ………………………6分 画出坐标系,正确画出图象 …………8分说明:若图象画成直线、或自变量的取值不对,可得1分.22.(本题满分8分)(1)解:2a +a (a -1)2……………………………………………………3分说明: 若没有写全对,则写出2a 得1分,写出a (a -1)2得2分.(2)解法一:不会发生. ……………………………………………………4分设参加会议的专家有x 人.若参加会议的人共握手10次,由题意 ……………………………5分2x +x (x -1)2=10. ……………………………………………………6分∴ x 2+3x -20=0.∴ x 1=-3-892,x 2=-3+892. …………………………………7分∵ x 1、x 2都不是正整数, …………………………………8分∴ 所有参加会议的人共握手10次的情况不会发生.解法二:不会发生. ……………………………………………………4分 由题意我们知道,参加会议的专家的人数越多,则所有参加会议的人握手 的次数就越多.当参加会议的专家有3人时,所有参加会议的人共握手9次; …6分 当参加会议的专家有4人时,所有参加会议的人共握手14次; …8分 故所有参加会议的人共握手10次的情况不会发生.说明:☆ 若没有写“不会发生”但最后有下结论,则分数可不扣,若有写“不会发生”但最后没有下结论,不扣分.☆ 若没有写“若参加会议的人共握手10次”但列对方程,则此分不扣,列对方程可得2分; ☆ 没有写“x 1、x 2都不是正整数,不合题意”而是写“经检验,不合题意” 亦可.23.(本题满分9分)(1)解:∵ AD ∥BC ,∠ABO =120°,∴ ∠BAD =60°. …………………………………………………………1分 ∵ AO 是∠BAD 的平分线, ∴ ∠BAO =30°. ∴ ∠AOB =30°. ………………2分 ∵ BC =2,∴ BO =1. ………………3分 ∴︵BM =30π180=π6 . ……………4分(2)证明:由题意得,四边形ABCD 是等腰梯形, ∴ 四边形ABCD 是轴对称图形.∵ 点O 、E 分别是底BC 、AD 的中点,连结OE ,∴ OE 是等腰梯形ABCD 的对称轴. ………………………………………5分 ∴ OE ⊥AD . …………………………………………………………6分在Rt △AOE 中,∵ AE =3,OA =2,∴ OE =1. …………………………………………………………7分 即OE 是⊙O 的半径. ……………………………………………………8分 ∴ 直线AD 与⊙O 相切. …………………………………………………9分 24.(本题满分10分)M OE D C B A代入原方程得(a 2+1) 22-2(a +2) 2+1+22=0. ……………………………………1分 即 4a 2-4a +1=0. …………………………………………2分 ∴ a =12 . ………………………………………………………4分(2)解:△=4(a +b )2 -4(a 2+1)(1+b 2) ……………………………………5分 =8ab -4a 2b 2-4=-4(ab -1)2. ………………………………………………6分 ∵ 方程有实数根,∴ -4(ab -1)2≥0. 即 4(ab -1)2≤0.∴ 4(ab -1)2=0. ……………………………………………………7分 ∴ ab -1=0.∴b =1a . ……………………………………………………………8分∵1>0,∴ 在每个象限,b 随a 的增大而减小. ……………………………………9分 ∴ 当-3<a <-1时,-1<b <-13. ……………………………………………………………10分25.(本题满分10分) (1)解:∵k =2,m =3,∴ 点E (3,23),点F (23,3). …………………………………………2分设直线EF 的解析式为y =ax +b ,则得,⎩⎪⎨⎪⎧3a +b =23,23a +b =3. ……………………………………………………………3分解得, ⎩⎪⎨⎪⎧a =-1,b =113.∴直线EF 的解析式为y =-x +113…………4分(2)解法一:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形. 点E (m ,k m ),F (km ,m ). ……………5分∴ OA =OB ,AE =BF .连结OE ,∴∠EOA=∠BOF=22.5°.∴∠FOE=45°.连结EF、OM交于点C.又∵∠MOA=45°,∴∠MOE=22.5°.同理得,∠FOM=22.5°.∵OF=OE,∴OC⊥FE,且点C线段EF的中点.∴Rt△FOC≌Rt△EOC. ………………………………………………7分Rt△COE≌Rt△AOE. ………………………………………………8分∴S△AOE=14S五边形BOAEF. …………………………………………………9分∴12·m·km=12.∴k=1. …………………………………………………………10分解法二:由题意得,MA⊥OA,MB⊥OB,∠BOA=90°,∴四边形OAMB是矩形.又MA=MB=m,∴四边形OAMB正方形.点E(m,km),F(km,m). ………………………………………………5分∴OA=OB,AE=BF.连结OE,∴Rt△OBF≌Rt△OAE. ………………………………………………6分∴∠EOA=∠BOF=22.5°.OF=OE.将△OBF绕点O顺时针旋转90°,记点F的对应点是P. ……………7分则∠EOP=45°.∵∠EOF=45°,∴△EOF≌△EOP. …………………………………………………8分∴S△EOP=12S BOAEF. ……………………………………………………9分即S△EOP=1.1 2·m(km+km)=1∴k=1. …………………………………………………………10分解法三:由题意得,MA⊥OA,MB⊥OB,∠BOA=90°,∴四边形OAMB是矩形.又MA=MB=m,∴四边形OAMB正方形.点E(m,km),F(km,m). ………………………………………5分∴ME=MF=m-km.※内部资料 世纪蓝海版权所有 请勿外传※ ~ 11 ~连结OM 交EF 于点C .则OM ⊥EF . ∵∠BOM =45°,∠BOF =22.5° ∴∠FOC =22.5°.∴ Rt △FOB ≌Rt △FOC . …………………………………………6分 ∴ OC =OB =m .∵点E (m ,k m ),F (km,m ).∴ 直线EF 的解析式是y =-x +m +km .∵ 直线OM 的解析式是y =x ,∴ 点C (m 2+k 2m ,m 2+k2m ). ……………………………………7分过点C 作CN ⊥x 轴,垂足为N . 则(m 2+k 2m )2+(m 2+k 2m)2=m 2.解得,k =(2-1) m 2. ……………………………………8分 由题意得,m 2-12(m -km )2=2. ……………………………………9分即 m 2-12[ m -(2-1) m ] 2=2.解得,(2-1) m 2=1.∴ k =1. ……………………………………10分 26.(本题满分12分)(1)证明:∵ ︵CD =︵BD , ∴ CD =BD . ………………………1分 又∵∠CDB =60°,∴△CDB 是等边三角形. …………………2分 ∴ ∠CDB =∠DBC . …………………3分 ∴ ︵CD =︵BC .∴ ∠DAC =∠CAB .∴ AC 是∠DAB 的平分线. ………………………………………………4分 (2)解法一:连结DB .在线段CE 上取点F ,使EF =AE ,连结DF . ……………………………6分 ∵ DE ⊥AC ,∴ DF =DA ,∠DFE =∠DAE . ……………………………………7分∵ ︵CD =︵BD ,∴ CD =BD .∴∠DAC =∠DCB . ∴ ∠DFE =∠DCB .∵ 四边形ABCD 是圆内接四边形,∴ ∠DAB +∠DCB =180°.………………8分 又∵∠DFC +∠DFE =180°,ODBA FOEDCB A※内部资料 世纪蓝海版权所有 请勿外传※ ~ 12 ~ ∴ ∠DFC =∠DAB . ………………………9分 ∵∠DCA =∠ABD ,∴△CDF ≌△BDA . ……………………………………………………10分 ∴CF =AB . …………………………………………………………11分 ∵AC =7, AB =5,∴ AE =1. …………………………………………………………12分 解法二:在︵CD 上取一点F ,使得︵DF =︵DA ,…………………………………5分 连结CF ,延长CF ,过D 作DG ⊥CF ,垂足为G . ……………6分 ∵ ︵DF =︵DA ,∴ ∠GCD =∠DCE . ∵ DC =DC ,∴ Rt △CGD ≌Rt △CED . ……………7分 ∴ CG =CE . ∴ DG =DE . ∵ ︵DF =︵DA ,∴ DF =DA .∴ Rt △DGF ≌Rt △DEA . ………………………………………8分 ∴ FG =AE . ………………………………………9分∵ ︵CD =︵BD ,︵DF =︵DA , ∴ ︵CF =︵AB .∴ CF =AB . ………………………………………10分 ∵ CG =CE ,∴ CF +FG =AC -AE ………………………………………11分 即 AB +AE =AC -AE ∵ AC =7, AB =5,∴ AE =1. …………………………………………………………12分A FOE DCB。

厦门一中2012届初三二模模拟模拟考 2012年6月

厦门一中2012届初三二模模拟模拟考  2012年6月

12-12福建省厦门第一中学2011—2012学年度初三数学二模模拟考试卷 2012.06.01(满分:150分 时间:120分钟) 命题教师:黄钰 审核:郑辉龙考生须知:1.解答内容一律写在答题卡上,否则不得分.交卷时只交答题卡,本卷不交. 2. 答题一律用0.5毫米的黑色签字笔,......否则不得分. 一、选择题(本大题有7小题,每小题3分,共21分。

) 1. -2的相反数是A. 2B. -2C.D. 2.方程24x =的解是A .2x= B .2x =- C . 0x = D . 2x =或2x =-3.如图中几何体的主视图是A .B .C .D .4.已知点P (-2,3)在反比例函数y=xk上,则k 的值等于 A .6 B .-6 C . 5 D .15.下列命题是真命题的是A .两直线相交,同位角相等B . 相等的角是对顶角C .对角线互相垂直的四边形是菱形D .正方形具有矩形的所有性质 6.已知⊙O 的直径为3cm,直线m 与⊙O 相交,则直线m 到圆心O 的距离可能是 A .3cm B .2cm C .1.5cm D .1cm7.已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是A .a x <B .b x >C .b x a <<D .a x <或b x >2131y x=()0x>102tan 601)--︒++二、填空题(本大题有10小题,每题4分,共40分) 8.cos45°= .9.若二次根式有意义,则x 的取值范围是 .10.抛物线2(2)3y x =++的顶点坐标是 .11.如图,已知∠1=30°,∠3=110°,那么∠2的度数为 .12.厦门市5月下旬前5天的最高气温如下(单位:℃):30,28,29,31,29,32.则这组数据的中位数是 .13.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为 . 14.如果33-=-b a ,那么代数式b a 35+-的值是 .15.若抛物线的对称轴是y 轴,且解析式中二次项系数为1,•则它的解析式为___________.(任写一个). 16. 一人乘雪橇沿坡比1s (米) 与时间t (秒)间的关系为2102s t t =+,若滑到坡底的时间为4秒, 则坡角的度数是 0, 此人下降的高度为 米.17.如图,△ABC 中,AB =4,AC =3,点D 、E 、F 分别在边AB 、BC 、AC 上, 且四边形ADEF 是菱形,连接BF 交DE 于点G ,则EG 的长为__________.三、解答题(本大题有9小题,共89分)18.(本题满分18分)(1)计算 ;(2)画出函数 的图像;(3) 如图,O 是矩形ABCD 的对角线的交点,DE ∥AC,CE ∥BD , DE 和CE 相交于E , 求证:四边形OCED 是菱形.5第16题C A BD F GE 12+x 第11题第13题第17题19.(本题满分12分)为了了解所教班级学生合作交流的具体情况,老师对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查,一共调查了 名同学,将上面的条形统计图补充完整; (2)从被调查的A 类和D 类学生分 别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两同 学恰好是一位男同学和一位女同学的概率.20. (本题满分8分)厦门市为缓解交通压力,决定修建人行天桥,原设计天桥的楼梯为AB,∠ABC=45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC=30°(如图所示). (1)若原楼梯长AB=6米,求调整后楼梯AD 的长; (2)若BC= t 米,求BD 的长.(结果可以含t 、保留根号)21.(本题满分8分)厦门市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.60元计费.另外,每趟车再加3元燃油附加税. (1)求出租车收费y (元)与行驶路程x (千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费15.80元,求他这次乘坐了多少千米的路程?22. (本题满分8分)如图:直线b ax y +=分别与x 轴, y 轴相交于A 、B 两点,与双曲线xk y =,(0>x )相交于点P ,PC ⊥x 轴于点C , 点A 的坐标为(-4,0),的B 的坐标为(0,2),PC =3. (1)求双曲线对应的函数关系式;(2)若点Q 在双曲线上,且QH ⊥x 轴于点H,⊿QCH 与⊿AOB 相似,请求出点Q的坐标.23. (本题满分8分) 如图,四边形ABCD 的对角线AC 、DB 相交于点O ,已知: AC =BD ,∠OBC =∠OCB .(1)求证:AB =DC ;(2)判别结论“四边形ABCD 一定是等腰梯形”是否正确, 若正确请证明,若不正确请举出一个反例.24. (本题满分8分)已知:如图,BE 是⊙O 的直径,点A 弦PD ⊥BE ,垂足为C ,∠AOD=∠APC .(1)求证:AP 是⊙O 的切线;(2)若CO AC 4=,52=AP ,求⊙O 的半径.25.(本题9分)如图,在梯形ABCD 中,AB=2, AD=4,BC=6,将梯形折叠,使B 落在边AD 上,落点记为E ,这时折痕与边BC (含端点)交于F,则以B 、E 、F 为顶点的三角形△BEF 称为梯形ABCD 的“折痕三角形”.(1)在梯形ABCD,当它的“折痕△BEF ”的顶点E 位于AD 的中点时,直接写出点F 的坐标; (2)在梯形ABCD 中是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么?26. (本题满分10分)已知抛物线y mx m x m m =+-++223()交x 轴于C (x 1 ,0),D (x 2 ,0)两点,(x 1<x 2)且42121=++x x x x ,M 为顶点. (1)试确定m 的值;(2)设点P (a ,b )是抛物线上点C 到点M 之间的一个动点(含C 、M 点),∆POQ 是以PO 为腰、底边OQ 在x 轴上的等腰三角形,过点Q 作x 轴的垂线交直线AM 于点R ,其中A (-1,-5),连结PR.ED设 PQR的面积为S,求S与a之间的函数关系式.。

厦门市中考第二次模拟考试数学试题含答案

厦门市中考第二次模拟考试数学试题含答案

厦门市中考第二次模拟考试数学试题含答案中学数学二模模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.23.(11分)如图,抛物线y=﹣x2+bx+c经过点A(1,0),点B,交y轴于点C(0,2).连接BC,AC(1)求抛物线的解析式;(2)点D为抛物线第二象限上一点,满足S△BCD=S△ABC,求点D的坐标;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有4种不同的添法.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣5,即,∴y=,当y=时,代入方程式解得:x1=3(不合题意,舍去),x2=7,∴BE=CE=2,∴BC=4,AB=5,∴矩形ABCD的面积为5×4=20.故选:C.【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=3.【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≠0且k≥﹣1.【分析】让△=b2﹣4ac≥0,且二次项的系数不为0以保证此方程为一元二次方程.【解答】解:由题意得:4+4k≥0,k≠0,解得:k≠0且k≥﹣1.【点评】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为﹣6.【分析】根据题意可以设出点A的坐标,从而以得到点B和点C的坐标,即可求得k的值.【解答】解:设点A的坐标为(a,0),△AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=60°,推出△EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得S△AEF =S△EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴S△AEF=S△EOF,∴图中阴影部分的面积=S扇形CAD﹣S扇形EOF=﹣=π﹣=,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=x,通过证△AED∽△ACB,求出A'C,A'B的长度,然后在Rt△A'DB中,利用勾股定理可求出x的值;当∠DBA'为直角时,证△ABC∽△AA'B,求出A'B的值,然后在Rt△A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在Rt△ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴,∴AE=,∴A'C=AC﹣AA'=8﹣,在Rt△A'CB中,A'B2=A'C2+BC2=(8﹣)2+36,在Rt△A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴,∴,∴AA'=,在Rt△AA'B中A'B==,设AD=A'D=x,在Rt△A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当x=0时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是90°;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】(1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得C组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000名市民中有多少名市民持C组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区120000名市民中有48000名市民持C组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.【分析】(1)AC是直径,则∠ADC=∠CDB=90°,点E为边BC的中点,连接OD,则∠OCD=∠ODC,则∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,即可证明;(2)①CB===3,则DE=BC=,即可求解;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC是直径,则∠ADC=∠CDB=90°,∵点E为边BC的中点,∴∠ECD=∠EDC,∠B=∠BDE,连接OD,则∠OCD=∠ODC,∴∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,∴DE是⊙O的切线;(2)①CB===3,则DE=BC=,故答案是;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,则∠B=∠BDE=×90°=45°,故答案为45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在Rt△DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在Rt△AEC中,tan∠AEC=,∴AC=CE•tan∠AEC=x,∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标【分析】(1)将点A(﹣,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(﹣,﹣3),计算求出S△AOB=××4=2.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可.【解答】解:(1)∵点A(﹣,1)在反比例函数y=的图象上,∴k=﹣×1=﹣,∴反比例函数的表达式为y=﹣;(2)∵A(﹣,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,B(﹣,﹣3),S△AOB=××4=2.∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=2,∴m=±2,∴点P的坐标为(﹣2,0)或(2,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?【分析】(1)可设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据等量关系:投资兴建2条全自动生产线和1条半自动生产线共需资金260万元;投资兴建1条全自动生产线3条半自动生产线共需资金280万元;列出方程组求解即可;(2)可设2019年该加工厂需兴建全自动生产线a条,根据不等关系:获得不少于1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y 万元,根据题意,得,解得.答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2019年该加工厂需兴建全自动生产线a条,根据题意,得(260﹣100)a+(160﹣60)(10﹣a)≥1200,解得a≥3,由于a是正整数,所以a至少取4.即2019年该加工厂至少需投资兴建4条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于线段BA的延长线上时,线段BC的长取最大值,且最大值为6.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.【分析】(1)当点C位于线段BA的延长线上时,线段BC的长度最大,最大值为6;(2)以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时或点A在线段DC的延长线上时,设CD=x,在Rt△ADB中,利用勾股定理可分别求出两种情况下CD的长度;(3)当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,证明△ADE为等腰直角三角形,通过解直角三角形可求出AD的最大值;当AC⊥AB且点C在AB下方时,AD取最小值,将△DCA以点D为圆心逆时针旋转90°得到△DFB,且A,F,B三点在同一直线上,证明△ADF为等腰直角三角形,可通过解直角三角形可求出AD的最小值.【解答】解:(1)如图1,当点C位于线段BA的延长线上时,线段BC的长度最大,BC=AB+AC=4+2=6,故答案为:线段BA的延长线上,6;(2)①如图2﹣1,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在Rt△ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在Rt△ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣(负值舍去),x2=﹣1,∴CD=﹣1;∴CD的长度为1+或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,则∠ADE=90°,△DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
厦门一中2012年中考数学二模试卷
时间:120分钟 满分150分 班级____姓名_________ 考生须知: 解答的内容一律写在答题卡上,否则以0分计算. 交卷时只交答题卡.
一、选择题(本大题共7小题,每小题3分,共21分,每小题有且只有一个正确答案) 1. 计算12-+的结果是
A.1 B.1- C.3 D.3- 2. 下列运算正确的是
A . x 2+x 2=x 4
B .(a -1)2=a 2-1
C .a 2·a 3=a 5
D .3x +2y =5xy 3. 下列图形中一定是中心对称但不一定是轴对称图形是
A.等腰梯形
B.平行四边形
C.等边三角形
D.圆
4. 对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央
电视台“龙年春晚”收视率.其中适合抽样调查的是
A. ①② B. ①③ C. ②③ D. ①②③ 5. “若a 是实数,则a ≥0”.这一事件是
A. 必然事件
B. 不确定事件
C. 不可能事件
D. 随机事件 6. 已知⊙O 1和⊙O 2的半径分别为1和3,若两圆相交,则圆心距可能为
A.1
B.2
C.3
D.4 7. 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是
A. 6
B. 2 m -8
C. 2 m
D. -2m
二.填空题(本大题共10小题,每小题4分,共40分)
8. 2
1的相反数是_____.
9. 计算9=_____.
10. sin45°=_____.
11. 分解因式: 1- m 2
= ______________.
12. 点(1,0)绕坐标原点按顺时针方向旋转90°后坐标为__________. 13. 两直角边长分别为3cm 、4cm 的直角三角形外接圆半径是________cm. 14. 同时抛掷两枚硬币,都是正面朝上的概率是_______.
15. 如图,AB 是半径为1的⊙O 的弦,点C 在圆上,∠ACB =30°,则 ︵
AB 的长是 cm.
16.对实数a ,b ,定义运算“*”为:a *b =⎩
⎨⎧∙≥时<,当时,,当b a ab b a b a 22 已知1*m =2,
则实数m 等于____________.
17.已知二次函数y=x 2
+(b+1)x+c. 若x ≤2时,y 随着x 增大而减小,则实数b 的取值范
围是_________;若点A (1,c )、B (a ,y 1)、C (2,y 2)在这个函数图象上,且y 1<y 2,则实数a 的取值范围是__________________.
第15题
2
三. 解答题:本大题共9个小题,共89分. 18.(本题满分18分)(1)解方程:1221+=x
x
(2)画函数x
y 1
-=的图象
(3)已知:如图 △ABC 中,∠ABC =90°,BD 是∠ABC 的平分线,
DE ⊥AB 于E ,DF ⊥BC 于F, 求证:四边形DEBF 是正方形.
19. (本题满分8分)海滨市举行模型制作比赛(包括空模、海模、车模、建模四个类别),
以下为某校的参赛人数统计图(不完整):
根据以上信息回答:
(1)该校参加模型制作比赛的总人数是_________人;请把条形统计图补充完整; (2)空模所在扇形的圆心角的度数是___________度;
(3)若从全市参赛选手中随机抽取20人,其中有4人获奖,已知全市总共给40人颁奖,
请你估算参赛人数约是多少人?
20. (本题满分8分) 已知:如图,AB 是⊙O 的弦,点C 在 ︵
AB 上,
(1)若∠OAB=40°,求∠AOB 的度数;
(2)过点C 作CD ∥A B ,若CD 是⊙O 的切线,
求证:点C 是 ︵
AB 的中点.
图 3
空模
建模 车模 海模 25% 25%
某校航模比赛参赛人数扇形统计图
某校航模比赛参赛人数条形统计图
3
21.(本题满分8分) (1) 甲品牌拖拉机开始工作时,油箱中有油30升.如果每小时耗油6
升,写出油箱中的余油量y (升)与工作时间x(时)之间的函数关系式.
(2) 如图,线段AB 表示乙品牌拖拉机在工作时油箱中的余油量y(升)与工作时间x(时)之间的函数关系的图象.根据图象提供的信息,
购买哪种品牌的拖拉机,说明理由.
22. (本题满分8分) 如图,菱形ABCD 中,点(1)若BD=9,求BF 的长;
(2)若AE=32,∠AB C=60º,求菱形ABCD 的面积.
23.(本题满分8分)如图,已知Rt △ABC 中,∠C = 90°,AD 是∠BAC 的角平分线. (1)尺规作图:以AB 上一点O 为圆心,AD 为弦作⊙O ,(不写作法,保留作图痕迹); (2)判断直线BC 与所作⊙O 的位置关系,并说明理由.
24.(本题满分9分)小张想要用6米长的铝合金型材做一个形状如图所示的矩形窗框.设
做成的窗框的宽为x 米,
(1)当这个矩形窗框是正方形时,求出x 的值,并求出此时窗框的透光面积; (2)小张认为当这个矩形窗框是正方形时窗框的透光面积最大,你同意吗?请说明理由.
D C B A
26.2.5
4
25.(本题满分11分)如图,矩形AOBC 边OB 在x 轴正半轴上,已知点C (4,3),F 是BC 边上的一个动点(不与B 、C 重合),过F 点的反比例函数x
k
y
(k >0)的图象与AC 边交于点E.
(1)若点F 在BC 中点处,求k 的值.
(2)是否存在这样的点F ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,
求出这个落点的坐标,若不存在,请说明理由.
26.(本题满分11分)对于某一自变量为x 的函数,若当x=x 0时,其函数值也为x 0,
则称点(x 0,x 0)为此函数的不动点.现有二次函数y=x 2
+bx+c ,
(1) 若b=2,c=0,求函数y=x 2
+bx+c 的不动点坐标;
(2) 若函数y=x 2
+bx+c 图象上有两个关于原点对称的不动点A (x 1,y 1)、B (x 2,y 2),(x 1 >x 2),该图象与y 轴交于C 点,且△ABC 是以AC 为直角边的直角三角形,求点C 的坐标
.。

相关文档
最新文档