为了培养学生对航天知识的学习兴趣,某校组织全校1200

合集下载

2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷及答案解析

2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷及答案解析

2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣3的相反数是()A.3B.﹣3C.D.2.(3分)如图是四届冬奥会会标的一部分,其中是轴对称图形的是()A.B.C.D.3.(3分)下列说法中,正确的是()A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.“武汉明天降雨的概率为0.6”,表示武汉明天一定降雨D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.(3分)下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.5.(3分)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.496.(3分)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.7.(3分)反比例函数y=的图象经过点A(﹣1,﹣2),则当x>1时,函数值y的取值范围是()A.y>1B.0<y<1C.y>2D.0<y<28.(3分)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DAB.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.9.(3分)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 10.(3分)如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.若四边形APBC面积为,且PA:PB=1:2,则⊙O的半径为()A.2B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)神舟十三号载人飞船和航天员乘组于2022年4月16日返回地球,结束了183天的在轨飞行时间,从2003年神舟五号载人飞船上天以来,我国已有13位航天员出征太空,绕地球飞行共约2.32亿公里,将数据232000000用科学记数法表示为.12.(3分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.13.(3分)计算:÷(1﹣)的结果是.14.(3分)如图,斜坡AB长为100米,坡角∠ABC=30°,现因“改小坡度”工程的需要,将斜坡AB改造成坡度i=1:5的斜坡BD(A、D、C三点在地面的同一条垂线上),那么由点A到点D下降了米.(结果保留根号)15.(3分)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论是:.16.(3分)如图,在四边形ABCD中,BD垂直CD,若AB=7,CD=12,∠ABD=2∠BCD,2∠BAC+∠ACB=90°,则AC的长为.三、解答题(共8题,共72分)17.(8分)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得.解不等式②,得.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为.18.(8分)在四边形ABCD中,对角线AC、BD相交于点O,AD∥BC,BO=DO.(1)求证:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连结DE,若∠CDE=∠CBD=15°,则∠ABC 的度数是°.19.(8分)某校为落实“双减”工作,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术:D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=度:(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数.20.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC交BA的延长线于点E,交AC于点F.(1)求证:DE是⊙O的切线;(2)若AC=6,tan E=,求AF的长.21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中先将AC绕点C逆时针旋转90°得到线段CD,画出线段CD,再在BC上画点P,使;(2)在图(2)中,画出点C关于AB的对称点M,连接BM,在射线BM上取点F,使得BF=BA,画出点F.22.(10分)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能(车速不超过150km/h)进行测试,测得数据如表:车速v(km/h)0306090120150刹车距离s(m)07.819.234.252.875(1)刹车距离s与车速v之间存在某种函数关系,结合你所学的知识,直接写出刹车距离s与车速v之间的函数关系;(2)若该路段实际行车的最高限速为120km/h,要求该型汽车的安全车距要大于最高限速时刹车距离的3倍,则安全车距应超过多少米?(3)在某路段上,要求该型汽车的刹车距离不超过40米,请问车速应该控制在什么范围内?23.(10分)【问题背景】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在平行四边形ABCD中,E为BC上一点,F为CD延长线上一点,FE、FB分别交AD于点H、G.∠BFE=∠A,若BF=8,BE=6,GH:AG=9:8,求FD:DC的值.【拓展创新】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,若∠EDF=∠BAD,AE=4,DF=10,直接写出菱形ABCD的边长为.24.(12分)如图①,抛物线C1:y=ax2+bx﹣4a顶点坐标为(0,﹣1),抛物线与x轴交于A,B(A左,B右)两点.(1)求A,B两点的坐标;(2)若M(﹣4,m),N是抛物线上两点,且锐角∠OMN的正切值不小于2,直接写出N点的横坐标x N的取值范围;(3)将抛物线C1上移一个单位得抛物线C2,过B作直线交抛物线C2于F、D,如图②,过F的直线y=x+b交抛物线于另一点E,则直线DE过定点,求这个定点的坐标.2023年湖北省武汉第三寄宿中学九年级四月调考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:实数﹣3的相反数是3.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据全面调查与抽样调查的特点、随机事件的定义对各选项进行分析即可.【解答】解:A、调查某班45名学生的身高情况宜采用全面调查,正确,符合题意;B、“太阳东升西落”是必然事件,原说法错误,不符合题意;C、“武汉明天降雨的概率为0.6”,表示武汉明天可能降雨也可能不降雨,原说法错误,不符合题意;D、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数不一定是13次,原说法错误,不符合题意.故选:A.【点评】本题考查的是概率的意义,全面调查与抽样调查的特点、随机事件的定义,熟知以上知识是解题的关键.4.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱的俯视图是圆,三棱柱的俯视图是三角形,长方体的俯视图是矩形,圆锥的俯视图是圆,【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.【分析】直接利用位似图形的性质得出位似比,进而得出面积比,即可得出答案.【解答】解:∵△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,∴OA:OD=3:7,:S△DEF=9:49,∴S△ABC=9,∵S△ABC∴△DEF的面积为:49.故选:D.【点评】此题主要考查了位似变换,正确得出三角形面积比是解题关键.6.【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后根据概率的意义列式即可得解.【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.【点评】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.【分析】把A(﹣1,﹣2)代入反比例函数y=可得k=2,而当x=1,y=2,根据反比例图象分布在第一、第三象限,在每一象限,y随x的增大而减小,得到当x>1时,函数值的范围为0<y<2.【解答】解:∵反比例函数y=的图象经过点A(﹣1,﹣2),∴﹣2=,∴k=2,∴y=,当x=1,y=2,当x>1时,函数值的范围为0<y<2.【点评】本题考查了反比例函数图象上点的坐标特征和性质:反比例函数y=(k≠0)的图象上点的横纵坐标之积为常数k;当k>0时,图象分布在第一、第三象限,在每一象限,y随x的增大而减小;当k<0时,图象分布在第二、第四象限,在每一象限,y 随x的增大而增大.8.【分析】先证明CD=AD=y,过D点作DE⊥AC于点E,证明△ABC∽△AED,利用相似三角形的性质可得函数关系式,从而可得答案.【解答】解:过D点作DE⊥AC于点E.∵AB∥CD,∴∠ACD=∠BAC,∵AC平分∠DAB,∴∠BAC=∠CAD,∴∠ACD=∠CAD,则CD=AD=y,即△ACD为等腰三角形,则DE垂直平分AC,∴AE=CE=AC=3,∠AED=90°,∵∠BAC=∠CAD,∠B=∠AED=90°,∴△ABC∽△AED,∴,∴,∴y=,∵在△ABC中,AB<AC,∴x<6,故选:D.【点评】本题考查的是角平分线的定义,等腰三角形的判定与性质,相似三角形的判定与性质,反比例函数的图象,通过添加辅助线证明△ABC∽△AED是解本题的关键.9.【分析】根据根与系数的关系即可求出答案.【解答】解:当m≠n时,∴m、n是方程x2﹣2x﹣1=0的两根,∴m+n=2,mn=﹣1,∴原式====﹣6,当m=n时,原式=1+1=2,故的值是2或﹣6.故选:D.【点评】本题考查根与系数的关系,解题的关键是正确找出m+n与mn的值,本题属于中等题型.10.【分析】先证明△ABC是等边三角形,再利用勾股定理求出边长,再求出半径.【解答】解:过A作AE⊥BP角BP的延长线于E,过O作OF⊥AB于F,连接OB,设AP=x,则BP=2x,∵∠APC=∠CPB=60°,∴∠APE=120°,∠BAC=∠ABC=60°,∴∠ACB=60°,∠EAP=30°,∴△ABC是等边三角形,∴AE=x,EP=x,∴AB==x,=S△ABP+S△ABC=BP•AE+AB•AC sin A=•2x•x+(x)2=∴S四边形APBC,解得:x=,∴AB=4,∵OF⊥AB,∴BF=AB=2,∠ABO=30°,∴OB=,故选:C.【点评】本题考查了圆内接四边形,掌握有关性质及等边三角形的性质是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:232000000=2.32×108.故答案为:2.32×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案是:183.【点评】此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【解答】解:原式=÷(﹣)=÷=•=,故答案为:.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.14.【分析】根据直角三角形的性质求出AC,根据余弦的定义求出BC,根据坡度的概念求出CD,结合图形计算,得到答案.【解答】解:在Rt△ABC中,∠ABC=30°,∴AC=AB=50,BC=AB•cos∠ABC=50,∵斜坡BD的坡度i=1:5,∴DC:BC=1:5,∴DC=10,则AD=50﹣10,故答案为:(50﹣10).【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.15.【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故答案为:①③.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.16.【分析】如图,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可.【解答】解:如图,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∵BD垂直CD,∴∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∠F=90°,∴∠FAC+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠FAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.三、解答题(共8题,共72分)17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式①,得x>﹣2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3,故答案为:x>﹣2,x≤3,﹣2<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)证明△AOD≌△COB(ASA),由全等三角形的性质得出AD=BC,由平行四边形的判定可得出结论;(2)由线段垂直平分线的性质得出BE=ED,得出∠CBD=∠BDE=15°,求出∠ABD =30°,则可得出答案.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠CBO,又∵∠AOD=∠BOC,OB=OD,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形;(2)解:∵OB=OD,OE⊥BD,∴BE=ED,∴∠CBD=∠BDE=15°,∵∠CDE=15°,∴∠BDC=30°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC=30°,∴∠ABC=∠ABD+∠CBD=30°+15°=45°.故答案为:45.【点评】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定与性质是解题的关键.19.【分析】(1)①由B组的人数除以所占百分比即可;②求出C组的人数,补全条形统计图即可;③由360°乘以C组所占的比例即可;(2)由该校共有学生人数乘以参加D组(阅读)的学生人数所占的比例即可.【解答】解:(1)①调查人数:50÷25%=200(名),故答案为:200;②C组的人数:200﹣30﹣50﹣70﹣20=30(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×=54°,故答案为:54;(2)3200×=1120(人),答:估计该校参加D组(阅读)的学生人数为1120人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】(1)由等腰三角形的性质可得∠ABC=∠ACB=∠OBD=∠ODB,可证OD∥AC,可得OD⊥DE,可得结论;(2)由锐角三角函数可求DE=4,在直角三角形ODE中,由勾股定理可求OE=5,通过证明△AEF∽△OED,可得,即可求解.【解答】证明:(1)如图,连接OD,∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠ACB,∴AC∥OD,∴∠DFC=∠ODF,∵DE⊥AC,∴∠DFC=∠ODF=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)∵AC=6=AB,∴AO=OB=3=OD,∵OD⊥DE,tan E=,∴=,∴DE=4,∴OE===5,∴AE=OE﹣OA=2,∵AC∥OD,∴△AEF∽△OED,∴,∴,∴AF=.【点评】本题考查了切线的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,勾股定理等知识,求出OE的长是解题的关键.21.【分析】(1)取格点E,连接BE,交CD于F,此时CF=CD,连接AF交BC于P 点;(2)作CD⊥AB,再过点E作EM∥AB,交CD于M,再过格点G作AB的平行线,交BM于F点.【解答】解:(1)如图,取格点E,连接BE,交CD于F,连接AF交BC于P点,则点P即为所求;(2)作CD⊥AB,再过点E作EM∥AB,交CD于M,再过格点G作AB的平行线,交BM于F点.则点M、F即为所求.【点评】本题主要考查了网格作图,旋转变换,相似三角形的判定与性质,三角函数等知识,熟练掌握平行线分线段成比例是解题的关键.22.【分析】(1)根据表格中数据猜想刹车距离s与车速v之间的函数关系是二次函数,然后设出函数解析式,用待定系数法求出函数解析式,再把x,y的对应值代入解析式验证即可;(2)由表格中数据得出根据表格可得车速为120km/h时,刹车距离是52.8m,进而可得答案;(3)先求出s=40时,v得值,再根据函数的性质求取值范围.【解答】解:(1)由表中数据可知,刹车距离s与车速v之间的函数关系既不是一次函数也不是反比例函数,∴猜想刹车距离s与车速v之间的函数关系是二次函数,设刹车距离s与车速v之间的函数关系式为s=av2+bv,把x=30,y=7.8;x=60,y=19.2代入解析式得:,解得,∴y=0.002v2+0.2v,当x=90时,y=0.002×8100+0.2×90=34.2,∴刹车距离s与车速v之间的函数关系式为y=0.002v2+0.2v;(2)由表格得,车速为120km/h时,刹车距离是52.8m,∴52.8×3=158.4(m),答:安全车距应超过158.4米;(3)当s=40时,0.002v2+0.2v=40,解得v1=100,v2=﹣200(舍去),∴当s≤40时,v≤100,∴车速应该控制不超过100km/h范围内.【点评】本题考查了二次函数的应用,由函数的函数值求自变量的运用,解答时求出函数的解析式是关键.23.【分析】(1)证明△ADC∽△ACB,即可得出结论.(2)证明△FGH∽△FBE,△FDH∽△FCE,得到,由△BEF∽△BFC求出BC,CE,得到AD的长,进一步求出GH,HD的长,则即可得结果.(3)分别延长EF,DC相交于点G,证得四边形AEGC是平行四边形,得出AC=EG,CG=AE,∠EAC=∠G,证明△EDF∽△EGD,得出DE2=EF•EG,则DE=EF,求出DG得到答案.【解答】(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB,∴,∴AC2=AD•AB.(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠BCD,∴△FGH∽△FBE,△FDH∽△FCE,∴,,∴,∵∠BFE=∠A,∴∠BFE=∠BCD,又∵∠EBF=∠CBF,∴△BEF∽△BFC,∴BF2=BE•BC,82=6•BC,∴BC=,∴CE=BC﹣BE=﹣6=,∴,∴=,∵=,AG+GH+DH=AD=,∴DH=×=,∴==,∴FD:DC=2:1.(3)解:如图,分别延长EF,DC相交于点G,∵四边形ABCD是菱形,∴AB∥DC,∠BAC=∠BAD,∵AC∥EF,∴四边形AEGC是平行四边形,∴AC=EG,CG=AE,∠EAC=∠G,∵∠EDF=∠BAD,∴∠EDF=∠BAC,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴=,DE2=EF•EG,又∵EG=AC=2EF,∴DE2=2EF2,∴DE=EF,又∵=,∴DG=DF=10,∴DC=DG﹣CG=10﹣4,故菱形ABCD的边长为10﹣4.【点评】本题主要考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的性质等知识,熟练运用相似三角形的判定和性质,把所学知识融会贯通是解题关键.24.【分析】(1)通过将顶点坐标代入解析式,可求系数a、b的值,从而求出A、B两点坐标.(2)求点N横坐标的范围,即是求当∠OMN的正切值等于2时,点N的横坐标值,即可得出答案.(3)先得出平移后的抛物线解析式,设出点D(2d,d2)、E(2e,e2)、F(2f,f2),利用待定系数法求得直线DF,EF,DE的解析式,经过整理变形,得到直线DE的解析式:y=(d+e)(x﹣1)+2,由于x=2时,y=2,可知直线DE经过点(2,2),结论可得.【解答】解:(1)∵顶点坐标为(0,﹣1),∴﹣4a=﹣1,对称轴为x=0,∴a=,b=0,∴函数解析式是y=x2﹣1,令y=0,则x2﹣1=0,解得:x1=2,x2=﹣2.∴A(﹣2,0),B(2,0);(2)M(﹣4,t)是抛物线上的点,∴t=3,∴M(﹣4,3),如图,作ME⊥⊥x轴,OH⊥OM,HF⊥x轴∴∠MEO=∠OFH=90°,∠MOE+∠OME=90°,∠MOE+∠HOF=90°,∴∠OME=∠HOF,∴△OME∽△HOF,∴=,当tan∠OMN==2时,==2,∴HO=10,OF=6,HF=8∴H(6,8),∵当x=6时,y=x2﹣1=8,∵点H在抛物线上,∴锐角∠OMN的正切值不小于2时,N点的横坐标x N的取值范围为x N≥6,故答案为:x N≥6;(3)∵将抛物线C1向上平移一个单位得抛物线C2,∴抛物线C2的解析式为y=x2.设D(2d,d2)、E(2e,e2)、F(2f,f2),利用待定系数法可得:直线DF的解析式为:y=x﹣df,直线EF的解析式为:y=x﹣ef,直线DE的解析式为:y=x﹣de.∵DF过B(2,0)点,∴d+f﹣df=0.∵直线EF的解析式为:y=x+b,∴e+f=2.∴f=2﹣e.∴d+(2﹣e)﹣d(2﹣e)=0.∴de=d+e﹣2.∴直线DE的解析式变为:y=x﹣de=x﹣(d+e﹣2)=x﹣(d+e)+2=(d+e)(x﹣1)+2,∵当x=2时,y=2,∴直线DE过定点(2,2).【点评】本题是二次函数综合题,主要考查了一次函数的性质,二次函数的性质,待定系数法,勾股定理,三角形相似的判定与性质,锐角三角函数,平移的性质.掌握一次函数的性质,二次函数的性质是解题的关键。

2024年初中数学中考高频考点解答题测试卷 (534)

2024年初中数学中考高频考点解答题测试卷 (534)

一、解答题1. 甲、乙两名队员参加射击选拔赛,射击成绩见下列统计图:根据以上信息,整理分析数据如下:队员平均数(环)中位数(环)众数(环)方差()甲7.9 4.09乙77(1)直接写出表格中,,的值;(2)求出的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.2. 如图,我们可以在网格图中以这样的方式画出面积为5的正方形,(1 )请问它的边长是有理数吗?(2 )你能用类似的方法画出面积为8和面积为13的正方形吗?3. 一列火车以的速度匀速前进.求它的行驶路程s(单位:)关于行驶时间t(单位:h)的函数解析式,并画出函数图象.4. 如图,在边长为1的正方形组成的网格中,三角形AOB的顶点均在格点上,A(3,2),B(1,3),(1)将三角形AOB先向左平移3个单位长度,后向下平移1个单位得到三角形A1O1B1,请直接作出三角形A1O1B1;(2)请直接写出三角形A1O1B1三个顶点的坐标;(3)三角形A1O1B1的面积为_______平方单位.5. 如图,AB是⊙O的直径,AC是弦.(1)请你按下面步骤画图(画图或作辅助线时先使用铅笔画出,确定后必须使用黑色字迹的签字笔描黑);第一步,过点A作∠BAC的角平分线,交⊙O于点D;第二步,过点D作AC的垂线,交AC的延长线于点E.第三步,连接BD.(2)求证:DE是⊙O的切线;(3)如图AD=5,AE=4,求⊙O的直径.6. 某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:(1)求a、b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.7. 某校在开展读书交流活动中,全体师生积极捐书,为了解所捐书籍的种类,对部分书籍进行了抽样调查,张老师根据调查数据绘制了如下不完整的统计图.请根据统计图回答下列问题:(1)本次抽样调查的书籍有多少本?(2)试求图1中表示文学类书籍的扇形圆心角的度数,并补全条形统计图.(3)本次活动师生共捐书本,请估计有多少本科普类书籍?8. 如图,在每个小正方形的边长为1的方格纸中,有线段,且、均在小正方形的顶点上.(1)在方格纸中画出以为一边的钝角等腰三角形,请直接写出的周长.(点在小正方形的顶点上)(2)在方格纸中画出,要求为轴对称图形,且面积为10.(点在小正方形的顶点上)9. 函数的图象,如图所示.已知和的交点的横坐标为,另一交点的横坐标为1.回答下列问题:…01234… (042042)054112……124567…(1)完善表格:、与的对应值,根据表格中的与的对应值,在图中描点并画出的图象.从中选取合适的数据,求出,的值.(2)根据图象,描述当时,函数随自变量变化的变化趋势.(3)根据图象,直接写出不等式的解集.(4)若,分别满足关于的方程和,则__________(填“<”或“>”).10. 如图,已知线段AB,根据下列语句画出图形并计算:延长线段AB到C,使BC=3AB,反向延长AB到D使AD=AB,取线段DC的中点E,若AB=4cm,求BE的长.11. 某校组织全校学生进行了“航天知识竞赛”,教务处从中随机抽取了n名学生的竞赛成绩(满分100分,每名学生的成绩记为x分)分成如表中四组,并得到如下不完整的频数分布表、频数分布直方图和扇形统计图.根据图中信息,解答下列问题:分组频数A:aB:18C:24D:b(1)n的值为 ,a的值为 ,b的值为 ;(2)请补全频数分布直方图并计算扇形统计图中表示“C”的圆心角的度数为 °;(3)竞赛结束后,九年级一班从本班获得优秀的甲、乙、丙、丁四名同学中随机为抽取两名宣讲航天知识,请用列表或画树状图的方法求恰好抽到甲、乙两名同学的概率.12. 随着初三同学体考的结束,初二年级大课期间开始对跳绳、实心球和立定跳远这三项运动进行专项训练,为了了解同学们对这三项训练技巧的掌握情况,学校体育组抽取了若干名学生进行调查,并将调查结果分为了四类:掌握3项技巧的为A类,掌握2项技巧的为B类,掌握1项技巧的为C类,掌握0项技巧的为D类,并绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)被调查的学生一共有人;并请补全条形统计图;(2)若初二年级共有2500名学生,则初二年级大约有名学生已掌握3项训练技巧;(3)A类的5名同学中有且仅有2名来自同一个班,现A类的5名同学中随机抽取2名同学来分享经验,用树状图或表格法求抽到的两个人恰好来自同一个班的概率.13. 某班数学兴趣小组探索绝对值方程的解法.例如解绝对值方程:.解:分类讨论:当时,原方程可化为,它的解是.当时,原方程可化,它的解是.∴原方程的解为或.(1)依例题的解法,方程的解是___________;(2)在尝试解绝对值方程时,小明提出想法可以继续依例题的方法用分类讨论的思想把绝对值方程转化为不含绝对值方程,试按小明的思路完成解方程过程;(3)在尝试解绝对值方程,小丽提出想法,也可以利用数形结合的思想解绝对值方程,在前面的学习中我们知道,表示数a,b在数轴上对应的两点A、B之间的距离,则表示数x与3在数轴上对应的两点之间的距离为5个单位长度,结合数轴可得方程的解是___________;(4)在理解上述解法的基础上,自选方法解关于x的方程;(如果用数形结合的思想,需要画出数轴,并加以必要说明).14. 蔬菜大户老李有一块正方形菜地,他准备在菜地中间空出两条笔直的交叉小路,把菜地平均分成面积相等的四部分进行特色种植.请你在图中添加两条相交线,帮助老李设计三种不同的分割方案,并简要说明作图方法.15. 如图,在▱ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点M.交BC于点N;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④过点A作AE⊥BF交BF于点P,交BC于点E;⑤连接EF,PD.(1)求证:四边形ABEF 是菱形;(2)若AB =4,AD =6,∠ABC =60°,求DP的长.16. 在3×3的正方形格点图中,和是关于某条直线成轴对称的两个格点三角形(三角形顶点都是小正方形顶点),现给出了,在下面的图中画出4个符合条件的.17. 已知,如图,直线与直线相交于点B ,点D 是直线上一点,直线,且点E 到B ,D 两点的距离相等.(1)用尺规作图作出点E ;(不写作法,保留作图痕迹)(2)连接,求证:平分.18.已知:一次函数的图像经过点与(1)求出该直线的解析式,并画出图像;(2)所求的函数值在范围内,求相应的x 取值范围;(3)作函数的图像经过二,三,四象限,且图像与两坐标轴围成的直角三角形中有一锐角为30°,若这个三角形的面积是△AOB 的面积的倍,试求m ,n .19. 如图,Rt △ABC 中,∠A =90°.(1)利用圆规和直尺,在∠A 的内部找一个点P ,使点P 到AB 、AC 的距离相等,且PB =PC .(不写作法,保留作图痕迹)(2)若BC 的垂直平分线交直线AB 于点E ,AC =12、AB =8.求AE 的长.20. 如图所示,请在由32个边长都为1的小正三角形组成的网格中,按下列要求作一个直角三角形,且直角三角形的三个顶点都在网格顶点上.(1)在图①中画出斜边为2的直角三角形;二、解答题(2)在图②中画出斜边为的直角三角形;(3)在图③中画出斜边为的直角三角形21.在正方形中,平分交边于点.(1)尺规作图:过点作于;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接,求的度数.22. 如图,在平面直角坐标系中,,,.(1)作出关于x轴成轴对称的;(2)写出,,的坐标;(3)在y 轴上找一点P,使的长度最短.23. 要画出的平分线,分别在,上截取,,连接,,交于P点,那么的平分线就是射线,把图画完整并说明这个结论成立.24. 如图,已知线段a ,b ,求作线段AB ,使得AB =.(不写作法,保留作图痕迹,铅笔作图后请用水性笔加深作图痕迹)25. 如图所示,现有边长为1,a (a >1)的一张矩形纸片ABCD ,把这个矩形按要求分割,画出分割线,并在相应的位置上写出a 的值.(1)把这个矩形分成两个全等的小矩形,且分成的两个矩形与原矩形相似.(2)把这个和矩形分成三个矩形,且每一个矩形都与原矩形相似,给出两种不同的分割.26. 商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件,据此规律,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?27. 为落实新课标,提高学生的综合实践能力,我市各学校组织了丰富多彩的研学活动,受到学生、家长和社会的一致好评.某学校为进一步提高研学质量,选取了A.“青少年科技馆”,B.“丁肇中祖居”,C.“抗日战争纪念馆”,D.“1971研学营地”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),并将调查结果绘制成了两幅不完整的统计图(如图所示).请根据统计图中的信息解答下列问题:(1)在本次调查中,一共抽取了______名学生,在扇形统计图中A所对应圆心角的度数为______;(2)将上面的条形统计图补充完整;(3)学校想从选择研学基地D的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D的学生中恰有两名女生,请用列表法或画树状图的方法求出所选2人都是男生的概率.28. 广州某商店准备购进一批洗发水和电池,每件洗发水的进价比每件电池的进价多4元,商店用800元购进洗发水的数量与用640元购进电池的数量相等.(1)求每件洗发水与每件电池的进价分别是多少?(2)已知洗发水的销售价为每件26元,电池的销售价为每件20元.若该商店准备购进这两种用品共100件,其中购进洗发水件,那么该商店要获得最大利润应如何进货?最大利润为多少元?29. 某球迷协会组织36名球迷租车去观看足球比赛,一种车每辆可乘8人,另一种车每辆可乘4人,要求租用的车不留空座,也不能超载.请你给出不同的租车方案(至少三种).30. 某超市销售A品牌的纯牛奶,进价是40元/箱,根据前段时间的销售经验,每天的售出x(元/箱)与销售量y(箱)有如下关系:每箱售价x(元)6564…4每天销量y(箱)444…14已知y与x之间的函数关系是一次函数.(1)求与x的函数解析式;(2)若该超市每天销售这种纯牛奶盈利1104元,要使顾客获得实惠,每箱售价是多少元?(3)销售价格不能低于40元/箱,不能高于65元/箱,请你写出当A品牌的纯牛奶的销售价格定为多少元/箱时,超市一天的总盈利最大.直接31. 利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?32. 为调动学生参加“阳光体育”活动的积极性,某校初二进行踢毽子比赛,每班选派 5 名学生参加,按团体总分的多少排列名次,在规定时间内每人踢 100 个以上(含 100)为优秀,下表是成绩最好的 A 班和 B 班各 5 名学生的比赛数据(单位:个):1 号2 号3 号4 号5 号总数A 班1009511091104500B 班891009611897500经统计发现两班的总数相同.有同学建议可考查数据中的其它信息确定优胜班级.请你回答下列问题:(1)计算两班的优秀率;(2)写出两班比赛成绩的中位数;(3)两班比赛成绩的方差哪一个小?(4)根据上面信息,你认为应该将优胜奖状颁发给哪个班?简要说明理由.33. 为节约用水,某市居民生活用水按级收费,水价分三个等级:第一级为月用水量及以下(含);第二级为月用水量超过,不到;第三级为月用水量及以上(含),如图是某住户收到的一张自来水总公司水费专用发票.自来水总公司水费专用发票发票联计费日期:至上期抄见数本期抄见数加原表用水量()本期用水量()58760720自来水费(含水资源费)污水处理费用水量()单价(元/)金额(元)用水量()单价(元/)金额(元)阶梯一:17 1.75 29.75阶梯二:3 2.3 6.917 0.45 7.653 0.6 1.8本期实付金额(大写)肆拾陆元壹角整¥46.10注:(居民生活用水水价=自来水费+污水处理费)(1)若某用户的月用水量为,应付的水费为元,求关于的函数表达式;(2)若下个月份该用户收到的自来水发票实付金额为69.3元,则下个月份该用户的用水量为多少?(3)根据该发票信息,你能计算月用水量超过时应付的水费吗?如果能,请计算月用水量超过时,应付的水费元与月用水量的函数表达式;如果不能,请你思考:通过哪些渠道可以获取信息,得到该用户水费的计算方式.34. 2020年1月底,武汉爆发“新冠”疫情,并开始向全国蔓延,出于防疫的需求,医用口罩迅速成为紧俏物资.某药店为解市民的燃眉之急,先后两次采购了A 、B 两种型号的医用口罩进行销售.已知这两种型号的医用口罩进货情况如表:第一次第二次A 型口罩(箱)2030B 型口罩(箱)3040累计采购款(元)5100072000(1)问A,B两种型号的口罩的进货单价各是多少元?(2)销售中发现B型口罩的销量明显好于A型,药店在计划第三次采购时,决定购进B型口罩的箱数比A型口罩的箱数的2倍还多10箱,在采购总价不超过90000元的情况下,最多能购进多少箱B型口罩?35. 和兴商厦销售,两种商品,售出1件种商品和4件种商品所得利润为600元,售出3件种商品和5件种商品所得利润为1100元.(1)求每件种商品和每件种商品售出后所得利润分别为多少元?(2)由于需求量大,、两种商品很快售完,和兴商厦决定再一次购进、两种商品共30件,如果将这30件商品全部售完后所得利润高于4000元,那么和兴商厦至少需要购进多少件种商品?36. 农科所向农民推荐型和型两种新型良种稻谷.在田间管理和土质相同的条件下,型稻谷单位面积的产量比型稻谷低,但型稻谷的米质好,价格比型高.已知型稻谷国家的收购价是1.6元/千克.(1)当型稻谷国家的收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植型、型稻谷的收益相同.(2)2020年小王在土质、面积相同的两块田里分别种植型、型稻谷,且进行了相同的田间管理,收获后,小王把稻谷全部卖给国家,卖给国家时,型稻谷的国家收购价定为2.2元/千克,型稻谷国家的收购价未变,这样小王卖型稻谷和型稻谷共收入21840元,那么小王2020年卖给国家的稻谷共有多少千克.37. 甲、乙两人参加射箭比赛,两人各射了5箭,他们的成绩(单位:环)统计如下表.第1箭第2箭第3箭第4箭第5箭甲成94746绩乙成75657绩(1)分别计算甲、乙两人射箭比赛的平均成绩;(2)你认为哪个人的射箭成绩比较稳定?为什么?38. 有甲、乙、丙三人,若甲、乙的年龄之和为25岁,乙、丙的年龄之和为26岁,甲、丙的年龄之和为27岁,则甲、乙、丙三人的年龄分别为多少岁?39. 如图,表示振华商场一天的某型电脑销售额与销售量的关系,表示该商场一天的销售成本与电脑销售量的关系.观察图象,解决以下问题:(1)当销售量时,销售额=______万元,销售成本=______万元;(2)一天销售______台时,销售额等于销售成本;(3)分别求出和对应的函数表达式;(4)直接写出利润w与销售量x之间的函数表达式,并求出当销售量x是多少时,每天的利润达到5万元?40. 某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);(3)指出售价为多少元时获得利润最大?并试说明(2)中总利润W随售价x的变化而变化的情况.41. 某手机制造厂本周内计划每日生产个零部件,实际每日生产量与计划量相比情况如下表(超过的部分用正数来表示,不足的部分用负数来表示):星期一二三四五六日个数(个)(1)表格中的“”和“”代表什么意思?(2)该手机厂本周一共生产了多少个零部件?42. 某自行车厂计划一周生产自行车140辆,平均每天生产20辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(1)根据记录可知前四天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖10元;若未能完成任务,则少生产一辆扣10元,那么该厂工人这一周的工资总额是多少元?(要求写过程)43. 据调查,我市某企业2018年生产的某品牌产品100万个,到2020年该品牌产品的年产量达到169万个.(1)求该品牌产品的年平均增长率;(2)若该品牌产品的年平均增长率保持不变,请你预测该品牌产品2021年的年产量.44. 直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元/件的小商品进行直播销售,如果按每件50元销售,那么可卖出200件.通过市场调查发现,售价每增加1元,销售量减少10件.,并且商店可盈利2160元.问:该商店销售这种商品每件为了尽快减少库存售价多少元?45. 某中学举行“我爱祖国”知识竞答比赛,规定每个选手共要答20道题,每答对一题得5分,不答或答错一题扣2分.(1)设选手小明答对x题,则小明不答或答错共___________题(用含x的代数式表示);(2)若小明最终的成绩为65分,求小明答对了多少道题?46. 某中学组织一次数学竞赛,共有400名学生参加初赛.为了解本次比赛成绩,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面的频数分布表和频数分布直方图,解答下列问题:分组频数频率4812三、解答题15a b合计(1)抽取的样本容量是______;(2)频数分布表中______, ______,并请补全频数分布直方图;(3)如果成绩达到80分以上者为优秀,可推荐参加决赛,请通过计算估计进入决赛的学生人数.47. 某校七(1)班有56人参加过“数学兴趣小组”的学习活动,其中上学期有25名男生,15名女生参加过学习,下学期有27名男生,25名女生参加过学习,有23名男生从上学期到下学期一直没有间断过学习,那么只在上学期参加过学习的女生有多少名?48. 爸爸为小华存了一个3年期的教育储蓄(设3年期的年利率为2.7%),3年后能取5405元,他开始存入了多少元?49. 一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少钱?设衬衫的成本为x元.50. 在圣诞节来临之际,某儿童商场用2800元购进了一批玩具,上市后很快售完,商场又用7200元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每个玩具进价多了4元.(1)该商场两次共购进这批玩具多少个?(2)如果这两批玩具每个的售价相同,且全部售完后总利润率不低于20%,那么每个玩具的售价至少是多少元?51.在中,,,,点在直线上,在边上,且,.(1)如图1,求证:;(2)如图2,将沿方向平移,使点落在上,得到,求平移的距离;(3)如图3,将绕点逆时针旋转,使点落在上,得到,求旋转角的度数.52. 已知:如图,在中,D是AB上一点,,.求证:是直角三角形.53. 如图,在中,,,E是线段上一动点(不与B、C重合),连接,将线段绕点A逆时针旋转,得到线段,连接.点M和点N分别是边,的中点.(1)【问题发现】如图1,当点E与点M重合时,__________,直线与相交所成的锐角的度数为__________度.(2)【解决问题】如图2,当点E是边上任意一点时(不与重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)【拓展探究】如图3,若,,在E点运动的过程中,直接写出的最小值.54. 如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.55. 如图,在中,对角线,过点作于,求证:四边形是矩形.56. 如图,四边形APBC内接于圆,,,AP,CB的延长线相交于点D.(1)求证:是等边三角形;(2)若,,求PC 的长;(3)若,,求PD 的长.57. 如图①,在四边形BCDE 中,BC ⊥CD ,DE ⊥CD ,AB ⊥AE ,垂足分别为C ,D ,A ,BC≠AC ,点M ,N ,F 分别为AB ,AE ,BE 的中点,连接MN ,MF ,NF.(1)如图②,当BC=4,DE=5,tan ∠FMN=1时,求的值;(2)若tan ∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM ,DN ,CF ,DF .试证明△FMC 与△DNF 全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.58. 如图,已知△ABC 中,AB =AC ,BD 、CE 是高,BD 与CE 相交于点O(1)求证:OB =OC ;(2)若∠ABC =50°,求∠BOC的度数.59. 已知:在四边形ABCD 中,E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点.①求证:EF 与GH 互相平分;②当四边形ABCD 的边满足 条件时,EF ⊥GH.60. 如图,点P 是正方形ABCD 的边BC 上的一个动点,BC=.点Q 在线段BC 延长线上,且BP=CQ ,过Q 作QO ⊥BD 于O.(1)请判断点P 运动过程中,四边形APQD 是什么四边形并证明;(2)请判断OA ,OP 之间的关系,并加以证明;(3)求在点P 运动过程中,线段OP 中点M 的运动路径长.61. 已知二次函数y=x2–kx+k–1(k>2).(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若ΔOAC的面积是,求抛物线的解析式.62. 已知:如图,直线经过两个等腰直角和的顶点,,连接,,且于点,与直线交于点.求证:点是的中点.63. 【教材呈现】如图是华师版八年级上册数学教材第79页的部分内容.(1)请根据教材分析,结合图①,写出完整的证明过程.【拓展】如图②,是等腰直角三角形,,,是边的中线.将绕着点A顺时针旋转角度得到,连结,如图③.(2)设边与边相交于点E,若E为边的中点,则的长为__________.(3)连结,在整个旋转过程中,面积的最大值为__________.64. 如图,以为直径的经过的顶点,,分别平分和,的延长线交于点D,连接.判断的形状,并证明你的结论.65. 已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC66. 如图,已知∠1=∠2,∠3=∠E ,∠4=∠5,请判断AD 与BC 的位置关系,并证明你的结论.67. 已知:如图,△ABC 中,D 是BC 边上一点,EB =EC ,∠ABE =∠ACE ,求证:∠BAE =∠CAE .68. 如图,在△ABC 中,点D 是边BC 的中点,点E 在△ABC 内,AE 平分∠BAC ,CE ⊥AE ,点F 在边AB 上,EF BC .(1)求证:四边形BDEF 是平行四边形;(2)线段BF 、AB 、AC 的数量之间具有怎样的关系?证明你所得到的结论.69.如图,将矩形绕点顺时针旋转,得到矩形,当点在上时,求证:.70. 如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D.(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当弧DC =弧AC 时,延长AB 至点E ,使BE =AB ,连接DE .①求证:DE 是⊙O 的切线;②求PC 的长.。

专题11 统计问题(学生版)

专题11  统计问题(学生版)

备考2024中考二轮数学《高频考点冲刺》(全国通用)专题11 统计问题考点扫描☆聚焦中考统计问题近几年中考中以选择题、填空题、解答题的形式进行考查的,题目相对简单,属于中、低档题;考查的内容主要有:调查的方式;统计图与统计表;频率的计算;平均数、中位数、众数的选用与计算;方差的计算;考查的热点有:抽样调查的方式;统计图与统计表;频率的计算;平均数、中位数、众数的选用与计算;应用统计知识解决实际问题。

考点剖析☆典型例题(2023•辽宁)下列调查中,适宜采用全面调查方式的是()A.了解某种灯泡的使用寿命B.了解一批冷饮的质量是否合格C.了解全国八年级学生的视力情况D.了解某班同学中哪个月份出生的人数最多2023•广州)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a 的值为.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为°.2023•青岛)今年4月15日是我国第八个“全民国家安全教育日”.为增强学生国家安全意识,夯实国家安全教育基础、某市举行国家安全知识竞赛.竞赛结束后,发现所有参赛学生的成绩(满分100分)均不低于60分.小明将自己所在班级学生的成绩(用x表示)分为四组:A组(60≤x <70),B组(70≤x<80),C组(80≤x<90),D组(90≤x≤100),绘制了如图不完整的频数分布直方图和扇形统计图.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)扇形统计图中A组所对应的圆心角的度数为°;(3)把每组中各个同学的成绩用这组数据的中间值(如A组:60≤x<70的中间值为65)来代替,试估计小明班级的平均成绩;(4)小明根据本班成绩,估计全市参加竞赛的所有8000名学生中会有800名学生成绩低于70分,实际只有446名学生的成绩低于70分.请你分析小明估计不准确的原因.2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目 统计量 快递公司配送速度得分服务质量得分平均数 中位数 平均数 方差甲 7.8 m 7 乙887根据以上信息,回答下列问题:(1)表格中的m = ;S 甲2 S 乙2(填“>”“=”或“<”); (2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?考点过关☆专项突破类型一 数据的收集1.(2023•台州)以下调查中,适合全面调查的是( )A .了解全国中学生的视力情况B .检测“神舟十六号”飞船的零部件C .检测台州的城市空气质量D .调查某池塘中现有鱼的数量2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是( ) A .1500名师生的国家安全知识掌握情况 B .150C .从中抽取的150名师生的国家安全知识掌握情况D .从中抽取的150名师生3.(2020•贵阳)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( ) A .直接观察B .实验C .调查D .测量4.(2023•乐山)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100B.150C.200D.4005.(2023•金昌)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人6.(2022•安顺)国务院教育督导委员会办公室印发的《关于组织责任督学进行“五项管理”督导的通知》指出,要加强中小学生作业、睡眠、手机、读物、体质管理.某校数学社团成员采用随机抽样的方法,抽取了七年级部分学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后得到下列不完整的统计表:睡眠时间频数频率t<730.067≤t<8a0.168≤t<9100.209≤t<1024bt≥1050.10请根据统计表中的信息回答下列问题.(1)a=,b=;(2)请估计该校600名七年级学生中平均每天的睡眠时间不足9小时的人数;(3)研究表明,初中生每天睡眠时间低于9小时,会影响学习效率.请你根据以上调查统计结果,向学校提出一条合理化的建议.类型二统计表与统计图1.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°2.(2023•上海)垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为.3.(2023•上海)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量比公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同4.(2023•兰州)2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一,如图反映了2021年,2022年新能源汽车月度销量及同比增长速度的情况,(2022年同比增长速度=×100%),根据统计图提供的信息,下列推断不合理的是()A.2021年新能源汽车月度销量最高是12月份,超过40万辆B.2022年新能源汽车月度销量超过50万辆的月份有6个C.相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D.相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低5.(2023•攀枝花)每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数=该题参考人数得分的平均分÷该题的满分.上期全市八年级期末质量监测,有11623名学生参考.数学选择题共设置了12道单选题,每题5分.最后一道单选题的难度系数约为0.34,学生答题情况统计如表:选项 留空 多选 A B C D 人数11 22 4209 3934 2057 1390 占参考人数比(%)0.090.1936.2133.8517.711.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为( ) A .AB .BC .CD .D6.(2023•赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A ,B ,C ,D 四个等级(A :非常了解;B :比较了解;C :了解;D :不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是( )A .样本容量是200B .样本中C 等级所占百分比是10% C .D 等级所在扇形的圆心角为15° D .估计全校学生A 等级大约有900人7.(2023•贵州)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷 以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4) 问题:你平均每周体育锻炼的时间大约是_____ A .0~4小时 B .4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.类型三频数与频率1.(2023•盐城)在英文句子“Happy Teachers'Day!”中,字母“a”出现的频数为.2.(2022•黑龙江)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人3.(2021•乐山)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是()类型健康亚健康不健康数据(人)3271A.32B.7C.D.4.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为460只.5.(2023•绥化)绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A70≤x<80B80≤x<90C90≤x<100D100≤x<110E110≤x<120A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51°6.(2023•无锡)为迎接第28个世界读书日,营造爱读书、读好书、善读书的浓厚学习氛围,某校组织开展“书香校园阅读周”系列活动,拟举办5类主题活动.A:阅读分享会;B:征文比赛;C:名家进校园;D:知识竞赛;E:经典诵读表演.为了解同学们参与这5类活动的意向,现采用简单随机抽样的方法抽取部分学生进行调查(每名学生仅选一项),并将调查结果绘制成如图.请根据图表提供的信息,解答下列问题.(1)请把这幅频数分布直方图补充完整;(画图后请标注相应数据)(2)扇形统计图中“C”所对应的圆心角的度数等于;(3)该校共有2400名学生,请你估计该校想参加“E:经典诵读表演”活动的学生人数.类型四平均数、众数、中位数与方差1.(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是小时.2.(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分B.94分C.92.5分D.91分3.(2023•鞍山)九(1)班30名同学在一次测试中,某道题目(满分4分)的得分情况如表:得分/分01234人数134148则这道题目得分的众数和中位数分别是()A.8,3B.8,2C.3,3D.3,24.(2023•牡丹江)一组数据1,x,5,7有唯一众数,且中位数是6,则平均数是()A.6B.5C.4D.35.(2023•烟台)长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是()A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差6.(2023•衡阳)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为S甲2和S乙2.则S甲2和S乙2的大小关系是()测试次数12345甲510938乙86867A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定7.(2023•德州)一组数据5,6,8,8,8,1,4,若去掉一个数据,则下列统计量一定不发生变化的是()A.平均数B.众数C.中位数D.方差8.(2023•山西)为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4:4:2的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如表,这20名学生的总评成绩频数分布直方图(每组含最小值,不含最大值)如图.选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是分,众数是分,平均数是分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.9.(2022•河南)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.。

2022-2023学年北京市怀柔区高一(上)期末数学试卷(含答案解析)

2022-2023学年北京市怀柔区高一(上)期末数学试卷(含答案解析)

2022-2023学年北京市怀柔区高一(上)期末数学试卷1. 已知集合A={0,1,2,3,4,5,6},集合B={−1,0,1,2,3},则图中阴影部分表示的集合为( )A. {−1,0,1,2,3,4,5,6}B. {1,2,3}C. {0,1,2,3}D. {4,5,6}2. 若命题P“∃x∈(0,+∞),lnx≥1”,则¬P为( )A. ∃x∈(−∞,0],lnx≥1B. ∃x∈(0,+∞),lnx<1C. ∀x∈(0,+∞),lnx≤1D. ∀x∈(0,+∞),lnx<13. 下列函数既是奇函数又在区间(0,+∞)上单调递增的是( )A. f(x)=(12)xB. f(x)=log2(x+1)C. f(x)=x3D. f(x)=x2+14. 已知a,b,c∈R,且a>b,则下列不等式一定成立的是( )A. |a|>|b|B. a−c>b−cC. 1a <1bD. a⋅c2>b⋅c25. 设a=20.3,b=0.23,c=log0.25则a,b,c的大小关系是( )A. a<b<cB. b<c<aC. c<a<bD. c<b<a6. 已知函数f(x)是定义在R上的偶函数,且当x>0时,f(x)=log2x,则f(−4)的值是( )A. 2B. −2C. −12D. 127. 某直播间从参与购物的人群中随机选出200人,并将这200人按年龄分组,得到的频率分布直方图如图所示,则估计在这200人中年龄在[25,35)的人数n及直方图中a值是( )A. n=35,a=0.032B. n=35,a=0.32C. n=30,a=0.035D. n=30,a=0.358. 已知a∈R,p:方程x2+ax+1=0有实数解,q:2<a<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分不必要条件9. 溶液酸碱度是通过PH计量的.PH的计算公式为PH=−lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.已知某品牌苏打水中氢离子的浓度为[H+]=5×10−9摩尔/升,计算这种苏打水的PH值.(精确到0.001)(参考数据:lg2≈0.301)( )A. 8.699B. 8.301C. 7.699D. 6.60210. 已知f(x−2)是偶函数,函数f(x)对任意x1,x2∈(−∞,−2],且x1≠x2,都有f(x1)−f(x2)x1−x2> 0成立,且f(0)=0,则f(x)>0的解集是( )A. (−∞,−2)∪(2,+∞)B. (−2,2)C. (−∞,−4)∪(0,+∞)D. (−4,0)11. 函数f(x)=log2(x−1)的定义域为______.12. 某学校高一有280名学生,高二有200名学生,高三有120名学生,用分层抽样的方法从中抽取60名学生对课后辅导的满意度进行调查,则从高一学生中应抽取______人.13. 已知x>−1,则函数f(x)=x+4x+1的最小值是______.14. 已知函数f(x)=3x,则下列命题正确的有______.(写出所有正确命题的编号)①对于任意x1,x2∈R,都有f(x1⋅x2)=f(x1)+f(x2)成立;②对于任意x1,x2∈R,且x1≠x2,都有ΔyΔx =f(x1)−f(x2)x1−x2>0成立;③对于任意x1,x2∈R,且x1≠x2,都有f(x1)+f(x2)2>f(x1+x22)成立;④存在实数a,使得对于任意实数x,都有f(x+a)=f(a−x)成立.15. 已知函数f(x)={−ax +1,x <a(x −2)2,x ≥a,当a =1时,则f[f(−2)]=______;若函数g(x)=f(x)−a 有三个零点,则实数a 的取值范围是______.16. 已知集合A ={x|x 2−x −2≤0},B ={x|x ≥a}.(Ⅰ)当a =1时,求∁R B ,A ∩B ,A ∪B ; (Ⅰ)若A ∩B =⌀,求实数a 的取值范围.17. 为了庆祝神舟十四号成功返航,学校开展“航天知识”竞赛活动,甲乙两个班级的代表队同时回答一道有关航天知识的问题,甲队答对此题的概率是34,乙队答对此题的概率是23,假设每队答题正确与否是相互独立的. (Ⅰ)求甲乙两队都答对此题的概率; (Ⅰ)求甲乙两队至少有一队答对此题的概率.18. 已知函数f(x)=2x 2+bx +c(b,c ∈R).(Ⅰ)若不等式f(x)>0的解集为(−∞,12)∪(2,+∞),求f(x)的最小值; (Ⅰ)若f(−2)=f(4)且f(1)=−1,求方程f(x)=0两实根之差的绝对值.19. 已知函数f(x)=x −ax ,a ∈R ,若f(1)=−1.(Ⅰ)求a 值;(Ⅰ)判断函数f(x)的奇偶性,并用定义给出证明; (Ⅰ)用定义证明f(x)在区间(0,+∞)上单调递增.20. 为了庆祝神舟十四号成功返航,学校开展了“航天知识”讲座,为了解讲座效果,从高一甲乙两班的学生中各随机抽取5名学生的测试成绩,这10名学生的测试成绩(百分制)的茎叶图如图所示.(Ⅰ)若x −甲,x −乙分别为甲、乙两班抽取的成绩的平均分,S 甲2,S 乙2分别为甲、乙两班抽取的成绩的方差,则x −甲_____x −乙,S 甲2_____S 乙2.(填“>”或“<”)(Ⅰ)若成绩在85分(含85分)以上为优秀,(i)从甲班所抽取的5名学生中任取2名学生,则恰有1人成绩优秀的概率;(ii)从甲、乙两班所抽取的成绩优秀学生中各取1人,则甲班选取的学生成绩不低于乙班选取的学生成绩的概率.21. 已知函数f(x)=a⋅2x +b2x +1是定义域为R 的奇函数,且f(1)=13.(Ⅰ)求实数a 和b 的值;并判断f(x)在R 上单调性;(不用写出单调性证明过程);(Ⅰ)若关于x 的不等式f[(m +1)x 2]+f[mx +(m −1)]≥0恒成立,求实数m 的取值范围; (Ⅰ)对于任意的x 1∈[1,3],存在x 2∈[1,3],使log n (x 2+2)≤f(x 1)成立,求实数n 的取值范围.答案和解析1.【答案】C【解析】解:图中阴影部分为A ∩B , 则A ∩B ={0,1,2,3}, 故选:C.根据交集的定义可解.本题考查交集的定义,属于基础题.2.【答案】D【解析】解:因为特称命题的否定是全称命题, 所以¬P 为∀x ∈(0,+∞),lnx <1. 故选:D.根据特称命题的否定是全称命题写出结果即可.本题考查命题的否定,特称命题与全称命题的否定关系,属于基础题.3.【答案】C【解析】解:对于A ,由指数函数的性质可知,f(x)=(12)x 为非奇非偶函数,不合题意; 对于B ,由对数函数的性质可知,f(x)=log 2(x +1)为非奇非偶函数,不合题意; 对于C ,由幂函数的性质可知,f(x)=x 3为奇函数,且在(0,+∞)上单调递增,符合题意; 对于D ,由二次函数的性质可知,f(x)=x 2+1为偶函数,不合题意; 故选:C.根据题意逐项分析判断即可.本题考查常见函数的奇偶性及单调性,属于基础题.4.【答案】B【解析】解:对于A ,当a >b 时,若0>a >b ,则|a|<|b|,所以选项A 错误; 对于B ,当a >b 时,根据不等式的基本性质得a −c >b −c ,选项B 正确; 对于C ,当a 、b 中有一个为0时,1a 、1b 中有不存在的值,所以选项C 错误; 对于D ,当c =0时,ac 2=bc 2,选项D 错误. 故选:B.根据不等式的基本性质,对选项中的不等式判断是否成立即可.本题考查了不等式的基本性质应用问题,是基础题.5.【答案】D【解析】解:a=20.3>a=20=1,0<b=0.23<0.20=1,c=log0.25<log0.21=0,所以c<b<a.故选:D.利用指数函数与对数函数的图象与性质即可得大小关系.本题主要考查对数值大小的比较,属于基础题.6.【答案】A【解析】解:根据题意,当x>0时,f(x)=log2x,则f(4)=log24=2,又由函数f(x)是定义在R上的偶函数,则f(−4)=f(4)=2,故选:A.根据题意,由函数的解析式求出f(4)的值,结合函数的奇偶性分析可得答案.本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.7.【答案】C【解析】解:由频率分布直方图知年龄在[25,35)的小距形的面积为:0.015×10=0.15,即年龄在[25,35)的频率为0.15,∴年龄在[25,35)的人数为n=0.15×200=30,由频率分布直方图的小矩形的面积和为1,得:0.01×10+0.15×10+a×10+0.03×10+0.01×10=1,解得a=0.035.故选:C.求出频率直方图中年龄在[25,35)的频率,根据频率即可求出人数,根据频率分布直方图中,小矩形面积和为1,列出等式,能求出a.本题考查频率分布直方图的性质、频率、频数等基础知识,考查运算求解能力,是基础题.8.【答案】B【解析】解:因为p:方程x2+ax+1=0有实数解,则a2−4≥0,则a≤−2或a≥2,又q:2<a<3,则q表示的集合是p表示集合的真子集,则p是q的必要不充分条件,故选:B.根据充分条件、必要条件的定义可解.本题考查充分条件、必要条件的定义,属于基础题.9.【答案】B【解析】解:由可得,PH=−lg(5×10−9)=−(lg5+lg10−9)=−(1−lg2−9)=8+lg2≈8.301.故选:B.由已知结合对数的运算性质即可直接求解.本题主要考查了对数的运算性质在实际问题中的应用,属于基础试题.10.【答案】D【解析】解:因为f(x−2)是偶函数,所以f(x−2)的图象关于y轴对称,则f(x)的图象关于直线x=−2对称,>0成立,又对任意x1,x2∈(−∞,−2],且x1≠x2,都有f(x1)−f(x2)x1−x2所以函数f(x)在(−∞,−2]上单调递增,则在(−2,+∞)上单调递减,则f(x)>0,即f(x)>f(0),则|x−(−2)|<|0−(−2|)|,即|x+2|<2,解得−4<x<0,即不等式的解集为(−4,0).故选:D.分析可知f(x)的图象关于直线x=−2对称,且函数f(x)在(−∞,−2]上单调递增,在(−2,+∞)上单调递减,由此可得解.本题考查函数性质的综合运用,考查运算求解能力,属于基础题.11.【答案】(1,+∞)【解析】解:对数函数f(x)=log2(x−1)中,x−1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).根据对数函数的真数大于0,列出不等式求解集即可.本题考查了求对数函数的定义域问题,是基础题.12.【答案】28=28(人).【解析】解:由分层抽样性质可知,从高一学生中应抽取60×280280+200+120故答案为:28.利用分层抽样性质直接求解.本题考查分层抽样性质等基础知识,考查运算求解能力,是基础题.13.【答案】3【解析】解:因为x >−1, 则函数f(x)=x +4x+1=x +1+4x+1−1≥2√(x +1)⋅4x+1−1=3,当且仅当x +1=4x+1,即x =1时取等号,此时函数取得最小值3. 故答案为:3.由已知结合基本不等式即可直接求解.本题主要考查了基本不等式在最值求解中的应用,属于基础题.14.【答案】②③【解析】解:∵f(x 1⋅x 2)=3x 1x 2≠3x 1+3x 2=f(x 1+x 2),∴①不正确; ∵f(x)=3x 单调递增,∴②正确; ∵f(x 1)+f(x 2)2=3x 1+3x 22≥√3x 1⋅3x 2=3x 1+x 22=f(x 1+x22),∵x 1≠x 2,∴f(x 1)+f(x 2)2>f(x 1+x22),所以③正确;若对于任意实数x ,都有f(x +a)=f(a −x)成立,则f(x)关于x =a 对称,显然④不正确. 故答案为:②③.利用指数的运算性质,容易判断①不正确,结合指数函数的图像和性质,可判断②正确,④错误,利用基本不等式易证③成立.本题考查了函数的恒成立问题,属于中档题.15.【答案】1(√5−12,1]【解析】解:a =1时,f(−2)=3,f(3)=1,故f[f(−2)]=1;函数g(x)=f(x)−a 有三个零点,即为y =f(x)与y =a 的图象有三个不同交点, 首先f(x)在[a,+∞)上需先减后增,则a 满足0<a <2①,此时y =−ax +1在(−∞,a)上递减,故还需−a 2+1<a ≤(a −2)2, 解得{a <−1−√52或a >√5−12a ⩽1或a ⩾4,结合①式得√5−12<a ≤1即为所求.故答案为:(√5−12,1].由里向外计算第一个空的结果,然后结合f(x)的图象研究g(x)的零点个数,进而求出a 的范围.本题考查分段函数的函数值的计算,分段函数条件下函数零点个数的判断问题,属于中档题.16.【答案】解:(Ⅰ)因为集合A ={x|x 2−x −2≤0}={x|−1≤x ≤2},B ={x|x ≥a},当a =1时,B ={x|x ≥1},则∁R B ={x|x <1},A ∩B ={x|−1≤x ≤2},A ∪B ={x|x ≥−1}; (Ⅰ)因为A ∩B =⌀,则a >2, 则a 的取值范围为{a|a >2}.【解析】根据集合间的运算可分别求解. 本题考查集合的运算,属于基础题.17.【答案】解:(Ⅰ)甲乙两个班级的代表队同时回答一道有关航天知识的问题,甲队答对此题的概率是34,乙队答对此题的概率是23,假设每队答题正确与否是相互独立的. 则甲乙两队都答对此题的概率P =34×23=12; (Ⅰ)甲乙两队至少有一队答对此题的概率为: P =1−(1−34)(1−23)=1−112=1112.【解析】(Ⅰ)利用相互独立事件概率乘法公式能求出甲乙两队都答对此题的概率;(Ⅰ)利用对立事件概率计算公式、相互独立事件概率乘法公式能求出甲乙两队至少有一队答对此题的概率.本题考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.18.【答案】解:(Ⅰ)因为不等式f(x)>0的解集为(−∞,12)∪(2,+∞),所以f(x)=0的两根分别为x =2,x =12,所以{12+2=−12b12×2=c2, 所以b =−5,c =2,f(x)=2x 2−5x +2=2(x −54)2−98, 故f(x)的最小值为−98;(Ⅰ)若f(−2)=f(4)且f(1)=−1,则对称轴x =−b4=1,f(1)=2+b +c =−1, 所以b =−4,c =1,f(x)=2x 2−4x +1 设方程f(x)=0两实根分别为x 1,x 2,则x 1+x 2=2,x 1x 2=12,所以两根之差的绝对值|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√22−4×12=√2.【解析】(Ⅰ)由已知结合二次不等式与二次方程的关系,方程的根与系数关系即可求解; (Ⅰ)由已知,利用待定系数先求出函数解析式,然后结合二次方程的根与系数关系可求. 本题主要考查了二次方程与二次不等式关系的应用,还考查了待定系数法求解二次函数解析式,方程的根与系数关系,属于中档题.19.【答案】解:(Ⅰ)根据题意,函数f(x)=x −ax ,a ∈R ,若f(1)=−1.即1−a =−1,解可得a =2, (Ⅰ)f(x)=x −2x,是奇函数,证明:根据题意,f(x)=x −2x ,其定义域为{x|x ≠0}, 且f(−x)=−x +2x =−(x −2x )=−f(x), 故函数f(x)为奇函数; (Ⅰ)证明:设0<x 1<x 2,则f(x 1)−f(x 2)=(x 1−2x 1)−(x 2−2x 2)=(x 1−x 2)(1+2x 1x 2),又由0<x 1<x 2,则x 1−x 2<0,1+2x 1x 2>0,故f(x 1)−f(x 2)<0,函数f(x)在区间(0,+∞)上单调递增.【解析】(Ⅰ)根据题意,由函数的解析式可得关于a 的方程,解可得答案; (Ⅰ)根据题意,先分析函数的定义域,再分析f(−x)与f(x)的关系,即可得答案; (Ⅰ)根据题意,利用作差法分析可得结论.本题考查函数的奇偶性和单调性的判断,注意函数单调性的判断方法,属于基础题.20.【答案】解:(Ⅰ)由图中数据可得,x −甲=15×(77+79+83+86+96)=84,x −乙=15×(79+86+88+90+92)=87, 则x −甲<x −乙,S 甲2=15[(77−84)2+(78−84)2+(83−84)2+(86−84)2+(96−84)2]=46.8, S 乙2=15[(79−87)2+(86−87)2+(88−87)2+(90−87)2+(92−87)2]=20, 则S 甲2>S 乙2; (II)(i)从甲班所抽取的5名学生中任取2名学生,则不同的结果为(77,78),(77,83),(77,86),(77,96),(78,83),(78,86),(78,96),(83,86),(83,96),(86,96),共10个,恰有1人成绩优秀的结果为:(77,86),(77,96),(78,86),(78,96),(83,86),(83,96),共6个, 故恰有1人成绩优秀的概率为P =610=35; (ii)甲班成绩优秀学生有2人,成绩分别为86,96,乙班成绩优秀学生有4人,成绩分别为86,88,90,92,从甲、乙两班所抽取的成绩优秀学生中各取1人,则不同的结果为:(86,86),(86,88),(86,90),(86,92),(96,86),(96,88),(96,90),(96,92), 甲班选取的学生成绩不低于乙班选取的学生成绩不同结果为:(86,86),(96,86),(96,88),(96,90),(96,92),共5个,故甲班选取的学生成绩不低于乙班选取的学生成绩的概率为58.【解析】(Ⅰ)根据已知条件,结合方差和平均数公式,即可求解;(Ⅰ)(i)结合列举法和古典概型的概率公式,即可求解;(ii)结合列举法和古典概型的概率公式,即可求解.本题主要考查茎叶图的应用,考查转化能力,属于中档题.21.【答案】解:(Ⅰ)由题意在f(x)=a⋅2x +b 2x +1中,函数是定义域为R 的奇函数,f(1)=13, ∴{f(0)=a+b 20+1=a+b 2=0f(1)=21⋅a+b21+1=2a+b 3=13,解得{a =1b =−1,此时f(−x)=−f(x)满足题意, ∴f(x)=2x −12x +1=1−22x +1, 设∀x 1,x 2∈R ,x 1<x 2,f(x 1)−f(x 2)=1−22x 1+1−(1−22x 2+1)=2(12x 2+1−12x 1+1)=2⋅2x 1−2x 2(2x 1+1)(2x 2+1), 在y =2x 中,函数单调递增,∴2x 1−2x 2<0,∴f(x 1)−f(x 2)=2⋅2x 1−2x 2(2x 1+1)(2x 2+1)<0,∴f(x)在R 上单调递增;(Ⅰ)由题意及(Ⅰ)得在f(x)=1−22x +1中,函数是奇函数,f(x)=−f(−x),f[(m +1)x 2]+f[mx +(m −1)]≥0恒成立,∴f[(m +1)x 2]≥−f[mx +(m −1)]=f[−mx −(m −1)]恒成立,∵函数单调递增,∴(m +1)x 2≥−mx −(m −1)即(m +1)x 2+mx +m −1≥0恒成立,当m +1=0即m =−1时,−x −2≥0,解得:x ≤−2,不恒成立,舍去;当m +1≠0即m ≠−1时,(m +1)x 2+mx +m −1≥0恒成立,在ℎ(x)=(m +1)x 2+mx +m −1中,若ℎ(x)≥0则需开口向上,∴{m +1>0Δ=m 2−4(m +1)(m −1)=−3m 2+4≤0, 解得m ≥2√33,综上,实数m 的取值范围为[2√33,+∞);(Ⅰ)由题意及(Ⅰ)(Ⅰ)得在f(x)=1−22x +1中,函数单调递增, 对于任意的x 1∈[1,3],存在x 2∈[1,3],使log n (x 2+2)≤f(x 1)成立,∴函数在[1,3]单调递增,∴f(x)≥f(1)=1−221+1=13,则存在x 2∈[1,3],使log n (x 2+3)≤13成立,当0<n <1时,g(x)=log n x 在定义域内单调递减,∴log n (x 2+3)≤log n 4<0,满足题意,当n >1时,g(x)=log n x 在定义域内单调递增,log n (x 2+3)≥log n 4且log n 4≤13=log n n 13,解得:n ≥64,综上,实数n 的取值范围为(0,1)∪[64,+∞).【解析】(Ⅰ)根据奇函数和f(1)=13即可求出a 和b 的值,由定义法即可得出f(x)在R 上单调性; (Ⅰ)根据奇函数和单调递增求出(m +1)x 2+mx +m −1≥0,分类讨论x 2前的系数是否为0,即可求出实数m 的取值范围;(Ⅰ)根据函数的单调递增,得出等价条件,分类讨论g(x)=log n x 的单调性即可求出实数n 的取值范围.本题考查待定系数法求参数,定义法证单调性,考查分类讨论的思想,具有很强的综合性,属于中档题.。

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练-高考数学重点专题冲刺演练(原卷版)

概率统计与期望方差分布列大题拔高练新高考数学复习分层训练(新高考通用)1.(2023·广东广州·高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间0,20,20,40,40,60,60,80,80,100分组,绘制频后测量小白鼠的某项指标值,按[)[)[)[)[]率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.指标值抗体合计小于60不小于60有抗体没有抗体合计a=的独立性检验,判断能否认为注射(1)填写下面的2×2列联表,并根据列联表及0.05疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X.试验后统计数据显示,当X=99时,P(X)取最大值,求参加人体接种试验的人数n.参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.708 1.323 2.072 2.706 3.841 5.0242.(2023春·广东惠州·高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记X 为选出“基地学校”的个数,求X 的分布列和数学期望.3.(2023·广东广州·统考一模)为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为34,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i 次答题所得分数)N (i X i *∈的数学期望为()i E x .①写出()1i E X -与()i E x 满足的等量关系式(直接写出结果,不必证明):②若()100i E x >,求i 的最小值.4.(2023·广东湛江·统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中的100件产品的关键指标(单位:cm ),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数x 和方差2s .(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布()2,N μσ,用直方图的平均数估计值x 作为μ的估计值 μ,用直方图的标准差估计值s 作为σ估计值 σ.(i )为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了()3,3μσμσ-+之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:0.8 1.20.95 1.01 1.23 1.12 1.330.97 1.210.83利用 μ和 σ判断该生产周期是否需停止生产并检查设备.(ii )若设备状态正常,记X 表示一个生产周期内抽取的10个零件关键指标在()3,3μσμσ-+之外的零件个数,求()1P X ≥及X 的数学期望.参考公式:直方图的方差()221n i i i s x x p ==-∑,其中i x 为各区间的中点,i p 为各组的频率.参考数据:若随机变量X 服从正态分布()2,N μσ,则()330.9973P X μσμσ-≤≤+≈,0.105≈0.110≈,90.99730.9760≈,100.99730.9733≈.5.(2023·江苏·统考一模)某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a %,若逐个化验需化验2000次.为减轻化验工作量,随机按n 人一组进行分组,将各组n 个人的血液混合在一起化验,若混合血样呈阴性,则这n 个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.(1)若0.2a =,20n =,试估算该小区化验的总次数;(2)若0.9a =,每人单独化验一次花费10元,n 个人混合化验一次花费9n +元.求n 为何值时,每位居民化验费用的数学期望最小.(注:当0.01p <时,()11np np -≈-)6.(2023·江苏·统考一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.7.(2023·辽宁沈阳·统考一模)2022年12月初某省青少年乒乓球培训基地举行了混双选拔赛,其决赛在韩菲/陈宇和黄政/孙艺两对组合间进行,每场比赛均能分出胜负.已知本次比赛的赞助商提供了10000元奖金,并规定:①若其中一对赢的场数先达到4场,则比赛终止,同时这对组合获得全部奖金;②若比赛意外终止时无组合先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给两对组合分配奖金.已知每场比赛韩菲/陈宇组合赢的概率为()01p p <<,黄政/孙艺赢的概率为1p -,且每场比赛相互独立.(1)若在已进行的5场比赛中韩菲/陈宇组合赢3场、黄政/孙艺组合赢2场,求比赛继续进行且韩菲/陈宇组合赢得全部奖金的概率()f p ;(2)若比赛进行了5场时终止(含自然终止与意外终止),则这5场比赛中两对组合之间的比赛结果共有多少不同的情况?(3)若比赛进行了5场时终止(含自然终止与意外终止),设12p =,若赞助商按规定颁发奖金,求韩菲/陈宇组合获得奖金数X 的分布列.8.(2023·江苏·二模)为促进经济发展,某地要求各商场采取多种举措鼓励消费.A 商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取2个球.具体规则如下:摸出3个红球记为一等奖,没有红球记为二等奖,2个红球记为三等奖,1个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为5折、7折、8折和9折.记随机变量ξ为获得各奖次的折扣率,求随机变量ξ的分布列及期望()Eξ;(2)某一时段内有3人参加该促销活动,记随机变量η为获得7折及以下资格的人数,求()2Pη=.9.(2023·辽宁·哈尔滨三中校联考一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:天数[0,5](5,10](10,15](15,20](20,25](25,30]人数4153331116(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布()2,Nμσ,其中μ近似为样本的平均数(每组数据取区间的中间值),且 6.1σ=,若全校有3000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,天数在[0,15]的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:性别活动天数合计[0,15](15,30]男生女生合计并依据小概率值0.05α=的独立性检验,能否认为学生性别与获得“运动达人”称号有关联.如果结论是有关联,请解释它们之间如何相互影响.附:参考数据:()0.6827P X μσμσ-≤≤+=;()220.9545P X μσμσ-≤≤+=;()330.9973P X μσμσ-≤≤+=.()()()()()()22n ad bc n a b c d a b c d a c b d χ-==+++++++α0.10.050.010.0050.001x α 2.706 3.841 6.6357.87910.82810.(2023·河北邢台·校联考模拟预测)为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛.规定:先累计胜两场者为冠军,一场比赛中犯规4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛.在规则允许的情况下,甲队中球员M 都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为35和25,且每场比赛中犯规4次以上的概率为14.(1)求甲队第二场比赛获胜的概率;(2)用X 表示比赛结束时比赛场数,求X 的期望;(3)已知球员M 在第一场比赛中犯规4次以上,求甲队比赛获胜的概率.11.(2023·河北衡水·河北衡水中学校考三模)某社区对55位居民是否患有新冠肺炎疾病进行筛查,已知随机一人其口拭子核酸检测结果呈阳性的概率为2%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是0.3%,且患病者口拭子核酸呈阳性的概率为98%,设这55位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人,试分析哪一个方案的工作量更少?参考数据:50.980.904≈,110.980.801≈.12.(2023·福建福州·统考二模)脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P(μ-2σ≤X ≤μ+2σ)≈0.9545≈4.7,0.158653≈0.004.13.(2023·山东青岛·统考一模)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照[)60,70,[)70,80,[)80,90,[]90,100分组,得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计该校学生测试成绩的中位数;(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用()P X k =表示这10名学生中恰有k 名学生的成绩在[]90,100上的概率,求()P X k =取最大值时对应的k 的值;(3)从测试成绩在[]90,100的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为ξ,求ξ的分布列及期望.14.(2023·山东潍坊·统考模拟预测)某校举行“强基计划”数学核心素养测评,要求以班级为单位参赛,最终高三一班(45人)和高三二班(30人)进入决赛.决赛规则如下:现有甲、乙两个纸箱,甲箱中有4个选择题和2个填空题,乙箱中有3个选择题和3个填空题,决赛由两个环节组成,环节一:要求两班级每位同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱.并分别统计两班级学生测评成绩的相关数据;环节二:由一班班长王刚和二班班长李明进行比赛,并分别统计两人的测评成绩的相关数据,两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定班级的名次.(1)环节一结束后,按照分层抽样的方法从两个班级抽取20名同学,并统计每位同学答对题目的数量,统计数据为:一班抽取同学答对题目的平均数为1,方差为1;二班抽取同学答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,王刚先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后李明再抽取题目,已知李明从乙箱中抽取的第一题是选择题,求王刚从甲箱中取出的是两道选择题的概率.15.(2023·山东聊城·统考一模)某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理、化学、生物这四个科目中任选两个科目.选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:思想政治地理化学生物物理类100120200180历史类1201406080(1)利用上述样本数据填写以下22⨯列联表,并依据小概率值0.001α=的独立性检验,分析以上两类学生对生物学科的选法是否存在差异.科类生物学科选法选不选合计物理类历史类合计(2)假设该校高一所有学生中有35的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为15,而在历史类的学生中其余两科选择的是地理和化学的概率为110.若从该校高一所有学生中随机抽取100名学生,用X表示这100名学生中同时选择了地理和化学的人数,求随机变量X的均值()E X.附:()()()()()22n ad bca b c d a c b d χ-=++++α0.10.050.0010.0050.001xα 2.706 3.841 6.6357.87910.82816.(2023·湖北武汉·统考模拟预测)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X,求E(X);(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.17.(2023·湖北·统考模拟预测)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布()2,Nμσ,其中μ为样本平均数的估计值,13σ≈,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为34,后两题答对的概率均为35,且每道题回答正确与否互不影响.记该考生的复试成绩为Y ,求Y 的分布列及均值.附:若随机变量X 服从正态分布()2,N μσ,则:()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.18.(2023·湖北武汉·华中师大一附中校联考模拟预测)某地区区域发展指数评价指标体系基于五大发展理念构建,包括创新发展、协调发展、绿色发展、开放发展和共享发展5个一级指标.该地区区域发展指数测算方法以2015年作为基期并设指数值为100,通过时序变化,观察创新发展、协调发展、绿色发展、开放发展和共享发展5个分领域指数值的变动趋势.分别计算创新发展、协调发展、绿色发展、开放发展和共享发展5个分指数,然后合成为该地区区域发展总指数,如下图所示.若年份x (2015年记为1x =,2016年记为2x =,以此类推)与发展总指数y 存在线性关系.(1)求年份x 与发展总指数y 的回归方程;(2)若规定发展总指数大于115的年份为和谐发展年,和谐发展年中发展总指数低于130的视为良好,记1分,发展总指数大于130的视为优秀,记2分,从和谐发展年中任取三年,用X 表示赋分之和,求X 的分布列和数学期望.参考公式:回归方程y bx a =+$$$,其中a y bx =-$$,()()()121n ii i ni i x x y y b x x ==--=-∑∑ ,()()81228.9i i i x x y y =--=∑,119.05y =.19.(2023春·江苏南京·高三南京师范大学附属中学江宁分校校联考阶段练习)某学校为了了解高一学生安全知识水平,对高一年级学生进行“消防安全知识测试”,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”.若该校“不合格”的人数不超过总人数的5%,则该年级知识达标为“合格”;否则该年级知识达标为“不合格”,需要重新对该年级学生进行消防安全培训.现从全体高一学生中随机抽取10名,并将这10名学生随机分为甲、乙两个组,其中甲组有6名学生,乙组有4名学生.甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数).(1)求这10名学生测试成绩的平均分x 和标准差s ;(2)假设高一学生的知识测试成绩服从正态分布2(,)N μσ.将上述10名学生的成绩作为样品,用样本平均数x 作为μ的估计值,用样本标准差s 作为σ的估计值.利用估计值估计:高一学生知识达标是否“合格”?(3)已知知识测试中的多项选择题中,有4个选项.小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X 表示小明做完该道多项选择题后所得的分数.求X 的分布列及数学期望.附:①n 个数的方差2211()n i i s x x n ==-∑;②若随机变量Z 服从正态分布2(,)N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.20.(2023春·湖南长沙·高三长沙一中校考阶段练习)某学校为了弘扬中华传统文化,组织开展中华传统文化活动周,活动周期间举办中华传统文化知识竞赛活动,以班级为单位参加比赛,每班通过中华传统文化知识竞答活动,择优选拔5人代表班级参加年级比赛.年级比赛分为预赛与决赛二阶段进行,预赛阶段的赛制为:将两组中华传统文化的们答题放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个班级代表队在甲或乙两个纸箱中随机抽取两题作答.每个班级代表队先抽取一题作答,答完后试题不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个试题放回原纸箱中.(1)若1班代表队从甲箱中抽取了2个试题,答题结束后错将题目放入了乙箱中,接着2班代表队答题,2班代表队抽取第一题时,从乙箱中抽取试题.已知2班代表队从乙箱中取出的是选择题,求1班代表队从甲箱中取出的是2个选择题的概率;(2)经过预赛,成绩最好的6班代表队和18班代表队进入决赛,决赛采用成语接龙的形式进行,采用五局三胜制,即两班代表队中先胜三局的代表队赢得这场比赛,比赛结束.已知第一局比赛6班代表队获胜的概率为35,18班代表队胜的概率为25,且每一局的胜者在接下来一局获胜的概率为25,每局必分胜负.记比赛结束时比赛局数为随机变量X ,求随机变量X 的数学期望()E X .21.(2023春·湖南·高三校联考阶段练习)某学校食堂中午和晩上都会提供,A B 两种套餐(每人每次只能选择其中一种),经过统计分析发现:学生中午选择A 类套餐的概率为23,选择B 类套餐的概率为13;在中午选择A 类套餐的前提下,晩上还选择A 类套餐的概率为14,选择B 类套餐的概率为34;在中午选择B 类套餐的前提下,晩上选择A 类套餐的概率为12,选择B 类套餐的概率为12.(1)若同学甲晩上选择A 类套餐,求同学甲中午也选择A 类套餐的概率;(2)记某宿舍的4名同学在晩上选择B 类套餐的人数为X ,假设每名同学选择何种套餐是相互独立的,求X 的分布列及数学期望.22.(2023·湖南·校联考模拟预测)基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x )和物理成绩(y ),绘制成如图散点图:根据散点图可以看出y 与x 之间有线性相关关系,但图中有两个异常点A ,B .经调查得知,A 考生由于重感冒导致物理考试发挥失常,B 考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:5015800i i x==∑,5013900i i y ==∑,501462770i i i x y ==∑,()502128540i i x x =-=∑,()502118930i i y y =-=∑,其中,i i x y 分别表示这50名考生的数学成绩、物理成绩,1i =,2,…,50,y 与x 的相关系数0.45r ≈.(1)若不剔除A ,B 两名考生的数据,用52组数据作回归分析,设此时y 与x 的相关系数为0r .试判断0r 与r 的大小关系(不必说明理由);(2)求y 关于x 的线性回归方程(系数精确到0.01),并估计如果B 考生加了这次物理考。

专题41 概率解答题2022中考真题精选-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题41 概率解答题2022中考真题精选-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题41 概率解答题2022中考真题精选(原卷版)专题诠释:中考数学必考内容:概率。

精选2022中考真题,欢迎下载选用。

1.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.2.(2022•朝阳)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是 .(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.3.(2022•鞍山)2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用A,B表示)和八年级的两名学生(用C,D表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是 .(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.5.(2022•沈阳)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是 ;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.4.(2022•菏泽)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了 名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为 度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是 ;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.6.(2022•常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图象关于原点对称;④函数的图象关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是 ;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.7.(2022•淮安)一只不透明的袋子中装有3个大小、质地完全相同的乒乓球,球面上分别标有数字1、2、3,搅匀后先从袋子中任意摸出1个球,记下数字后放回,搅匀后再从袋子中任意摸出1个球,记下数字.(1)第一次摸到标有偶数的乒乓球的概率是 ;(2)用画树状图或列表等方法求两次都摸到标有奇数的乒乓球的概率.8.(2022•内蒙古)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字1,2,3,4.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是奇数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,在剩下的三个小球中再随机摸出一个小球,将小球上的数字记为y.请用列表或画树状图法,求由x,y确定的点(x,y)在函数y=﹣x+4的图象上的概率.9.(2022•淄博)某中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展为优化师资配备,学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有 名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是 度;(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.10.(2022•巴中)为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080请根据以上信息,回答下列问题:(1)抽取的学生共有 人,其中参加围棋社的有 人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.11.(2022•徐州)如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为 ;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.12.(2022•镇江)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出一个球,摸到红球的概率等于 ;(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.13.(2022•东营)中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:青年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解学生参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.14.(2022•黄石)某中学为了解学生每学期“诵读经典”的情况,在全校范围内随机抽查了部分学生上一学期阅读量,学校将阅读量分成优秀、良好、较好、一般四个等级,绘制如下统计表:等级一般较好良好优秀阅读量/本3456频数12a144频率0.240.40b c请根据统计表中提供的信息,解答下列问题:(1)本次调查一共随机抽取了 名学生;表中a= ,b= ,c= ;(2)求所抽查学生阅读量的众数和平均数;(3)样本数据中优秀等级学生有4人,其中仅有1名男生.现从中任选派2名学生去参加读书分享会,请用树状图法或列表法求所选2名同学中有男生的概率.15.(2022•资阳)某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)若全校共有学生3600人,求愿意参加劳动类社团的学生人数;(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.16.(2022•锦州)小华同学从一副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的甲盒中,再从这副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的乙盒中.(1)小华同学从甲盒中随机抽取1张,抽到扑克牌花色为“红心”的概率为 ;(2)小华同学从甲、乙两个盒中各随机抽取1张扑克牌.请用画树状图或列表的方法,求抽到扑克牌花色恰好是1张“红心”和1张“方块”的概率.17.(2022•丹东)为了解学生一周劳动情况,我市某校随机调查了部分学生的一周累计劳动时间,将他们一周累计劳动时间t(单位:h)划分为A:t<2,B:2≤t<3,C:3≤t<4,D:t≥4四个组,并将调查结果绘制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:(1)这次抽样调查共抽取 人,条形统计图中的m= ;(2)在扇形统计图中,求B组所在扇形圆心角的度数,并将条形统计图补充完整;(3)已知该校有960名学生,根据调查结果,请你估计该校一周累计劳动时间达到3小时及3小时以上的学生共有多少人?(4)学校准备从一周累计劳动时间较长的两男两女四名学生中,随机抽取两名学生为全校学生介绍劳动体会,请用列表法或画树状图法求恰好抽取到一名男生和一名女生的概率.18.(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)m= ,n= ;并补全条形统计图;(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?19.(2022•南通)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.(1)从袋子中随机摸出一个球,摸到蓝球的概率是 ;(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.20.(2022•鄂尔多斯)为了调查九年级学生寒假期间平均每天观看冬奥会时长情况,随机抽取部分学生进行调查,根据收集的数据绘制了如图所示两幅不完整的统计图“平均每天观看冬奥会时长”频数分布表频数(人)频率观看时长(分)0<x≤1520.0560.1515<x≤3018a30<x≤450.2545<x≤6040.160<x≤75(1)频数分布表中,a= ,请将频数分布直方图补充完整;(2)九年级共有520名学生,请你根据频数分布表,估计九年级学生平均每天观看冬奥会时长超过60分钟的有 人;(3)校学生会拟在甲、乙、丙、丁四名同学中,随机抽取两名同学做“我与冬奥”主题演讲,请用树状图或列表法求恰好抽到甲、乙两名同学的概率.21.(2022•日照)今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a 表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x= ,y= ,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是 ,众数是 ;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.22.(2022•荆门)为了了解学生对“新冠疫情防护知识”的应知应会程度,某校随机选取了20名学生“新冠疫情防护知识”的测评成绩,数据如表:成绩/分888990919596979899学生人数21a321321数据表中有一个数因模糊不清用字母a表示.(1)试确定a的值及测评成绩的平均数x,并补全条形图;(2)记测评成绩为x,学校规定:80≤x<90时,成绩为合格;90≤x<97时,成绩为良好;97≤x≤100时,成绩为优秀.求扇形统计图中m和n的值;(3)从成绩为优秀的学生中随机抽取2人,求恰好1人得97分、1人得98分的概率.23.(2022•西宁)“青绣”是我省非遗项目,其中土族盘绣、湟中堆绣、贵南藏绣、河湟刺绣等先后列入国家级、省级非物质文化遗产代表作名录.(1)省文旅厅为调查我省青少年对“青绣”文化的了解情况,应选择的调查方式是 (填“全面调查”或“抽样调查”);(2)为了增进我省青少年对“青绣”文化的了解,在一次社会实践活动中设置了转盘游戏.如图所示,一个可以自由转动的转盘,指针固定不动,转盘被分成了大小相同的4个扇形,并在每个扇形区域分别标上A,B,C,D(A代表土族盘绣、B代表湟中堆绣、C代表贵南藏绣、D代表河湟刺绣).游戏规则:每人转动转盘一次,当转盘停止时,指针落在哪个区域就获得相应的绣品(若指针落在分界线上,重转一次,直到指针指向某一区域内为止).请用画树状图或列表的方法求出甲,乙两名同学获得同一种绣品的概率,并列出所有等可能的结果.24.(2022•盐城)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)25.(2022•青海)为迎接党的二十大胜利召开,某校对七、八年级的学生进行了党史学习宣传教育,其中七、八年级的学生各有500人.为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及8分以上为优秀),相关数据统计、整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.(1)填空:a= ,b= ;(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可);(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;(4)现从七、八年级获得10分的4名学生中随机抽取2人参加党史知识竞赛,请用列表法或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.七、八年级抽取学生的测试成绩统计表年级七年级八年级平均数88众数a7中位数8b优秀率80%60%26.(2022•柳州)在习近平总书记视察广西、亲临柳州视察指导一周年之际,某校开展“紧跟伟大复兴领航人踔厉笃行”主题演讲比赛,演讲的题目有:《同甘共苦民族情》《民族团结一家亲,一起向未来》《画出最美同心圆》.赛前采用抽签的方式确定各班演讲题目,将演讲题目制成编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其余完全相同).现将这3张卡片背面朝上,洗匀放好.(1)某班从3张卡片中随机抽取1张,抽到卡片C的概率为 ;(2)若七(1)班从3张卡片中随机抽取1张,记下题目后放回洗匀,再由七(2)班从中随机抽取1张,请用列表或画树状图的方法,求这两个班抽到不同卡片的概率.(这3张卡片分别用它们的编号A,B,C 表示)27.(2022•河池)为喜迎中国共产党第二十次全国代表大会的召开,红星中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是 ,圆心角β= 度;(2)补全条形统计图;(3)已知红星中学共有1200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A,B,C,D四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A,C两人同时参赛的概率.28.(2022•盘锦)某学校为丰富课后服务内容,计划开设经典诵读,花样跳绳、电脑编程、国画鉴赏、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.根据图中信息,完成下列问题:(1)本次调查共抽取了 名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A 《出师表》的概率.29.(2022•通辽)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率 ;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)30.(2022•长春)抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”,正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.31.(2022•郴州)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.32.(2022•深圳)某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.(1)本次抽查总人数为 ,“合格”人数的百分比为 ;(2)补全条形统计图;(3)扇形统计图中“不合格人数”的度数为 ;(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为 .33.(2022•营口)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.34.(2022•百色)学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.根据信息作答:(1)参赛班级总数有 个;m= ;(2)补全条形统计图;(3)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).35.(2022•广安)某校在开展线上教学期间,为了解七年级学生每天在家进行体育活动的时间(单位:h),随机调查了该年级的部分学生.根据调查结果,绘制出如下的扇形统计图1和条形统计图2,请根据相关信息,解答下列问题:(1)本次随机调查的学生共有 人,图1中m的值为 .(2)请补全条形统计图.(3)体育活动时间不足1小时的四人中有3名女生A1、A2、A3和1名男生B.为了解他们在家体育活动的实际情况,从这4人中随机抽取2人进行电话回访,请用列表法或画树状图法,求恰好抽到两名女生的概率,36.(2022•辽宁)学校开展“阳光体育”运动,根据实际情况,决定开设篮球、健美操、跳绳、毽球四个运动项目,为了解学生最喜爱哪一个运动项目,学校从不同年级随机抽取部分学生进行调查,每人必须选择且只能选择一个项目,并将调查结果绘制成如下两幅统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的学生共有 人;(2)在扇形统计图中,求健美操项目所对应的扇形圆心角的度数;并把条形统计图补充完整;(3)在最喜爱健美操项目的学生中,八年一班和八年二班各有2名同学有健美操基础,学校准备从这4人中随机抽取2人作为健美操领操员,请用列表或画树状图的方法求选中的2名同学恰好是同一个班级的概率.37.(2022•恩施州)2022年4月29日,湖北日报联合夏风教室发起“劳动最光荣,加油好少年”主题活动.某校学生积极参与本次主题活动,为了解该校学生参与本次主题活动的情况,随机抽取该校部分学生进行调查.根据调查结果绘制如下不完整的统计图(如图).请结合图中信息解答下列问题:(1)本次共调查了 名学生,并补全条形统计图.(2)若该校共有1200名学生参加本次主题活动,则本次活动中该校“洗衣服”的学生约有多少名?(3)现从参与本次主题活动的甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受.请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.38.(2022•遵义)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是﹣6,﹣1,8,转盘乙上的数字分别是﹣4,5,7(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘甲指针指向正数的概率是 ;转盘乙指针指向正数的概率是 .(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.39.(2022•吉林)长白山国家级自然保护区、松花湖风景区和净月潭国家森林公园是吉林省著名的三个景区.甲、乙两人用抽卡片的方式决定一个自己要去的景区.他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭.卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片.请用画树状图或列表的方法,求两人都决定去长白山的概率.。

山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.列代数式(共1小题)1.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D 的面积为 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 .二.分式的混合运算(共2小题)2.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.3.(2021•青岛)(1)计算:(x+)÷;(2)解不等式组:并写出它的整数解.三.解一元一次不等式组(共1小题)4.(2022•青岛)(1)计算:÷(1+);(2)解不等式组:四.一次函数的应用(共2小题)5.(2023•青岛)某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m 件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.6.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?五.反比例函数与一次函数的交点问题(共1小题)7.(2022•青岛)如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y =﹣的图象在第二象限相交于点A(﹣1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.六.二次函数的应用(共1小题)8.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?七.作图—复杂作图(共3小题)9.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.10.(2022•青岛)已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.11.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.八.解直角三角形的应用-方向角问题(共1小题)12.(2022•青岛)如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活•绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)九.扇形统计图(共1小题)13.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n 名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:90,92,93,95,95,96,96,96,97,100.竞赛成绩分组统计表组别竞赛成绩分组频数平均分160≤x<70865270≤x<80a75380≤x<90b88490≤x≤1001095请根据以上信息,解答下列问题:(1)a= ;(2)“90≤x≤100”这组数据的众数是 分;(3)随机抽取的这n名学生竞赛成绩的平均分是 分;(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.一十.列表法与树状图法(共1小题)14.(2023•青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.一十一.游戏公平性(共1小题)15.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.列代数式(共1小题)1.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 2.5 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D 的面积为 5 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 (n2+2n+2) .【答案】(1)2.5;(2)5;(3)(n2+2n+2).【解答】解:(1)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A1B=BA,B1C=CB,∴BB1=BC+CB1=2,A1B=1,∵A1B⊥BB1,∴S△ABB1=A1B×BB1=×1×2=1,∵AD⊥AB,∴S梯形ABB1D=(BB1+AD)×AB=(2+1)×1=,∵S四边形AA1B1D=S△ABB1+S梯形ABB2D,∴S四边形AA1B1D=1+=2.5,故答案为:2.5;(2))∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A2B=2BA=2,B2C=2CB=2,∴BB2=BC+CB2=2+1=3,A2B=2,∵A2B⊥BB2,∴=A 2B×BB2=×2×(2+1)=×2×(2+1)=3,∵AD⊥AB,∴=(BB 2+AD)×AB=(2+1+1)×1=2,∵=+,∴=3+2=5,故答案为:5;(3)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A n B=nBA=n,B n C=nCB=n,∴BB n=BC+CB n=n+1,A n B=n,∵A n B⊥BB n,∴=An B×BB n=×n×(n+1)=n(n+1),∵AD⊥AB,∴=(BB n+AD)×AB=(n+1+1)×1=(n+2),∵=+,∴=n(n+1)+(n+2)=(n2+2n+2),故答案为:(n2+2n+2).二.分式的混合运算(共2小题)2.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.【答案】(1)1≤x<3;(2)m+1.【解答】解:(1)解第一个不等式得:x<3,解第二个不等式得:x≥1,故原不等式组的解集为:1≤x<3;(2)原式=•=•=m+1.3.(2021•青岛)(1)计算:(x+)÷;(2)解不等式组:并写出它的整数解.【答案】(1);(2)﹣1,0,1.【解答】解:(1)(x+)÷===;(2)解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,∴不等式组的整数解为:﹣1,0,1.三.解一元一次不等式组(共1小题)4.(2022•青岛)(1)计算:÷(1+);(2)解不等式组:【答案】(1);(2)2<x≤3.【解答】解:(1)原式=÷=•=;(2),解不等式①得:x≤3,解不等式②得:x>2,∴不等式组的解集为:2<x≤3.四.一次函数的应用(共2小题)5.(2023•青岛)某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m 件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.【答案】(1)2880元;(2)①W=﹣4m+3000(150≥m≥50),②服装店第二次获利不能超过第一次获利,理由见详解.【解答】解:(1)设购进AT恤衫x件,购进BT恤衫y件,根据题意列出方程组为:,解得,∴全部售完获利=(66﹣45)×80+(90﹣60)×40=1680+1200=2880(元).(2)①设第二次购进A种T恤衫m件,则购进B种T恤衫(150﹣m)件,根据题意150﹣m≤2m,即m≥50,∴W=(66﹣45﹣5)m+(90﹣60﹣10)(150﹣m)=﹣4m+3000(150≥m≥50),②服装店第二次获利不能超过第一次获利,理由如下:由①可知,W=﹣4m+3000(150≥m≥50),∵﹣4<0,一次函数W随m的增大而减小,∴当m=50时,W取最大值,W大=﹣4×50+3000=2800(元),∵2800<2880,∴服装店第二次获利不能超过第一次获利.6.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲品牌洗衣液每瓶的进价是30元,乙品牌洗衣液每瓶的进价是24元;(2)超市应购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶,才能在两种洗衣液完全售出后所获利润最大,最大利润是560元.【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元,则乙品牌洗衣液每瓶的进价是(x ﹣6)元,依题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元,乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶,则可以购买(120﹣m)瓶乙品牌洗衣液,依题意得:30m+24(120﹣m)≤3120,解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480,∵k=2>0,∴y随m的增大而增大,∴m=40时,y取最大值,y最大值=2×40+480=560.120﹣40=80(瓶),答:超市应购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶,才能在两种洗衣液完全售出后所获利润最大,最大利润是560元.五.反比例函数与一次函数的交点问题(共1小题)7.(2022•青岛)如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y =﹣的图象在第二象限相交于点A(﹣1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.【答案】见试题解答内容【解答】解:(1)∵点A(﹣1,m)在反比例函数y=﹣的图象上,∴﹣m=﹣2,解得:m=2,∴A(﹣1,2),∵AD⊥x轴,∴AD=2,OD=1,∴CD=AD=2,∴OC=CD﹣OD=1,∴C(1,0),把点A(﹣1,2),C(1,0)代入y=kx+b中,,∴一次函数的表达式为y=﹣x+1;(2)在Rt△ADC中,AC==2,∴AC=CE=2,当点E在点C的左侧时,a=1﹣2,当点E在点C的右侧时,a=1+2,∴a的值为1±2.六.二次函数的应用(共1小题)8.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)y=﹣0.2x+8.4(1≤x≤10,x为整数);(2)李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.【解答】解:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4(1≤x≤10,x为整数),答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4(1≤x≤10,x为整数);(2)设李大爷每天所获利润是w元,由题意得:w=[12﹣0.5(x﹣1)﹣(﹣0.2x+8.4)]×10x=﹣3x2+41x=﹣3(x﹣)2+,∵﹣3<0,x为正整数,且|6﹣|>|7﹣|,∴x=7时,w取最大值,最大值为﹣3×(7﹣)2+=140(元),答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.七.作图—复杂作图(共3小题)9.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.【答案】见解答.【解答】解:如图,点P为所作.10.(2022•青岛)已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.【答案】见试题解答内容【解答】解:①先作出线段BC的垂直平分线EF;②再作出∠ABC的角平分线BM,EF与BM的交点为P;则P即为所求作的点.11.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.【答案】见解答.【解答】解:如图,Rt△ABC为所作.八.解直角三角形的应用-方向角问题(共1小题)12.(2022•青岛)如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活•绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)【答案】见试题解答内容【解答】解:过点C作CF⊥DE于F,由题意得,∠D=40°,∠ACB=68°,在Rt△ABC中,∠CBA=90°,∵tan∠ACB=,∴AB=CB×tan68°≈200×2.48=496(m),∴BE=AB﹣AE=496﹣200=296(m),∵∠CFE=∠FEB=∠CBE=90°,∴四边形FEBC为矩形,∴CF=BE=296m,在Rt△CDF中,∠DFC=90°,∵sin∠D=,∴CD≈=462.5(m),答:观光船从C处航行到D处的距离约为462.5m.九.扇形统计图(共1小题)13.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:90,92,93,95,95,96,96,96,97,100.竞赛成绩分组统计表组别竞赛成绩分组频数平均分160≤x<70865270≤x<80a75380≤x<90b88490≤x≤1001095请根据以上信息,解答下列问题:(1)a= 12 ;(2)“90≤x≤100”这组数据的众数是 96 分;(3)随机抽取的这n名学生竞赛成绩的平均分是 82.6 分;(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.【答案】(1)12;(2)96;(3)82.6;(4)120人.【解答】解:(1)8÷16%=50(名),50×24%=12(名),因此a=12,故答案为:12;(2)“90≤x≤100”这组的数据中出现最多的是96,∴“90≤x≤100”这组数据的众数是96分,故答案为:96;(3)第3组的频数b=50﹣8﹣12﹣10=20,随机抽取的这n名学生竞赛成绩的平均分是:×(65×8+75×12+88×20+95×10)=82.6(分),故答案为:82.6;(4)1200×=120(人),答:估计全校1200名学生中获奖的人数有120人.一十.列表法与树状图法(共1小题)14.(2023•青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.【答案】.【解答】解:画树状图为:共有6种等可能的结果,其中抽取两本书中有《九章算术》的结果数为4种,所以抽取两本书中有《九章算术》的概率==.一十一.游戏公平性(共1小题)15.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.【答案】游戏对双方都公平.【解答】解:所有可能的结果如下:∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果,∴P(小冰获胜)==,P(小雪获胜)==,∵P(小冰获胜)=P(小雪获胜),∴游戏对双方都公平.。

全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题(含答案与解析)_9229

全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题(含答案与解析)_9229

2023~2024学年普通高等学校招生模拟考试数学试卷本试卷共6页,共19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效,4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉D. 35A -∉3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100πB. 128πC. 144πD. 192π4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( ) A. 4 B. 8C.D.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次为飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.39506. 椭圆()2222:10x y E a b a b+=>>左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.147. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9B. 7C. 11D. 38. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806B. 810C. 807D. 811二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).的A. 若点P 在圆C 外,则直线l 与圆C 相离B. 若点P 在圆C 内,则直线l 与圆C 相交C. 若点P 在圆C 上,则直线l 与圆C 相切D. 若点P 在直线l 上,则直线l 与圆C 相切11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019B. 2023C. 2029D. 2033三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.13. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos limx x xx→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同实根,则实数k 的取值范围是_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y 32.42.221.8(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.的附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交为于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 值;(2)在(1)的条件下,求MPQ 面积的最小值. 19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πxf x =,()sin g x x =,()h x x =. (1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 为实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-【答案】A 【解析】【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==-=,故6z =,故A 正确,B 、C 、D 错误. 故选:A.2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉ D. 35A -∉【答案】A 【解析】【分析】令31k +分别为选项中不同值,求出k 的值进行判定.的【详解】当1k =-时,2x =-,所以2A -∈,故A 正确;当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =-时,123135x =-⨯+=-,所以35A -∈,故D 错误. 故选:A3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100π B. 128πC. 144πD. 192π【答案】A 【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以1222r r ==123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =121d d -=或121d d +=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A. 4B. 8C. D.【答案】A 【解析】【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.3950【答案】D 【解析】【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可.【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D.6. 椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.14【答案】C 【解析】【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a -,设()()0000,,,A x y B x y -. 则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+--, 又222222000022222118x y y a x b a b b a a -+=⇒=⇒=, 则22222287a b c a b b ==-=,.则222227788c b e a b===. 故选:C 7. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9 B. 7C. 11D. 3【答案】C 【解析】【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=-含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω-=+∈,即43,Z k k ω=+∈,由πππ242x ω-≤-≤,得π3π44x ωω-≤≤,则πsin()4y x ω=-在π3π[,44ωω-上单调递增, 而πsin(4y x ω=-在区间π[0,12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C8. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806 B. 810C. 807D. 811【答案】B 【解析】【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023-,上根的个数.【详解】因为()()22f x f x -=+,所以()()4f x f x -=+, 又()()77f x f x -=+,所以()()14f x f x -=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x -=在(]0,3上无解, 又()()77f x f x -=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020-,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020--,根据周期等价于区间[)7,10,该区间上无解,故方程()0f x =在闭区间[]20232023-,上根的个数为810. 故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.【答案】CD 【解析】【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =--=-- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =-=- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O ,可得(0,2,2),(1,0,2)MN OP =-= ,则0040MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O ,可得(2,2,0),(1,1,1)MN OP =-=- ,则2200MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故D 正确.故选:CD.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ). A. 若点P 在圆C 外,则直线l 与圆C 相离 B. 若点P 在圆C 内,则直线l 与圆C 相交 C. 若点P 在圆C 上,则直线l 与圆C 相切 D. 若点P 在直线l 上,则直线l 与圆C 相切【答案】AB【解析】【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>, 则圆心()0,0C 到直线l的距离为d r <,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<, 则圆心()0,0C 到直线l的距离为d r >,所以直线l 与圆C 相离,故命题B 是假命题;对于C ,因为点(),P m n 在圆C 上,所以222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=-,即222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB.11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019 B. 2023 C. 2029 D. 2033【答案】AC 【解析】【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==-展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==-=⨯-⨯++⨯-=⨯-⨯++-+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.【答案】5 【解析】【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅-=⋅-⋅=-=-= ,故答案为:513. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos lim x x x x→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 【答案】 ①. 1②. 2e【解析】【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t =, 则00sin cos sin limlim 1x t x x tx t→→==; 又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e .14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是_________. 【答案】()20,5e -【解析】【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,()2e e e xxxg x x x =--中,()()2e2xg x xx '=+-,当()0g x '=时,解得2x =-或1,当()0g x '<即2<<1x -时,()g x 单调递减, 当()0g x '>即<2x -,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g -----=----=,()1111e e e e g =--=-,当()()22,1e0xx g x x x -=--,方程()g x k =有三个不同的实根, ∴()02k g <<-即205e k -<<, 故答案为:()20,5e-.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0x x g x x x -=--这个条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y32.42.221.8在(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.【答案】(1)0.962r ≈-,y 与t 具有很强的线性相关关系(2) 0.28 3.12y t =-+,10月收入从预测看不能突破1.5万元,理由见解析 【解析】【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入.小问1详解】(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=-=++++=∑,()522222210.720.120.080.280.480.848ii y y =-=++++=∑,所以所求线性相关系数【为550.962t yr ===≈-.因为相关系数的绝对值0.9620.9620.75r =-=>, 所以认为y 与t 具有很强的线性相关关系. 【小问2详解】 由题得522222211234555ii t==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t ybt t==--⨯⨯-====--⨯-∑∑ , 所以 ()2.280.283 3.12a y bt=-=--⨯= , 所以y 关于t 的回归直线方程为 0.28 3.12y t =-+. 当6t =时, 0.286 3.12 1.44y =-⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥. 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)通过计算1n n b b +-为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式. 【小问1详解】∵2n na b n-=, ∴2n n b a n =-,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤-=-+--=--⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +-=, ∴12n n b b d +-=-,∴数列{}n b 是以2d -为公差的等差数列; 【小问2详解】 ∵13a d ==,∴112321b a =-=-=,2321d -=-=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+-⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列, ∴11122n n n c --=⨯=,∴1·2n n n b c n -=,∴1121112222n n T n ---=⨯+⨯++⨯ ①,∴2n T =()21112122n n n n --⨯+++⨯⨯- ②,∴②-①得,11222n n n T n n -=----⨯+⨯()11222n n n n -=-+++⨯+⨯12212n n n -=-+⋅-122n n n =-+⋅()121n n =-+,∵1n ≥且n 为正整数, ∴10n -≥,20n >,∴()1211nn T n =-+≥(当1n =时取等).17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值. 【小问1详解】取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , 【小问2详解】因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则0n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- ,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅ , 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,为而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- , 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯ .18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值. 【答案】18. 1m =-19. 9 【解析】【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解.【小问1详解】由12122PF PF F F -=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b-=≥,0a >,0b >,2c = ,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x -=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =-,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧-=⎪⎨⎪=-⎩,可得()222234430k x k x k --++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧-≠⎪=--+>⎪⎪⎪⎨+=>⎪-⎪+⎪⋅=>⎪-⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=--+=-.()()()221222x m k x x -+--()()()22221212124k x x k m x x m k =+-++++()()()222222214342433k k k k m m k k k +++=-++--2223(45)3m k m k -+=+- ()()222245313m m k m k --+-=-MP MQ ⊥ ,0MP MQ ∴⋅=, 故得()()22231450mk mm -+--=对任意的23k >恒成立,2210,450,m m m ⎧-=∴⎨--=⎩解得1m =-, ∴当1m =-时,MP MQ ⊥.当直线l 斜率不存在时,可得(2,3)P ,则(2,3)Q -,此时有()()3312121-⋅=-----,即此时结论也成立,综上,当1m =-时,MP MQ ⊥;【小问2详解】由(1)知(1,0)M -,当直线l的斜率存在时,()222613k PQ x k +=-=-,点M 到直线PQ 的距离为d,则d =,1||2MPQS PQ d ∴====令23(0)k t t-=>,则MPQ S = 10t> ,9MPQ S ∴=> , 当直线l 的斜率不存在时,13692MPQ S =⨯⨯= , 综上可知,MPQ S 的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x=,()h x x =. 的(1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =-,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x --<,两边同时除以(2)s πin 0x -<得到:πsin 2πx x ->,证明出不等式. 【小问1详解】令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,∴()1cos 0F x x =->'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增, ∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,, 要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πx x <, 令πsin 2()x G x x =-,π(02x ∈,,∴2cos sin ()x x xG x x -'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x-'==-, 令()tan M x x x =-,π(02x ∈,,∴2221cos 1()1cos cos x M x x x-'=-=, 又∵当π(02x ∈,时,20cos 1x <<, ∴当π(0)2x ∈,时,()0M x '<, ∴()M x 在(0)π2,上单调递减, ∴()(0)0M x M =<, ∴当π(0)2x ∈,时,()0G x '<, ∴()G x 在(0π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x<, ∴()(),(0)π2f x g x x ∈<,, ∴综上所述,当π(02x ∈,时,()()()f x g x h x <<,证毕.【小问2详解】∵当π(0)2x ∈,时,()()()0f x g x h x --<,∴2sin 0πxx x --<, ∴2sin 0πππx x x--<, ∴0ππ2)i π(s n x x--<,① 将①式两边同时乘以π得到:0ππ(2)sin x x --<,② ∵20π-<,但当π(02x ∈,时,sin 0x >,∴(2)s πin 0x -<,将②式两边同时除以(2)s πin 0x -<得到:(2)sin 0(2)n ππsi πx xx-->-,∴0πsin 2πx x ->-, ∴πsin 2πx x -, ∴当π(0)2x ∈,时,()π()2πh x g x ->,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了培养学生对航天知识的学习兴趣,某校组织全校
1200
中国载人航天工程亲历者、西北工业大学教授苟秉宸和海南中学“钱学森班”学生进行航天知识互动。

4月29日11时23分,中国航天迎来又一个历史性的壮丽时刻——长征五号B遥二运载火箭托举着中国空间站天和核心舱直冲苍穹。

在火箭尾焰的映照下,围观孩子们脸上的笑容分外明媚。

航天教育是海南中小学生“红绿蓝”德育体系中蓝色航天和蓝色海洋教育的重要内容。

受海南省教育厅与文昌航天发射场邀请,海南8所中小学校230名学生近期现场见证了中国空间站天和核心舱成功发射,其中就有海南中学多名学生。

作为全国航天特色学校,海南中学近年来充分整合资源,针对不同年级实际,通过通识教育、特色课程、主题活动、研学旅行等多种方式加强对学生的航天教育。

值得一提的是,该校还在初三、高一、高二、高三年级各开设一个“钱学森班”,为热爱航天知识的学生提供更有针对性的航天特色课程和活动,有计划地为国家培养航天事业“后备军”。

海南中学教务科副科长xxx介绍,经过近3年的实践,该校“钱学森班”已初步形成特色课程体系,主要包括设置一门校本课程、开展两个主题活动、组织两次研学旅行、学习一门拓展课程和推进一个项目式学习课题等内容。

据介绍,每年海中“钱学森班”的学生会参加两个主题活动:一
是钱学森诞辰日纪念活动,通过主题班会、公开课、征文活动等形式学习宣传钱学森精神;二是参加中国航天日科普活动,通过话剧、情景剧等形式,把航天知识普及到全校其他班级。

海中“钱学森班”的特色课程体系中,最受学生欢迎的是两次研学旅行活动,分别在暑假和火箭发射重要时间节点举行。

近期,目睹火箭升空、现场人群的欢呼沸腾后,该校学生xxx动情写下感言:“通过新型望远镜可以直接观测到月球表面,运载火箭能将探测设备运上月球,人们在一点点揭开宇宙的奥秘。

当然,我们清楚地知道,要完全揭开这个奥秘还有很长的路要走。

但是对于全人类来说,这是一定会达到的。


除了参加形式多样的航天主题活动,海中“钱学森班”的学生们在校期间还要学习一门拓展课程,例如体验类航天物理VR课程、融入式的数学物理高阶课程等等,其中涵盖数学、物理、化学、生物、信息学等科技类课程内容。

海南中学教师xxx开设的航天特色课堂,运用了VR、航模制作、智能机器人等“教具”。

他表示,“结合实践讲解航天知识,提高学生的课程参与度,可以进一步增强学生的动手能力,培养他们的科学精神、创新精神。


海中“钱学森班”的学生普遍认为,拓展课程的学习激发了他们学习航天相关专业知识的兴趣,为以后的大学学习打下基础。

持续的引导和浓郁的学习氛围,让海中“钱学森班”和其他班级的学生对航天科学产生了浓厚兴趣。

在校园里的钱学森雕像前,学生
们献上的鲜花终日不断。

海南日报记者了解到,由于航天科普教育门槛高、可复制性低,海南中学等我省多所中小学校在教育行政部门的指导下推进航天教育。

比如,文昌中学开设航天教育校本课程,并投入专项建设和学习经费建设微星测控站、航天创客实验室;中国人民大学附属中学海口实验学校不久前开展了航天模型制作实践活动,邀请航天工作者和科技人员为学生授课,介绍火箭的结构、发射原理及回收技术。

对此,海南省教育厅基础教育处处长xxx表示,教育行政部门鼓励我省中小学校通过开设特色校本课程,开展研究性学习项目、航天文化节、航天科普讲座、航天特色研学活动和创办航天科技创新社团等多种方式,将课堂教学与科普活动、校内教育与校外教育相结合,推动航天知识、航天文化、航天精神进校园、进课堂,在孩子们心里埋下航天梦想的种子,为国家航天事业和海南自贸港航天科技产业培养更多建设者和接班人。

相关文档
最新文档