第29讲 等比数列

合集下载

29等比数列

29等比数列

第二十九讲 等比数列班级________ 姓名________ 考号________ 日期________ 得分________ 一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=( ) A.23 B.32 C.23或32D .-23或-32解析:在等比数列{a n }中,a 7·a 11=a 4·a 14=6① 又a 4+a 14=5②由①、②组成方程组解得⎩⎪⎨⎪⎧a 4=2a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∴a 20a 10=a 14a 4=23或32. 答案:C2.在等比数列{a n }中a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2B .3nC .2nD .3n-1解析:要{a n }是等比数列,{a n +1}也是等比数列,则只有{a n }为常数列,故S n =na 1=2n .答案:C评析:本题考查了等比数列的性质及对性质的综合应用,抓住只有常数列有此性质是本题的关键,也是技巧;否则逐一验证,问题运算量就较大.3.设等比数列{a n }的前n 项和为S n ,若S 6 S 3=1 2,则S 9 S 3等于( ) A .1 2 B.2 3 C .3 4 D.1 3解析:解法一:∵S 6 S 3=1 2, ∴{a n }的公比q ≠1.由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q =12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34.解法二:因为{a n }是等比数列,所以S 3,S 6-S 3,S 9-S 6也成等比数列, 即(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34,故选C.答案:C4.已知等比数列{a n }中,a n >0,a 10a 11=e ,则ln a 1+ln a 2+…+ln a 20的值为( ) A .12 B .10 C .8D .e解析:ln a 1+ln a 2+…+ln a 20=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=lne 10=10,故选B. 答案:B5.若数列{a n }满足a 1=5,a n +1=a 2n +12a n +a n 2(n ∈N *),则其前10项和是( )A .200B .150C .100D .50解析:由已知得(a n +1-a n )2=0, ∴a n +1=a n =5, ∴S 10=50.故选D. 答案:D6.在等比数列{a n }中,a 1+a 2+…+a n =2n-1(n ∈N *),则a 21+a 22+…+a 2n 等于( ) A .(2n -1)2 B.13(2n -1)2C .4n-1 D.13(4n -1)解析:若a 1+a 2+…+a n =2n-1,则a n =2n -1,a 1=1,q =2,所以a 21+a 22+…+a 2n =13(4n -1),故选D.答案:D二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.数列{a n }中,n 12(n )2n 1(n .)n a -⎧=⎨⎩-为正奇数为正偶数设数列{a n }的前n 项和为S n ,则S 9=________.解析:S 9=(1+22+24+26+28)+(3+7+11+15)=377. 答案:3778.数列{a n }的前n 项之和为S n ,S n =1-23a n ,则a n =________.解析:n =1时,a 1=S 1=1-23a 1,得a 1=35,n ≥2时,S n =1-23a n ,S n -1=1-23a n -1.两式相减得a n =23a n -1-23a n ,即53a n =23a n -1,a n a n -1=25, 所以{a n }是等比数列,首项为a 1=35,公比为25,所以a n =35·⎝ ⎛⎭⎪⎫25n -1.答案:35·⎝ ⎛⎭⎪⎫25n -19.{a n }是等比数列,前n 项和为S n ,S 2=7,S 6=91,则S 4=________. 解析:设数列{a n }的公比为q , ∵S 2=7,S 6=91.∴⎩⎪⎨⎪⎧a 1+a 2=7,a 1+a 2+a 3+a 4+a 5+a 6=91,∴⎩⎪⎨⎪⎧a 1+a 2=7,7+7q 2+7q 4=91,∴q 4+q 2-12=0,∴q 2=3.∴S 4=a 1(1-q 4)1-q=a 1(1+q )(1+q 2)=(a 1+a 1q )(1+q 2)=28.答案:2810.设数列{a n }的前n 项和为S n (n ∈N +),关于数列{a n }有下列四个命题: ①若{a n }既是等差数列又是等比数列,则a n =a n +1(n ∈N +) ②若S n =an 2+bn (a ,b ∈R),则{a n }是等差数列 ③若S n =1-(-1)n,则{a n }是等比数列④若{a n }是等比数列,则S m ,S 2m -S m ,S 3m -S 2m (m ∈N +)也成等比数列. 其中正确的命题是__________.(填上正确命题的序号)解析:①若{a n }既是等差数列又是等比数列,{a n }为非零常数列,故a n =a n +1(n ∈N +);②若{a n }是等差数列,S n =d2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 为an 2+bn (a ,b ∈R)的形式;③若S n =1-(-1)n,则n ≥2时,a n =S n -S n -1=1-(-1)n-1+(-1)n -1=(-1)n -1-(-1)n,而a 1=2,适合上述通项公式,所以a n =(-1)n -1-(-1)n 是等比数列;④若{a n }是等比数列,当公比q =-1且m 为偶数时,S m ,S 2m -S m ,S 3m -S 2m 不成等比数列.答案:①②③三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知数列{a n }中,a 1=1,前n 项和为S n ,对任意的自然数n ≥2,a n 是3S n -4与2-32S n -1的等差中项. (1)求{a n }的通项公式; (2)求S n .解:(1)由已知,当n ≥2时, 2a n =(3S n -4)+(2-32S n -1),①又a n =S n -S n -1,②由①②得a n =3S n -4(n ≥2)③a n +1=3S n +1-4④③④两式相减得a n +1-a n =3a n +1 ∴a n +1a n =-12. ∴a 2,a 3,…,a n ,…成等比数列,其中a 2=3S 2-4=3(1+a 2)-4,即a 2=12,q =-12,∴当n ≥2时,a n =a 2q n -2=12⎝ ⎛⎭⎪⎫-12n -2=-⎝⎛⎭⎪⎫-12n -1.即11(1)1(2).2n n n a n -=⎧⎪=⎨⎛⎫-- ⎪⎪⎝⎭⎩≥(2)解法一:当n ≥2时S n =a 1+a 2+…+a n =a 1+(a 2+…+a n )=1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=43-13⎝ ⎛⎭⎪⎫-12n -1, 当n =1时S 1=1=43-13⎝ ⎛⎭⎪⎫-120 也符合上述公式. ∴S n =43-13⎝ ⎛⎭⎪⎫-12n -1.解法二:由(1)知n ≥2时,a n =3S n -4, 即S n =13(a n +4),∴n ≥2时,S n =13(a n +4)=-13⎝ ⎛⎭⎪⎫-12n -1+43.又n =1时,S 1=a 1=1亦适合上式. ∴S n =43-13⎝ ⎛⎭⎪⎫-12n -1.12.设数列{a n }的前n 项和为S n ,且(3-m )S n +2ma n =m +3(n ∈N *),其中m 为常数,且m ≠-3.(1)求证:{a n }是等比数列;(2)若数列{a n }的公比q =f (m ),数列{b n }满足b 1=a 1,b n =32f (b n -1)(n ∈N *,n ≥2),求证:{1b n}为等差数列,并求b n .解:(1)证明:由(3-m )S n +2ma n =m +3, 得(3-m )S n +1+2ma n +1=m +3, 两式相减,得(3+m )a n +1=2ma n ,m ≠-3,∴a n +1a n =2m m +3(n ≥1). ∴{a n }是等比数列.(2)由(3-m )S 1+2ma 1=m +3, 解出a 1=1,∴b 1=1. 又∵{a n }的公比为2m m +3, ∴q =f (m )=2m m +3, n ≥2时,b n =32f (b n -1)=32·2b n -1b n -1+3,∴b n b n -1+3b n =3b n -1,推出1b n -1b n -1=13.∴{1b n }是以1为首项,13为公差的等差数列, ∴1b n =1+n -13=n +23, 又1b 1=1符合上式,∴b n =3n +2. 13.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否是等比数列?若是,请求出a 1的值;若不是,请说明理由. 解:(1)由题意知5S 2=4S 4,S 2=a 1(1-q 2)1-q ,S 4=a 1(1-q 4)1-q,∴5(1-q 2)=4(1-q 4),得q 2+1=54.又q >0,∴q =12.(2)解法一:∵S n =a 1(1-q n )1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,于是b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,若{b n }是等比数列,则12+2a 1=0,即a 1=-14,此时,b n =⎝ ⎛⎭⎪⎫12n +1,∵b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12,∴数列{b n }是等比数列, 所以存在实数a 1=-14,使数列{b n }为等比数列.解法二:由于b n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,所以b 1=12+a 1,b 2=12+32a 1,b 3=12+74a 1,若数列{b n }为等比数列,则b 22=b 1·b 3,即⎝ ⎛⎭⎪⎫12+32a 12=⎝ ⎛⎭⎪⎫12+a 1⎝ ⎛⎭⎪⎫12+74a 1, 整理得4a 21+a 1=0,解得a 1=-14或a 1=0(舍去),此时b n =⎝ ⎛⎭⎪⎫12n +1.故存在实数a 1=-14,使数列{b n }为等比数列.。

等比数列的性质-高中数学知识点讲解

等比数列的性质-高中数学知识点讲解

等比数列的性质1.等比数列的性质【等比数列】(又名几何数列),是一种特殊数列.如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,这2个数列就叫做等比数列,因为第二项与第一项的比和第三项与第二项的比相等,这个常数叫做等比数列的公比,公比通常用字母表示.注:时,为常数列.q (q 0)q=1 an等比数列和等差数列一样,也有一些通项公式:①第项的通项公式,=,这里a 为首项,q 为公比,n a a q n﹣1n 1 1푎1(1―푞푛)我们发现这个通项公式其实就是指数函数上孤立的点.②求和公式,S =n,表示的是前面项的n1―푞和.③若m n=q p ,且都为正整数,那么有a •a =a •a .m n p q例:成等比数列,则=.2,x,y,z,18 y解:由成等比数列,设其公比为,2,x,y,z,18 q4则,解得,18=2q q2=32∴.y=2q =23=6故答案为:.6本题的解法主要是运用了等比数列第项的通项公式,这也是一个常用的方法,即知道某两项的值然后求出公比,n继而可以以已知项为首项,求出其余的项.关键是对公式的掌握,方法就是待定系数法.【等比数列的性质】(1)通项公式的推广:=,(,).a a q ﹣n m N*•n mn m*(2)若{a n}为等比数列,且,则k l=m n,(k,l,m,n N ) a •a=a •ak l m n(3)若{ }{ }(项数相同)是等比数列,则 a a a b ,仍是等比数列.a ,b {(} 0),,{•}n n n n n푎1>0푎1<0푎1>0푎1<0 (4)单调性:{푞>1或{0<푞<1是递增数列;{0<푞<1或{{a } {a } q=1 {a }푞>1是递减数列;是 n n n 常数列;是摆动数列.q<0 {a }n1/ 1。

演示文稿等比数列求和公式

演示文稿等比数列求和公式
(优选)等比数列求和公式ppt 讲解
第1页,共91页。
新课讲解
等比数列前 n 项和公式 知识点
基本内容
基本 公式
等比数列 前 n 项和公 式
Sn=naqa1≠111-1-qq=qn1=
a1-anq 1-q
根据 q 是否为 1,有两种形式
推导等比 错位相减法:解决由等比数列与
基本
两边乘公比,错
数列前 n 项 等差数列对应项的积组成的数
∴q=2,a1=2. ∴S8=a111--qq8=2×1-1-2 28=510.
答案:D
第17页,共91页。
跟踪练习
1. 求和 Sn=1a+a22+a33+…+ann. 解:分a=1和a≠1两种情况. 当a=1时,Sn=1+2+3+…+n=nn+ 2 1; 当a≠1时,Sn=1a+a22+a33+…+ann, 上式两边同乘以1a,得 1aSn=a12+a23+…+n-an 1+ann+1,
提示:已知 a1,q,n 且 q≠1 时用 Sn=a111--qqn, 已知 a1,q,an 且 q≠1 时,用公式 Sn=a11--aqnq.
第4页,共91页。
3.等比数列前 n 项和的公式是如何推导的?
提示:设 Sn=a1+a2+a3+…+an① 则把①式两边同乘以 q 得: qSn=a1q+a2q+a3q+…+an-1q+anq qSn=a2+a3+a4+…+an+an+1② ①-②得(1-q)Sn=a1-an+1 ∴当 q≠1 时,Sn=a11--aqn+1=a1(11--qqn). 又当 q=1 时,∵a1=a2=…=an,∴Sn=na1.
第31页,共91页。
[错因分析] 在上面的求解过程中,没有讨论公比 q 是 否为 1,就直接使用了等比数列的前 n 项和公式 Sn= a1(11--qqn),从而有可能出现漏解情况.

等比数列的性质及应用(课件)高二数学(人教A版2019选择性必修第二册)

等比数列的性质及应用(课件)高二数学(人教A版2019选择性必修第二册)

息不少于按月结算的利息(精确到10−5 )?
分析:
复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若
原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 { } ,则 { } 是等比数列,
首项 1 = 104 (1 + 0.400%),
价格为8 100元的计算机3年后的价格可降为(
A.300元
B.900元
C.2 400元
公比q=1+0.400% ,所以
12 = 104 (1 + 0.400%)12 ≈ 10 490.7
所以, 12个月后的利息为10 490.7 − 104 ≈ 491(元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列{ },
则{ }也是一个等比数列,
首项 1 = 104 (1 + ),公比为1+r,于是
数列.
( 2 ) 若 数 列 { } , { } 均 为 等 比 数 列 , c 为 不 等 于 0 的 常 数 , 则 数 列
,
2
, ∙

, { }

也为等比数列.
【典例 3】在等差数列{an}中,公差 d≠0,a1,a2,a4 成等比数列,已知数列 a1,
a3,ak1,ak2,…,akn,…也成等比数列,求数列{kn}的通项公式.
2
【解析】由题意得a2
=a1a4,即(a1+d)2=a1(a1+3d),
得d(d-a1)=0,又d≠0,所以a1=d.
又a1,a3,ak1,ak2,…,akn,…成等比数列,
a3 3d
所以该数列的公比q=a = d =3,

等比数列规律

等比数列规律

等比数列规律《等比数列规律:隐藏在数字中的神奇魔法》我想给你讲个特别有趣的事儿,那就是等比数列的规律。

你可别一听数列就觉得头疼,等比数列就像一场数字的神秘之旅。

咱先从简单的说起。

想象一下,你有一颗种子,这颗种子第一天长出了2片叶子,第二天这2片叶子各自又长出2片新叶子,那就是4片叶子,第三天这4片叶子又各自长出2片,就变成8片叶子。

这个2、4、8就是一个等比数列。

这里的2就是这个数列的公比,就像一个小魔法数字,每一项都是前一项乘以这个2得到的。

这是不是很神奇?你看,从小小的种子,就发展出这么一个有规律的数字增长。

等比数列就像一个无限循环的故事。

比如说3、6、12、24……这个数列的公比是2。

每一个数字就像故事里的一个情节,不断按照这个公比的规则发展下去。

要是把这个数列画在纸上,你会发现它就像一个越爬越高的梯子,数字越来越大。

你难道不觉得这很像我们的生活吗?有时候一个小小的开始,通过一个稳定的增长规则,就会变成很大的成果。

再看看1、 -2、4、 -8……这个等比数列的公比是 -2。

这时候就有点像坐过山车了,数字一会儿正一会儿负,一会儿往上一会儿往下。

它不像前面那些数列一直往一个方向增长,而是有正有负地变化着。

这就像我们的情绪一样,有时候高涨,有时候低落,但是也有着自己的规律。

在等比数列里,我们还能发现一些很有趣的计算方法。

假如知道了等比数列的第一项和公比,那后面的数字就像多米诺骨牌一样,很容易就能算出来。

比如说第一项是5,公比是3,那第二项就是5乘以3等于15,第三项就是15乘以3等于45。

这多简单呀,就像按照菜谱做菜一样,一步一步来就好。

那等比数列在生活中有什么用呢?其实用处可大了。

就拿存钱来说,假如你每年把钱按照一定的比例增加存进去,那这个钱数的增长就可能是一个等比数列。

还有细胞分裂,一个细胞每次分裂成几个,随着时间的推移,细胞的数量增长也是一个等比数列。

这就像是大自然在悄悄使用等比数列这个神奇的工具呢。

高三数学第一轮复习课时作业(29)等比数列B

高三数学第一轮复习课时作业(29)等比数列B

课时作业(二十九)B 第29讲 等比数列时间:35分钟 分值:80分基础热身1.2012·厦门外国语月考 已知数列{a n }是由正数组成的等比数列,S n 表示{a n }的前n 项的和.若a 1=3,a 2a 4=144,则S 10的值是( )A .511B .1023C .1533D .30692.2011·大连模拟 在等比数列{a n }中,若a 2a 3a 6a 9a 10=32,则a 29a 12的值为( )A .4B .2C .-2D .-4 3.2011·抚州二模 等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则数列{a n }的公比等于( ) A .1 B.12 C .-12 D.1+524.2011·汕头期末 在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则tan C =________.能力提升5.2011·新余二模 已知等比数列{a n }的前n 项和为S n ,且a 2011=3S 2010+2012,a 2010=3S 2009+2012,则公比q 等于( )A .3 B.13 C .4 D.146.2011·巢湖一检 在等比数列{a n }中,a 1=4,公比为q ,前n 项和为S n ,若数列{S n +2}也是等比数列,则q 等于( )A .2B .-2C .3D .-37.2011·丰台一模 设等差数列{a n }的公差d ≠0,a 1=4d .若a k 是a 1与a 2k 的等比中项,则k =( ) A .3或-1 B .3或1 C .3 D .18.2011·琼海一模 在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n+k ,则实数k 为( ) A .0 B .1 C .-1 D .29.2011·东莞调研 在等比数列{a n }中,a 1=1,且a 1+1,a 2+2,a 3+2依次成等差数列,则{a n }的前6项和等于________.10.2011·盐城二模 已知公差不为零的等差数列{a n }满足a 1,a 3,a 9成等比数列,{S n }为数列{a n }的前n项和,则S 11-S 9S 7-S 6的值是________.11.2011·福州质检 在等比数列{a n }中,首项a 1=23,a 4=⎠⎛14(1+2x)d x ,则公比q 为________.12.(13分)2011·烟台二诊 设数列{a n }的前n 项和为S n ,且S n =(λ+1)-λa n ,其中λ是不等于-1和0的常数.(1)证明:{a n }是等比数列;(2)设数列{a n }的公比q =f(λ),数列{b n }满足b 1=13,b n =f(b n -1)(n ∈N ,n ≥2),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .难点突破13.(12分)2011·汕头一模 设数列{a n }为等比数列,数列{b n }满足:b n =na 1+(n -1)a 2+…+2a n -1+a n ,n ∈N *,已知b 1=m ,b 2=3m 2,其中m ≠0.(1)求数列{a n }的首项和公比; (2)当m =1时,求b n ;(3)设S n 为数列{a n }的前n 项和,若对于任意的正整数n ,都有S n ∈1,3,求实数m 的取值范围.课时作业(二十九)B【基础热身】1.D 解析 由已知a 2a 4=144,得a 1q ·a 1q 3=144,则q 4=14432=16,即q =2, ∴S 10=a 1(1-q 10)1-q =3(1-210)1-2=3069.2.B 解析 根据等比数列的性质,有a 2a 10=a 3a 9=a 26,又已知a 2a 3a 6a 9a 10=32,则a 56=32,即a 6=2,a 1q 5=2, ∴a 29a 12=(a 1q 8)2a 1q11=a 1q 5=2.3.C 解析 由已知S 1,S 3,S 2成等差数列,得2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=a 1+a 1+a 1q ,化简,得2a 1(1+q +q 2)=a 1(2+q ),即2q 2+q =0,解得q =-12.4.1 解析 由已知,有⎩⎪⎨⎪⎧-4+4tan A =4,13tan 3B =9,解得⎩⎨⎧tan A =2,tan B =3,∴tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=1.【能力提升】5.C 解析 由已知,有a 2011=3S 2010+2012,a 2010=3S 2009+2012, 两式相减,得a 2011-a 2010=3a 2010,即a 2011=4a 2010, 则公比q =4.6.C 解析 由已知,有S 1=a 1=4,S 2=a 1+a 2=4(1+q ),S 3=a 1+a 2+a 3=4(1+q +q 2), 因为数列{S n +2}是等比数列,所以(S 2+2)2=(S 1+2)(S 3+2),即(4q +6)2=6(6+4q +4q 2),解得q =3.7.C 解析 由数列{a n }是等差数列,得a k =a 1+(k -1)d ,a 2k =a 1+(2k -1)d . ∵a k 是a 1与a 2k 的等比中项,∴a 2k =a 1a 2k ,即a 1+(k -1)d 2=a 1a 1+(2k -1)d ,化简,得(k -1)2d 2-a 1d =0. 把a 1=4d 代入,得k =3.8.C 解析 解法一:由S n =3n +k ,得a 1=S 1=3+k ,a 2=S 2-S 1=(32+k )-(3+k )=6,a 3=S 3-S 2=(33+k )-(32+k )=18.由a n +1=ca n (c 为非零常数),知数列{a n }是等比数列,则 a 22=a 1a 3,即62=18(3+k ),解得k =-1.解法二:由题意知,数列{a n }是公比为c 的等比数列,且c ≠0,c ≠1. 设a 11-q=t ,则 S n =a 1(1-q n)1-q =-tq n +t =3n+k ,∴k =t =-1.9.63 解析 设等比数列{a n }的公比为q ,则a 2=q ,a 3=q 2,由a 1+1,a 2+2,a 3+2依次成等差数列,得 2(a 2+2)=(a 1+1)+(a 3+2),即2(q +2)=(1+1)+(q 2+2),化简,得q 2-2q =0,解得q =2.则数列{a n }的前6项和为S 6=1-261-2=63.10.3 解析 设等差数列的公差为d (d ≠0),由a 1,a 3,a 9成等比数列,得 a 23=a 1a 9,即(a 1+2d )2=a 1(a 1+8d ), 化简,得a 1=d .S 11-S 9S 7-S 6=a 11+a 10a 7=2a 1+19da 1+6d3. 11.3 解析 a 4=⎠⎛14(1+2x)d x =(x +x 2)⎪⎪41=(4+42)-(1+12)=18,又a 4=a 1q 3,a 1=23,则q 3=27,即q =3.12.解答 (1)证明:∵S n =(λ+1)-λa n , ∴S n -1=(λ+1)-λa n -1(n ≥2),∴a n =-λa n +λa n -1,即(1+λ)a n =λa n -1.又λ≠-1且λ≠0,∴a n a n -1=λ1+λ.又a 1=1,∴{a n }是以1为首项,λ1+λ为公比的等比数列.(2)由(1)知q =f(λ)=λ1+λ∴b n =f(b n -1)=b n -11+b n -1(n ≥2),故有1b n =1+b n -1b n -1=1b n -1+1,∴1b n -1b n -1=1(n ≥2),∴⎩⎨⎧⎭⎬⎫1b n 是以3为首项,1为公差的等差数列. ∴T n =3n +n(n -1)2=n 2+5n2.【难点突破】13.解答 (1)由已知b 1=a 1,所以a 1=m ;b 2=2a 1+a 2,所以2a 1+a 2=32m ,解得a 2=-m2;所以数列{a n }的公比q =-12.(2)当m =1时,a n =⎝⎛⎭⎫-12n -1,b n =na 1+(n -1)a 2+…+2a n -1+a n ,① -12b n =na 2+(n -1)a 3+…+2a n +a n +1,② ②-①得-32b n =-n +a 2+a 3+…+a n +a n +1,所以-32b n =-n +-12⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=-n -13⎣⎡⎦⎤1-⎝⎛⎭⎫-12n ,b n =2n 329-29⎝⎛⎭⎫-12n =6n +2+(-2)1-n9.(3)S n =m ⎣⎡⎦⎤1-⎝⎛⎭⎫-12n1-⎝⎛⎭-12=2m 3·⎣⎡⎦⎤1-⎝⎛⎭⎫-12n ,因为1-⎝⎛⎭⎫-12n>0, 所以由S n ∈1,3得11-⎝⎛⎭⎫-12n≤2m 331-⎝⎛⎭⎫-12n, 注意到,当n 为奇数时,1-⎝⎛⎭⎫-12n ∈⎝⎛⎦⎤1,32;当n 为偶数时,1-⎝⎛⎭⎫-12n ∈⎣⎡⎭⎫34,1,所以1-⎝⎛⎭⎫-12n 的最大值为32,最小值为34.对于任意的正整数n 都有11-⎝⎛⎭⎫-12n ≤2m 3≤31-⎝⎛⎭⎫-12n ,所以43≤2m3≤2,解得2≤m ≤3.。

等比数列 -公开课课件

等比数列 -公开课课件
35
解:由于每代的种子数是它的前 一代种子数的120倍,逐代的种子 数组成等比数列,记为 an其中 a1 120, q 120 因此
a5 1201204 2.51010
答:到第五代大约得到这个新品
种的种子 2.51010 粒?
36
由等差数列的性质,猜想等比数列的性质
{an}是公差为d的等差数列 {bn}是公比为q的等比数列
1 ,1 ,1 ,1 ,1 ,… 2 4 8 16
6
出门见九堤,每堤有九木,每木有九巢, 每巢有九鸟,每鸟有九雏,每雏有九毛,每毛有 九色,问共有几堤,几木,几巢,几鸟,几雏, 几毛,几色?(《孙子算经》)
堤、木,巢、鸟、雏、毛、色依次构成数列:
9,92,93,94,95,96, 97
7
某种汽车购买时的价格是36万元,每年 的折旧率是10%,求这辆车各年开始时的价 格(单位:万元)。
各年汽车的价格组成数列:
36,36×0.9,36×0.92, 36×0.93,…
8
比一比
(1) 1, 2, 22 , 23 , …… , 263
(2)
1, 2
1, 4
1, 8
1 16
,
……
(3) 9,92,93,94,95,96, 97
(4) 36,36×0.9,36×0.92, 36×0.93,…
? 思考: an1 an q
10

等差数列

等比数列
定 义
如果一个数列从第2 项起,每一项与前 一项的差都等于同 一个常数,那么这 个数列叫做等差数 列.这个常数叫做等 差数列的公差,用d 表示
如果一个数列从 第2项起,每一项 与它前一项的比 都等于同一个常 数,那么这个数列 叫做等比数列.

等比数列首项末项公式

等比数列首项末项公式

等比数列首项末项公式全文共四篇示例,供读者参考第一篇示例:等比数列是数学中非常重要的概念,它不仅在数学中有着广泛的应用,也在现实生活中有着重要的意义。

等比数列是一种以固定比值递增或递减的数列,其中每一项与它的前一项之比等于一个常数,这个常数就是等比数列的公比。

在等比数列中,我们经常会遇到需要求出首项和末项的问题。

首项和末项分别是数列中的第一个项和最后一个项,它们是等比数列中的两个重要的概念。

求等比数列的首项和末项可以帮助我们更好地理解数列的性质和规律,进而解决相关的问题。

首项和末项公式是求解等比数列首项和末项的基本公式,它们可以帮助我们快速并准确地计算出数列的首项和末项。

接下来,我们将详细介绍等比数列首项和末项公式的推导和应用。

让我们来看一看等比数列的定义。

设等比数列为a,ar,ar^2,ar^3,…,其中a为首项,r为公比,n为项数。

等比数列中任意两项之比都为相同的值r,即:ar / a = ar^2 / ar = ar^3 / ar^2 = ... = r根据等比数列的性质,我们可以得到等比数列的首项和末项公式。

设等比数列的首项为a,公比为r,末项为an。

根据等比数列的定义,有:an = a * r^(n-1)这就是等比数列的首项和末项公式。

利用这个公式,我们可以快速计算出等比数列中的任何一项,进而解决数列相关的问题。

下面我们通过一个示例来说明等比数列首项和末项公式的应用。

示例:求解等比数列的首项和末项已知一个等比数列的公比为2,第4项为8,求解首项和末项。

解题步骤:根据已知条件列出等式:将已知条件代入公式中,得:8 = a * 2^3解得a = 1继续代入公式,求解末项:总结一下,等比数列首项和末项公式是解决等比数列相关问题的重要工具,它们可以帮助我们轻松地计算出等比数列中的首项和末项。

通过深入理解等比数列的性质和规律,我们可以更好地掌握数学知识,提高解决问题的能力。

希望本文的介绍能够对读者有所帮助,谢谢阅读!第二篇示例:等比数列是数学中一种重要的数列形式,它是指一个数列中每个项与它的前一项之比相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座29)—等比数列一.课标要求:1.通过实例,理解等比数列的概念;2.探索并掌握等差数列的通项公式与前n 项和的公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题。

体会等比数列与指数函数的关系。

二.命题走向等比数列与等差数列同样在高考中占有重要的地位,是高考出题的重点。

客观性的试题考察等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高,解答题大多以数列知识为工具。

预测07年高考对本讲的考察为:(1)题型以等比数列的公式、性质的灵活应用为主的1~2道客观题目;(2)关于等比数列的实际应用问题或知识交汇题的解答题也是重点;(3)解决问题时注意数学思想的应用,象通过逆推思想、函数与方程、归纳猜想、等价转化、分类讨论等,它将能灵活考察考生运用数学知识分析问题和解决问题的能力。

三.要点精讲1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21-。

(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n 。

说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n m na q a -=。

3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。

4.等比数列前n 项和公式一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1 或11n n a a q S q -=-;当q=1时,1na S n =(错位相减法)。

说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是n q ,通项公式中是1-n q 不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。

四.典例解析题型1:等比数列的概念例1.“公差为0的等差数列是等比数列”;“公比为21的等比数列一定是递减数列”;“a,b,c 三数成等比数列的充要条件是b 2=ac ”;“a,b,c 三数成等差数列的充要条件是2b=a+c ”,以上四个命题中,正确的有( )A .1个B .2个C .3个D .4个 解析:四个命题中只有最后一个是真命题。

命题1中未考虑各项都为0的等差数列不是等比数列;命题2中可知a n+1=a n ×21,a n+1<a n 未必成立,当首项a 1<0时,a n <0,则21a n >a n ,即a n+1>a n ,此时该数列为递增数列; 命题3中,若a=b=0,c ∈R ,此时有ac b =2,但数列a,b,c 不是等比数列,所以应是必要而不充分条件,若将条件改为b=ac ,则成为不必要也不充分条件。

点评:该题通过一些选择题的形式考察了有关等比数列的一些重要结论,为此我们要注意一些有关等差数列、等比数列的重要结论。

例2.命题1:若数列{a n }的前n 项和S n =a n +b(a ≠1),则数列{a n }是等比数列; 命题2:若数列{a n }的前n 项和S n =an 2+bn+c(a ≠0),则数列{a n }是等差数列; 命题3:若数列{a n }的前n 项和S n =na -n ,则数列{a n }既是等差数列,又是等比数列;上述三个命题中,真命题有( )A .0个B .1个C .2个D .3个解析: 由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n -1=(a -1)·a n -1。

若{a n }是等比数列,则12a a =a ,即b a a a +-)1(=a ,所以只有当b=-1且a ≠0时,此数列才是等比数列。

由命题2得,a 1=a+b+c ,当n ≥2时,a n =S n -S n -1=2na+b -a ,若{a n }是等差数列,则a 2-a 1=2a ,即2a -c=2a ,所以只有当c=0时,数列{a n }才是等差数列。

由命题3得,a 1=a -1,当n ≥2时,a n =S n -S n -1=a -1,显然{a n }是一个常数列,即公差为0的等差数列,因此只有当a -1≠0;即a ≠1时数列{a n }才又是等比数列。

点评:等比数列中通项与求和公式间有很大的联系,上述三个命题均涉及到S n 与a n的关系,它们是a n =⎩⎨⎧--,11n nS S a 时当时当21≥=n n ,正确判断数列{a n }是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。

上述三个命题都不是真命题,选择A 。

题型2:等比数列的判定例3.(2000全国理,20)(Ⅰ)已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,求常数p ;(Ⅱ)设{a n }、{b n }是公比不相等的两个等比数列,c n =a n +b n ,证明数列{c n }不是等比数列。

解析:(Ⅰ)解:因为{c n +1-pc n }是等比数列,故有:(c n +1-pc n )2=(c n +2-pc n +1)(c n -pc n -1),将c n =2n +3n 代入上式,得:[2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)],即[(2-p )2n +(3-p )3n ]2=[(2-p )2n +1+(3-p )3n +1][(2-p )2n -1+(3-p )3n -1], 整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3。

(Ⅱ)证明:设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n 。

为证{c n }不是等比数列只需证c 22≠c 1·c 3。

事实上,c 22=(a 1p +b 1q )2=a 12p 2+b 12q 2+2a 1b 1pq ,c 1·c 3=(a 1+b 1)(a 1p 2+b 1q 2)=a 12p 2+b 12q 2+a 1b 1(p 2+q 2),由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此c 22≠c 1·c 3,故{c n }不是等比数列。

点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。

例4.(2003京春,21)如图3—1,在边长为l 的等边△ABC中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB ,BC 相切,…,圆O n +1与圆O n 外切,且与AB 、BC 相切,如此无限继续下去.记圆O n 的面积为a n (n ∈N *),证明{a n }是等比数列;证明:记r n 为圆O n 的半径,则r 1=2l tan30°=l 63。

nn n n r r r r +---11=sin30°=21,所以r n =31r n -1(n ≥2),于是a 1=πr 12=91)(,122112==--n n n n r r a a l π,故{a n }成等比数列。

点评:该题考察实际问题的判定,需要对实际问题情景进行分析,最终对应数值关系建立模型加以解析。

题型3:等比数列的通项公式及应用例5.一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列。

解析:设所求的等比数列为a ,aq ,aq 2;则2(aq+4)=a+aq 2,且(aq+4)2=a(aq 2+32);解得a=2,q=3或a=92,q=-5; 故所求的等比数列为2,6,18或92,-910,950。

点评:第一种解法利用等比数列的基本量q a ,1,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁。

例6.(2006年陕西卷)已知正项数列{}n a ,其前n 项和n S 满足21056,n n n S a a =++且1215,,a a a 成等比数列,求数列{}n a 的通项.n a解析:∵10S n =a n 2+5a n +6, ①∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3。

又10S n -1=a n -12+5a n -1+6(n≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0∵a n +a n -1>0 , ∴a n -a n -1=5 (n≥2)。

当a 1=3时,a 3=13,a 15=73,a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时,,a 3=12, a 15=72,有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3。

点评:该题涉及等比数列的求和公式与等比数列通项之间的关系,最终求得结果。

题型4:等比数列的求和公式及应用例7.(1)(2006年辽宁卷)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +-B . 3nC .2nD .31n - (2)(2006年北京卷)设4710310()22222()n f n n N +=+++++∈,则()f n 等于( )A .2(81)7n -B .12(81)7n +-C .32(81)7n +-D .42(81)7n +- (3)(1996全国文,21)设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q ;解析:(1)因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C 。

相关文档
最新文档