中英文文献翻译-齿轮和轴的介绍

合集下载

齿轮和轴的介绍__机械外文翻译.doc

齿轮和轴的介绍__机械外文翻译.doc

毕业设计(论文)外文翻译GEAR AND SHAFT 外文题目INTRODUCTION 译文题目齿轮和轴的介绍专业工程机械专业班级机自082211H学生姓名徐佳宁学号200822010108指导教师要志斌日期2012/3/1齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。

齿轮和轴主要安装在主轴箱来传递力的方向。

通过加工制造它们可以分为许多的型号,分别用于许多的场合。

所以我们对齿轮和轴的了解和认识必须是多层次多方位的。

关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。

我们将研究作用力具有三维坐标的齿轮。

因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。

而在锥齿轮的情况中各回转轴线互相不平行。

像我们要讨论的那样,尚有其他道理需要学习,掌握。

斜齿轮用于传递平行轴之间的运动。

倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。

齿的形状是一溅开线螺旋面。

如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。

如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。

直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。

斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。

在直齿圆柱齿轮中,接触是平行于回转轴线的。

在斜齿轮中,该先是跨过齿面的对角线。

它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。

斜齿轮使轴的轴承承受径向和轴向力。

当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。

双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。

他们产生相反的轴向推力作用,这样就消除了轴向推力。

当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。

交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。

[指南]齿轮参数中英对照

[指南]齿轮参数中英对照

齿轮基本术语(中英文对照)齿轮 Toothed gear;Gear齿轮副 Gear pair平行轴齿轮副 Gear pair with parallel axes相交轴齿轮副 Gear pair with intersecting axes 齿轮系 Train of gears行星齿轮系 Planetary gear train齿轮传动 Gear drive;Gear transmission配对齿轮 Mating gears小齿轮 Pinion大齿轮 Wheel;Gear主动齿轮 Driving gear从动齿轮 Driven gear行星齿轮 Planet gear行星架 Planet carrier太阳轮 Sun gear内齿圈 Ring gear;Annulus gear外齿轮 External gear内齿轮 Internal gear中心距 Centre distance轴交角 Shaft angle连心线 Line of centres减速齿轮副 Speed reducing gear pair增速齿轮副 Speed increasing gear pair齿数比 Gear ratio传动比 Transmission ratio轴平面 Axial plane基准平面 Datum plane节平面 Pitch plane端平面 Transverse plane法平面 Normal plane分度曲面 Reference surface节曲面 Pitch surface齿顶曲面 Tip surface齿根曲面 Root surface基本齿廓 Basic tooth profile基本齿条 Basic rack产形齿条 Counterpart rack产形齿轮 Generating gear of a gear产形齿面 Generating flank基准线 Datum line轮齿 Gear teeth;Tooth齿槽 Tooth space右旋齿 Right-hand teeth左旋齿 Left-hand teeth变位齿轮 Gears with addendum modification;X-gears高度变位圆柱齿轮副 X-gear pair with reference centre distance 角度变位圆柱齿轮副 X-gear pair with modified centre distance 高度变位锥齿轮副 X-gear pair without shaft angle modification 角度变位圆柱齿轮副 X-gear pair with shaft angle modification 变位系数 Modification coefficient变位量 Addendum modification径向变位系数 Addendum modification coefficient中心距变位系数 Centre distance modification coefficient圆柱齿轮 Cylindrical gear顶圆 Tip circle根圆 Root circle齿距 Pitch齿距角 Angular pitch公法线长度 Base tangent length分度圆直径 Reference diameter节圆直径 Pitch diameter基圆直径 Base diameter顶圆直径 Tip diameter根圆直径 Root diameter齿根圆角半径 Fillet radius齿高 Tooth depth工作高度 Working depth齿顶高 Addendum齿根高 Dedendum弦齿高 Chordal height固定弦齿高 Constant chord height齿宽 Facewidth有效齿宽 Effective facewidth端面齿厚 Transverse tooth thickness法向齿厚 Normal tooth thickness端面基圆齿厚 Transverse base thickness法向基圆齿厚 Normal base thickness端面弦齿厚 Transverse chordal tooth thickness固定弦齿厚 Constant chord端面齿顶厚 Crest width法向齿顶厚 Normal crest width端面齿槽宽 Transverse spacewidth法向齿槽宽 Normal spacewidth齿厚半角 Tooth thickness half angle槽宽半角 Spacewidth half angle压力角 Pressure angle齿形角 Nominal pressure angle圆弧圆柱蜗杆 Arc-contact worm;hollow flank worm;ZC-worm直廓环面蜗杆 Enveloping worm with straight line grneratrix;TA worm平面蜗杆 Planar worm wheel;P-worm wheel平面包络环面蜗杆 Planar double enveloping worm;TP-worm平面二次包络蜗杆 Planar double-enveloping worm wheel;TP-worm wheel锥面包络环面蜗杆 Toroid enveloping worm wheel;TK-worm wheel 渐开线包络环面蜗杆 Toroid enveloping worm hich involute holicoid generatrix;TI-worm锥蜗杆 Spiroid锥蜗轮 Spiroid gear锥蜗杆副 Spiroid gear pair中平面 Mid-plane长幅内摆线 Prolate hypocycloid短幅内摆线 Curtate hypocycloid渐开线 Involute;Involute to a circle延伸渐开线 Prolate involute缩短渐开线 Curtate involute球面渐开线 Spherical involute渐开螺旋面 Involute helicoid阿基米德螺旋面 Screw helicoid球面渐开螺旋面 Spherical involute helicoid圆环面 Toroid圆环面的母圈 Generant of the toroit圆环面的中性圈 Middle circle of the toroid圆环面的中间平面 Middle-plane of the toroid圆环面的内圈 Inner circle of the toroid啮合干涉 Meshing interference切齿干涉 Cutter interference齿廓修型 Profile modification;Profile correction修缘 Tip relief修根 Root relief齿向修形 Axial modification;Longitudinal correction齿端修薄 End relief鼓形修整 Crowning鼓形齿 Crowned teeth挖根 Undercut瞬时轴 Instantaneous axis瞬时接触点 Point of contact瞬时接触线 Line of contact端面啮合线 Transverse path of contact啮合曲面 Surface of action啮合平面 Plane of action啮合区域 Zone of action总作用弧 Total arc of transmission端面作用弧 Transverse arc of transmission 纵向作用弧 Overlap arc总作用角 Total angle of transmission端面作用角 Transverse angle of transmission 纵向作用角 Overlap angle总重合度 Total contact ratio端面重合度 Transverse ratio纵向重合度 Overlap ratio标准齿轮 Standard gears非变位齿轮 X-gero gear标准中心距 Referencr centre distance名义中心距 Nominal centre distance分度圆柱面 Reference cylinder节圆柱面 Pitch cylinder基圆柱面 Basic cylinder齿顶圆柱面 Tip cylinder齿根圆柱面 Root cylinder节点 Pitch point节线 Pitch line分度圆 Reference circle节圆 Pitch circle基圆 Basic circle定位面 Locating face外锥距 Outer cone distance内锥距 Inner cone distance中点锥距 Mean cone distance背锥距 Back cone distance安装距 Locating distance轮冠距 Tip distance;crown to back冠顶距 Apex to crown偏置距 Offset齿线偏移量 Offset of tooth trace分锥角 Reference cone angle节锥角 Pitch cone angle顶锥角 Tip angle根锥角 Root angle背锥角 Back cone angle齿顶角 Addendum angel齿根角 Dedendum angle任意点压力角 Pressure angle at a point任意点螺旋角 Spiral angle at a point中点螺旋角 Mean spiral angle大端螺旋角 Outer spiral angle小端螺旋角 Inner spiral angle蜗杆 Worm蜗轮 Worm wheel蜗杆副 Worm gear pair圆柱蜗杆 Cylindrical worm圆柱蜗杆副 Cylindrical worm pair环面蜗杆 Enveloping worm环面蜗杆副 Enveloping worm pair阿基米德蜗杆 Straight sided axial worm;ZA-worm 渐开线蜗杆 Involute helicoid worm;ZI-worm法向直廓蜗杆 Straight sided normal worm;ZN-worm 锥面包络圆柱蜗杆 Milled helicoid worm;ZK-worm 椭圆齿轮 Elliptical gear非圆齿轮副 Non-circular gear pair圆柱针轮副 Cylindsical lantern pinion and wheel 针轮 Cylindsical tan tein gear ;pin-wheel谐波齿轮副 Harmoric gear drive波发生器 Wave generator柔性齿轮 Flexspine刚性齿轮 Circular spline非圆齿轮 Non-circular gear分度圆环面 Reference tosoid。

齿轮中英文对照

齿轮中英文对照

齿轮中英文对照齿轮基本术语中英文对照齿轮Toothed gear;Gear齿轮副Gear pair平行轴齿轮副Gear pair with parallel axes相交轴齿轮副Gear pair with intersecting axes 齿轮系Train of gears行星齿轮系Planetary gear train齿轮传动Gear drive;Gear transmission配对齿轮Mating gears小齿轮Pinion大齿轮Wheel;Gear主动齿轮Driving gear从动齿轮Driven gear行星齿轮Planet gear行星架Planet carrier太阳轮Sun gear内齿圈Ring gear;Annulus gear外齿轮External gear内齿轮Internal gear中心距Centre distance轴交角Shaft angle连心线Line of centres减速齿轮副Speed reducing gear pair增速齿轮副Speed increasing gear pair齿数比Gear ratio传动比Transmission ratio轴平面Axial plane基准平面Datum plane节平面Pitch plane端平面Transverse plane法平面Normal plane分度曲面Reference surface节曲面Pitch surface齿顶曲面Tip surface齿根曲面Root surface基本齿廓Basic tooth profile基本齿条Basic rack产形齿条Counterpart rack产形齿轮Generating gear of a gear产形齿面Generating flank基准线Datum line轮齿Gear teeth;T ooth齿槽Tooth space右旋齿Right-hand teeth左旋齿Left-hand teeth变位齿轮Gears with addendum modification;X-gears高度变位圆柱齿轮副X-gear pair with reference centre distance 角度变位圆柱齿轮副X-gear pair with modified centre distance 高度变位锥齿轮副X-gear pair without shaft angle modification 角度变位圆柱齿轮副X-gear pair with shaft angle modification 变位系数Modification coefficient变位量Addendum modification径向变位系数Addendum modification coefficient中心距变位系数Centre distance modification coefficient圆柱齿轮Cylindrical gear顶圆Tip circle根圆Root circle齿距Pitch齿距角Angular pitch公法线长度Base tangent length分度圆直径Reference diameter节圆直径Pitch diameter基圆直径Base diameter顶圆直径Tip diameter根圆直径Root diameter齿根圆角半径Fillet radius齿高Tooth depth工作高度Working depth齿顶高Addendum齿根高Dedendum弦齿高Chordal height固定弦齿高Constant chord height齿宽Facewidth有效齿宽Effective facewidth端面齿厚Transverse tooth thickness法向齿厚Normal tooth thickness端面基圆齿厚Transverse base thickness法向基圆齿厚Normal base thickness端面弦齿厚Transverse chordal tooth thickness 固定弦齿厚Constant chord端面齿顶厚Crest width法向齿顶厚Normal crest width端面齿槽宽Transverse spacewidth法向齿槽宽Normal spacewidth齿厚半角Tooth thickness half angle槽宽半角Spacewidth half angle压力角Pressure angle齿形角Nominal pressure angle圆弧圆柱蜗杆Arc-contact worm;hollow flank worm;ZC-worm直廓环面蜗杆Enveloping worm with straight line grneratrix;TA worm平面蜗杆Planar worm wheel;P-worm wheel平面包络环面蜗杆Planar double enveloping worm;TP-worm 平面二次包络蜗杆Planar double-enveloping worm wheel;TP-worm wheel锥面包络环面蜗杆T oroid enveloping worm wheel;TK-worm wheel渐开线包络环面蜗杆Toroid enveloping worm hich involute holicoidgeneratrix;TI-worm锥蜗杆Spiroid锥蜗轮Spiroid gear锥蜗杆副Spiroid gear pair中平面Mid-plane长幅内摆线Prolate hypocycloid短幅内摆线Curtate hypocycloid渐开线Involute;Involute to a circle延伸渐开线Prolate involute缩短渐开线Curtate involute球面渐开线Spherical involute渐开螺旋面Involute helicoid阿基米德螺旋面Screw helicoid球面渐开螺旋面Spherical involute helicoid圆环面T oroid圆环面的母圈Generant of the toroit圆环面的中性圈Middle circle of the toroid圆环面的中间平面Middle-plane of the toroid圆环面的内圈Inner circle of the toroid啮合干涉Meshing interference切齿干涉Cutter interference齿廓修型Profile modification;Profile correction修缘Tip relief修根Root relief齿向修形Axial modification;Longitudinal correction齿端修薄End relief鼓形修整Crowning鼓形齿Crowned teeth挖根Undercut瞬时轴Instantaneous axis瞬时接触点Point of contact瞬时接触线Line of contact端面啮合线Transverse path of contact啮合曲面Surface of action啮合平面Plane of action啮合区域Zone of action总作用弧Total arc of transmission端面作用弧Transverse arc of transmission纵向作用弧Overlap arc总作用角Total angle of transmission端面作用角Transverse angle of transmission 纵向作用角Overlap angle总重合度Total contact ratio端面重合度Transverse ratio纵向重合度Overlap ratio标准齿轮Standard gears非变位齿轮X-gero gear标准中心距Referencrcentre distance 名义中心距Nominal centre distance 分度圆柱面Reference cylinder节圆柱面Pitch cylinder基圆柱面Basic cylinder齿顶圆柱面Tip cylinder齿根圆柱面Root cylinder节点Pitch point节线Pitch line分度圆Reference circle节圆Pitch circle基圆Basic circle定位面Locating face外锥距Outer cone distance内锥距Inner cone distance中点锥距Mean cone distance背锥距Back cone distance安装距Locating distance轮冠距Tip distance;crown to back 冠顶距Apex to crown偏置距Offset齿线偏移量Offset of tooth trace分锥角Reference cone angle节锥角Pitch cone angle顶锥角Tip angle根锥角Root angle背锥角Back cone angle齿顶角Addendum angel齿根角Dedendum angle任意点压力角Pressure angle at a point任意点螺旋角Spiral angle at a point中点螺旋角Mean spiral angle大端螺旋角Outer spiral angle小端螺旋角Inner spiral angle蜗杆Worm蜗轮Worm wheel蜗杆副Worm gear pair圆柱蜗杆Cylindrical worm圆柱蜗杆副Cylindrical worm pair环面蜗杆Enveloping worm环面蜗杆副Enveloping worm pair阿基米德蜗杆Straight sided axial worm;ZA-worm渐开线蜗杆Involute helicoid worm;ZI-worm法向直廓蜗杆Straight sided normal worm;ZN-worm锥面包络圆柱蜗杆Milled helicoid worm;ZK-worm椭圆齿轮Elliptical gear非圆齿轮副Non-circular gear pair圆柱针轮副Cylindsical lantern pinion and wheel针轮Cylindsical tan tein gear ;pin-wheel谐波齿轮副Harmoric gear drive波发生器Wave generator柔性齿轮Flexspine刚性齿轮Circular spline非圆齿轮Non-circular gear分度圆环面Reference tosoidinvolute spline data:渐开线花键参数flat root side fit :平齿根齿侧定心三维|cad|机械汽车技术|catia|pro/e|ug|inventor|solidedge|soli dworks|caxa# u5 f9 E4 {6 p1 `, V; B2 |/ ^pith(应为pitch):径节 14/32number of teeth:齿数 195 d, b. w( @6 }# f9 [pressure angle :压力角 30base cicledia (ref) :基圆直径/doc/bb7992786.html,( K. M H' r! J$ \* S$ ]2 _ cicular space width:分度圆齿槽宽min effective:最小作用齿槽宽 0.0982. n! B6 [) W3 {2 K) u3 o6 b% K$ ]) hmax effective(ref) :最大作用齿槽宽 0.0997min actual(ref):最小实际齿槽宽 0.0992& q. Z" s7 I$ N& |" `" omax actual :最大实际齿槽宽0.1007三维,cad,机械技术汽车,catia,pr o/e,ug,i nventor,solidedge,solidw orks,ca xa,时空镇江, {9 e# I1 ]( I3 y+ G& A# Mmax mesaurement between two 0.0900 dia pins:在量棒直径0.09之间的量棒距最大值1.0878 involute profile error :齿形误差+0.0003 -0.0005total index error max :相当于齿距累积误差0.0015mat parallelism error:齿向误差 0.0005三维|cad|机械汽车技术|catia|pro/e|ug|inventor|soli dedge|solidworks|ca xa. n E% H0 x! r8 u' F/doc/bb7992786.html,3 J9 c" ]4 O) E" d- k PITCH DIA. (STAND &MESHING)分度圆直径CIRCULAR PITCH (NORM) 基节FORM DIAMETER 展成圆直径MAX. ACTUAL 最大实际齿厚MIN. LEFECTIVE 最小作用齿厚MEASUREMENT BETWEEN PINS 跨棒距(就是M值)FORM DIAMETER 展成圆直径,一般来说,是叫渐开线起始圆直径或终止圆直径比较好。

中英文齿轮基本术语

中英文齿轮基本术语

齿轮基本术语(中英文对照)齿轮Toothed gear;Gear齿轮副Gear pair平行轴齿轮副Gear pair with parallel axes 相交轴齿轮副Gear pair with intersecting axes 齿轮系Train of gears行星齿轮系Planetary gear train 齿轮传动Gear drive;Gear transmission配对齿轮Mating gears小齿轮Pinion大齿轮Wheel;Gear主动齿轮Driving gear从动齿轮Driven gear行星齿轮Planet gear行星架Planet carrier太阳轮Sun gear内齿圈Ring gear;Annulus gear外齿轮External gear内齿轮Internal gear中心距Centre distance轴交角Shaft angle连心线Line of centres减速齿轮副Speed reducing gear pair增速齿轮副Speed increasing gear pair齿数比Gear ratio传动比Transmission ratio轴平面Axial plane基准平面Datum plane节平面Pitch plane端平面Transverse plane法平面Normal plane分度曲面Reference surface节曲面Pitch surface齿顶曲面Tip surface齿根曲面Root surface基本齿廓Basic tooth profile基本齿条Basic rack产形齿条Counterpart rack产形齿轮Generating gear of a gear产形齿面Generating flank基准线Datum line轮齿Gear teeth;Tooth齿槽Tooth space右旋齿Right-hand teeth左旋齿Left-hand teeth变位齿轮Gears with addendum modification;X-gears高度变位圆柱齿轮副X-gear pair with reference centre distance 角度变位圆柱齿轮副X-gear pair with modified centre distance 高度变位锥齿轮副X-gear pair without shaft angle modification 角度变位圆柱齿轮副X-gear pair with shaft angle modification 变位系数Modification coefficient变位量Addendum modification径向变位系数Addendum modification coefficient 中心距变位系数Centre distance modification coefficient圆柱齿轮Cylindrical gear顶圆Tip circle根圆Root circle齿距Pitch齿距角Angular pitch公法线长度Base tangent length分度圆直径Reference diameter节圆直径Pitch diameter基圆直径Base diameter顶圆直径Tip diameter根圆直径Root diameter齿根圆角半径Fillet radius齿高Tooth depth工作高度Working depth齿顶高Addendum齿根高Dedendum弦齿高Chordal height固定弦齿高Constant chord height齿宽Facewidth有效齿宽Effective facewidth端面齿厚Transverse tooth thickness法向齿厚Normal tooth thickness端面基圆齿厚Transverse base thickness法向基圆齿厚Normal base thickness端面弦齿厚Transverse chordal tooth thickness固定弦齿厚Constant chord端面齿顶厚Crest width法向齿顶厚Normal crest width端面齿槽宽Transverse spacewidth法向齿槽宽Normal spacewidth齿厚半角Tooth thickness half angle槽宽半角Spacewidth half angle压力角Pressure angle齿形角Nominal pressure angle圆弧圆柱蜗杆Arc-contact worm;hollow flank worm;ZC-worm 直廓环面蜗杆Enveloping worm with straight line grneratrix;TA worm平面蜗杆Planar worm wheel;P-worm wheel平面包络环面蜗杆Planar double enveloping worm;TP-worm 平面二次包络蜗杆Planar double-enveloping worm wheel;TP-worm wheel 锥面包络环面蜗杆Toroid enveloping worm wheel;TK-worm wheel渐开线包络环面蜗杆Toroid enveloping worm hich involute holicoid generatrix;TI-worm锥蜗杆Spiroid锥蜗轮Spiroid gear锥蜗杆副Spiroid gear pair中平面Mid-plane齿面Tooth flank右侧齿面Right flank左侧齿面Left flank同侧齿面Corresponding flank异侧齿面Opposite flank工作齿面Working flank非工作齿面Non-working flank相啮齿面Mating flank共轭齿面Conjugate flank可用齿面Usable flank有效齿面Active flank上齿面Addendum flank下齿面Dedendum flank齿根过渡曲面Fillet齿顶Crest;Top land槽底Bottom land齿廓Tooth profile端面齿廓Transverse profile法向齿廓Normal profile轴向齿廓Axial profile背锥齿廓Back cone tooth profile齿线Tooth trace齿棱Tip;Tooth tip模数Module端面模数Transverse module法向模数Normal module轴向模数Axial module径节Diametral pitch齿数Number of teech当量齿数Virtual number of teeth头数Number of starts;Number of threads螺旋线Helix;Circular helix圆锥螺旋线Conical spiral螺旋角Helix angle;Spiral angle导程Lead导程角Lead angle阿基米德螺旋线Archimedes spiral外摆线Epicycloid长幅外摆线Prolate epoicycloid短幅外摆线Curtate epoicycloid摆线Cycloid长幅摆线Prolate cycloid短幅摆线Curtate cycloid内摆线Hypocycloid直齿轮Spur gear斜齿轮Helical gear;Single-helical gear直齿条Spur rack斜齿条Helical rack人字齿轮Double-helical gear渐开线齿轮Involute cylindrical gear摆线齿轮Cycloidal gear圆弧齿轮Circular-arc gear;W-N gear双圆弧齿轮Double-circular-arc gear假想曲面Imaginary surfance任意点法向压力角Normal pressure angle at a point 任意点端面压力角Transverse pressure angle at a point 啮合角Working pressure angle顶隙Bottom clearance圆周侧隙Circumferential blacklash法向侧隙Normal blacklash径向侧隙Radial blacklash锥齿轮Bevel gear锥齿轮副Bevel gear pair准双曲面齿轮副Hypoid gear pair准双曲面齿轮Hypoid gear冠轮Crown gear端面齿轮Contrate gear直齿锥齿轮Straight bevel gear斜齿锥齿轮Skew bevel gear;Helical bevel gear曲面齿锥齿轮Curved tooth bevel gear弧齿锥齿轮Spiral bevel gear摆线齿锥齿轮Enicycloid bevel gear零度齿锥齿轮Zerot bevel gear圆柱齿轮端面齿轮副Contrate gear pair锥齿轮的当量圆柱齿轮Virtual cylindrical gear of bevel gear8字啮合锥齿轮Octoid gear圆柱齿弧锥齿轮Spiral bevel gear with circle arc tooth profile分度圆锥面Reference cone节圆锥面Pitch cone齿顶圆锥面Face cone;tip cone齿根圆锥面Root cone背锥面Back cone前锥面Front cone中锥面Middle cone分锥顶点Reference cone apex轴线交点Crossing point of axes公共锥顶Common apex齿根圆环面Root tosoid咽喉面Gorge喉平面Gorge plane喉圆Gorge circle分度圆蜗旋线Reference helix螺纹Thread蜗杆齿宽Worm facewidth蜗轮齿宽Worm wheel facewidth直径系数Diametral quotient咽喉半径Gorge radius齿宽角Width angle长幅内摆线Prolate hypocycloid短幅内摆线Curtate hypocycloid渐开线Involute;Involute to a circle延伸渐开线Prolate involute缩短渐开线Curtate involute球面渐开线Spherical involute渐开螺旋面Involute helicoid阿基米德螺旋面Screw helicoid球面渐开螺旋面Spherical involute helicoid圆环面Toroid圆环面的母圈Generant of the toroit圆环面的中性圈Middle circle of the toroid圆环面的中间平面Middle-plane of the toroid圆环面的内圈Inner circle of the toroid啮合干涉Meshing interference切齿干涉Cutter interference齿廓修型Profile modification;Profile correction修缘Tip relief修根Root relief齿向修形Axial modification;Longitudinal correction齿端修薄End relief鼓形修整Crowning鼓形齿Crowned teeth挖根Undercut瞬时轴Instantaneous axis瞬时接触点Point of contact瞬时接触线Line of contact 端面啮合线Transverse path of contact 啮合曲面Surface of action啮合平面Plane of action啮合区域Zone of action总作用弧Total arc of transmission端面作用弧Transverse arc of transmission 纵向作用弧Overlap arc总作用角Total angle of transmission端面作用角Transverse angle of transmission 纵向作用角Overlap angle总重合度Total contact ratio端面重合度Transverse ratio纵向重合度Overlap ratio标准齿轮Standard gears非变位齿轮X-gero gear标准中心距Referencr centre distance名义中心距Nominal centre distance 分度圆柱面Reference cylinder节圆柱面Pitch cylinder基圆柱面Basic cylinder齿顶圆柱面Tip cylinder齿根圆柱面Root cylinder节点Pitch point节线Pitch line分度圆Reference circle节圆Pitch circle基圆Basic circle定位面Locating face外锥距Outer cone distance内锥距Inner cone distance中点锥距Mean cone distance背锥距Back cone distance安装距Locating distance轮冠距Tip distance;crown to back冠顶距Apex to crown偏置距Offset齿线偏移量Offset of tooth trace分锥角Reference cone angle节锥角Pitch cone angle顶锥角Tip angle根锥角Root angle背锥角Back cone angle齿顶角Addendum angel齿根角Dedendum angle任意点压力角Pressure angle at a point任意点螺旋角Spiral angle at a point中点螺旋角Mean spiral angle大端螺旋角Outer spiral angle小端螺旋角Inner spiral angle蜗杆Worm蜗轮Worm wheel蜗杆副Worm gear pair圆柱蜗杆Cylindrical worm圆柱蜗杆副Cylindrical worm pair环面蜗杆Enveloping worm环面蜗杆副Enveloping worm pair阿基米德蜗杆Straight sided axial worm;ZA-worm 渐开线蜗杆Involute helicoid worm;ZI-worm法向直廓蜗杆Straight sided normal worm;ZN-worm 锥面包络圆柱蜗杆Milled helicoid worm;ZK-worm 椭圆齿轮Elliptical gear非圆齿轮副Non-circular gear pair圆柱针轮副Cylindsical lantern pinion and wheel 针轮Cylindsical tan tein gear ;pin-wheel 谐波齿轮副Harmoric gear drive波发生器Wave generator柔性齿轮Flexspine刚性齿轮Circular spline非圆齿轮Non-circular gear分度圆环面Reference tosoid模具成形不良用语英汉对照aberration 色差bite 咬入blacking hole 涂料孔(铸疵) blacking scab 涂料疤blister 起泡blooming 起霜blow hole 破孔blushing 泛白body wrinkle 侧壁皱纹breaking-in 冒口带肉bubble 膜泡burn mark 糊斑burr 毛边camber 翘曲cell 气泡center buckle 表面中部波皱check 细裂痕checking 龟裂chipping 修整表面缺陷clamp-off 铸件凹痕collapse 塌陷color mottle 色斑corrosion 腐蚀crack 裂痕crazing 碎裂crazing 龟裂deformation 变形edge 切边碎片edge crack 裂边fading 退色filler speak 填充料斑fissure 裂纹flange wrinkle 凸缘起皱flaw 刮伤flow mark 流痕galling 毛边glazing 光滑gloss 光泽grease pits 污斑grinding defect 磨痕haircrack 发裂haze 雾度incrustation 水锈indentation 压痕internal porosity 内部气孔mismatch 偏模mottle 斑点necking 缩颈nick 割痕orange peel 橘皮状表面缺陷overflow 溢流peeling 剥离pit 坑pitting corrosion 点状腐蚀plate mark 模板印痕pock 麻点pock mark 痘斑resin streak 树脂流纹resin wear 树脂脱落riding 凹陷sagging 松垂saponification 皂化scar 疤痕scrap 废料scrap jam 废料阻塞scratch 刮伤/划痕scuffing 深冲表面划伤seam 裂痕shock line 模口挤痕short shot 充填不足shrinkage pool 凹孔sink mark 凹痕skin inclusion 表皮折叠straightening 矫直streak 条状痕surface check 表面裂痕surface roughening 橘皮状表皮皱折surging 波动sweat out 冒汗torsion 扭曲warpage 翘曲waviness 波痕webbing 熔塌weld mark 焊痕whitening 白化wrinkle 皱纹实验与试验用语air permeability test 透气性试验austenitic steel 沃斯田铁钢brinell hardness 布耐内尔硬度brinell hardness test 布氏硬度试验charpy impact test 夏比冲击试验conical cup test 圆锥杯突试验cup flow test 杯模式流动度试验dart drop impact test 落锤冲击试验Elmendorf test 埃罗门多撕裂强度试验environmental stress cracking test环境应力龟裂试验ericessen test 埃留伸薄板拉伸试验falling ball impact test 落球冲击试验fatigue test 疲劳试验ferrite 纯铁体gantt chart 甘特图heat cycle test 热循环试验histogram 柱状图hot bend test 热弯试验izod impact test 埃左德冲击试验loop tenacity 环结强度martens heat distortion temperature test 马顿斯耐热试验martensite 马氏体mullen bursting strength tester 密廉式破裂强度试验机nol ring test 诺尔环试验normal distribution 常态分配ozone resistance test 抗臭氧试验pareto diagram 柏拉图peeling test 剥离试验pinhole test 针孔试验机rattler test 磨耗试验rockweel hardness test 洛氏硬度试验rockweel hardness 洛氏威尔硬度rolinx process 罗林克斯射出压缩成形法rossi-peakes flow test 罗西皮克斯流动试验sampling inspection 抽样检查scratch hardness 抗刮硬度shore hardness 萧氏硬度spiral flow test 螺旋流动试验surface abrasion test 表面磨耗试验taber abraser 泰伯磨耗试验机tensile impact test 拉伸冲击试验tensile strength 抗拉强度tension test 张力试验thermal shock test 冷热剧变试验torsion test 扭曲试验ubbelohde viscometer 乌别洛德黏度计vicat indentation test 维卡针压陷试验Vickers hardness test 维氏硬度试验warpage test 翘曲试验weatherometer 人工老化试验机weissenberg effect 威森伯格回转效应锻铸造关连用语accretion 炉瘤acid converter 酸性转炉acid lining cupola 酸性熔铁炉acid open-hearth furnace 酸性平炉aerator 松砂机air set mold 常温自硬铸模airless blasting cleaning 离心喷光all core molding 集合式铸模all round die holder 通用模座assembly mark 铸造合模记号back pouring 补浇注backing sand 背砂base bullion 粗金属锭base permeability 原砂透气度belling 压凸billet 坏料bleed 漏铸blocker 预锻模膛blocking 粗胚锻件blow hole 铸件气孔board drop hammer 板落锤bottom pour mold 底浇bottom pouring 底注boxless mold 脱箱砂模break-off core 缩颈砂心brick molding 砌箱造模法buckle 剥砂面camber 错箱camlachie cramp 铸包cast blade 铸造叶片casting flange 铸造凸缘casting on flat 水平铸造chamotte sand 烧磨砂charging hopper 加料漏斗cleaning of casting 铸件清理closed-die forging 合模锻造core compound 砂心黏结剂core template 砂心模板core vent 砂蕊排气孔corner gate 压边浇口counter blow hammer 对击锻造counter lock 止口镶嵌方式depression 外缩凹孔die approach 模口角度draw out 锻造拔长draw plate 起模板draw spike 起模长针dummying 预锻embedded core 加装砂心erosion 冲砂fettling 铸件清理filling core 埋入砂心~filling in 填砂film play 液面花纹finishing slag 炼后熔渣flash gutter 锻模飞边槽flask molding 砂箱造模forging roll 辊锻机formboard 进模口板gutter 锻模飞边槽hammer man 锻工heading machine 顶镦机impacter 卧式锻造机inblock cast 整体铸造ingot 铸锭ingot blank 铸坯inlay casting 镶铸法investment casting 失模铸造isothermal forging 恒温锻造loose piece 木模活块molding pit 铸模地坑pouring process 浇注法recasting 重铸roll forging 轧锻rolled surface 轧制表面rough sand 粗砂roughing forge 粗锻sand crushing 塌箱seamless forging 无缝锻造separate 分离shave 崩砂shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slag 熔渣slag inclusion 夹渣stickness 黏模性strip layout 带状胚料排样法tap casting 顶注top gate 顶注浇口unworked casting 不加工铸件upender 翻转装置upending 顶锻uphill casting 底铸white cast iron 白口铸件品质、生产名称类QC quality control 品质管理人员FQC final quality control 终点品质管制人员IPQC in process quality control 制程中的品质管制人员OQC output quality control 最终出货品质管制人员IQC incoming quality control 进料品质管制人员TQC total quality control 全面质量管理POC passage quality control 段检人员QA quality assurance 质量保证人员OQA output quality assurance 出货质量保证人员QE quality engineering 品质工程人员品质保证类:FAI first article inspection 新品首件检查FAA first article assurance 首件确认TVR tool verification report 模具确认报告3B 3B 模具正式投产前确认CP capability index 能力指数CPK capability index of process 模具制程能力参数SSQA standardized supplier quality 合格供应商品质评估OOBA out of box audit 开箱检查QFD quality function deployment 品质机能展开FMEA failure model effectiveness analysis 失效模式分析8 disciplines 8项回复内容FA final audit 最后一次稽核CAR corrective action request 改正行动要求corrective action report 改正行动报告(注:本资料素材和资料部分来自网络,仅供参考。

机械零件齿轮中英文对照外文翻译文献

机械零件齿轮中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文资料对照外文翻译Machine Parts (I)GearsGears are direct contact bodies, operating in pairs, that transmit motion and force from one rotating shaft to another or from a shaft to a slide (rack), by means of successively engaging projections called teeth.Tooth profiles. The contacting surfaces of gear teeth must be aligned in such a way that the drive is positive; i.e., the load transmitted must not depend on frictional contact. As shown in the treatment of direct contact bodies, this requires that thecommon normal to the surfaces not to pass through the pivotal axis of either the driver or the follower.As it is known as direct contact bodies, cycloidal and involute profiles profiles provide both a positive drive and a uniform velocity ratio;i.e., conjugate action.Basic relations. The smaller of a gear pair is called the pinion and the larger is the gear. When the pinion is on the driving shaft the pair is called the pinion and the larger is the gear. When the pinion is on the driving shaft the pair acts as a speed reducer; When the gear drives, the pair is a speed incrreaser. Gears are more frequently used to reduce speed than to increase it.If a gear having N teeth rotates at n revolutions per minute, the product N*n has the dimension “teeth per minute”. This product must be the same for both members of a mating pair if each tooth acquires a partner from the mating gear as it passes through the region of tooth engagement.For conjugate gears of all types, the gear ratio and the speed ratio are both given by the ratio of the number of teeth on the gear to the number of teeth on the pinion. If a gear has 100 teeth and a mating pinion has 20, the ratio is 100/20=5. Thus the pinion rotates five times as fast as the gear, regardless of the gear. Their point of tangency is called the pitch point, and since it lies on the line of centers, it is the only point at which the profiles have pure roling contact. Gears on nonparallel, non-intersecting shafts also have pitch circles, but the rolling-pitch –circle concept is not valid.Gear types are determined largely by the disposition of the shafts; in addition, certain types are better suited than others for large speed changes. This means that if a specific disposition of the shafts is required, the type of gear will more or less be fixed. On the other hand, if a required speed change demands a certain type, the shaft positions will also be fixed.Spur gears and helical gears. A gear having tooth elements that are straight and parallel to its axis is known as a spur gear. A spur pair can be used to connect parallel shafts only.If an involute spur pinion were made of rubber and twisted uniformly so that the ends rotated about the axis relative to one another, the elements of the teeth, initially straight and parallel to the axis, would become helices. The pinion then in effect would become a helical gear.Worm and bevel gears. In order to achieve line contact and improve the load carrying capacity of the crossed axis helical gears, the gear can be made to curvepartially around the pinion, in somewhat the same way that a nut envelops a screw. The result would be a cylindrical worm and gear. Worms are also made in the shape of an hourglass, instead of cylindrical, so that they partially envelop the gear. This results in a further increase in load-carrying capacity.Worm gears provide the simplest means of obtaining large ratios in a single pair. They are usually less efficient than parallel-shaft gears, however, because of an additional sliding movement along the teeth.V-beltThe rayon and rubber V-belt are widely used for power transmission. Such belts are made in two series: the standard V-belt and the high capacity V-belt. The belts can be used with short center distances and are made endless so that difficulty with splicing devices is avoided.First, cost is low, and power output may be increased by operating several belts side by side. All belts in the drive should stretch at the same rate in order to keep the load equally divided among them. When one of the belts breaks, the group must usually be replaced. The drive may be inclined at any angle with tight side either top or bottom. Since belts can operate on relatively small pulleys, large reductions of speed in a single drive are possible.Second,the included angle for the belt groove is usually from 34°to 38°.The wedging action of the belt in the groove gives a large increase in the tractive force developed by the belt.Third,pulley may be made of cast iron, sheet steel, or die-cast metal. Sufficient clearance must be provided at the bottom of the groove to prevent the belt from bottoming as it becomes narrower from wear. Sometimes the larger pulley is not grooved when it is possible to develop the required tractive force by running on the inner surface of the belt. The cost of cutting the grooves is thereby eliminated. Pulleys are on the market that permit an adjustment in the width of the groove. The effective pitch diameter of the pulley is thus varied, and moderate changes in the speed ratio can be secured.Chain DrivesThe first chain-driven or “safety” bicycle appeared in 1874, and chains were used for driving the rear wheels on early automobiles. Today, as the result of modern design and production methods, chain drives that are much superior to their prototypes are available, and these have contributed greatly to thedevelopment of efficient agricultural machinery, well-drilling equipment, and mining and construction machinery. Since about 1930 chain drives have become increasingly popular, especially for power saws, motorcycle, and escalators etc.There are at least six types of power-transmission chains; three of these will be covered in this article, namely the roller chain, the inverted tooth, or silent chain, and the bead chain. The essential elements in a roller-chain drive are a chain with side plates, pins, bushings (sleeves), and rollers, and two or more sprocket wheels with teeth that look like gear teeth. Roller chains are assembled from pin links and roller links. A pin link consists of two side plates connected by two pins inserted into holes in the side plates. The pins fit tightly into the holes, forming what is known as a press fit. A roller link consists of two side plates connected by two press-fitted bushings, on which two hardened steel rollers are free to rotate. When assembled, the pins are a free fit in the bushings and rotate slightly, relative to the bushings when the chain goes on and leaves a sprocket.Standard roller chains are available in single strands or in multiple strands, In the latter type, two or more chains are joined by common pins that keep the rollers in the separate strands in proper alignment. The speed ratio for a single drive should be limited to about 10∶1; the preferred shaft center distance is from 30 to 35 times the distance between the rollers and chain speeds greater than about 2500 feet (800 meters) per minute are not recommended. Where several parallel shafts are to be driven without slip from a single shaft, roller chains are particularly well suited.An inverted tooth, or silent chain is essentially an assemblage of gear racks, each with two teeth, pivotally connected to form a closed chain with the teeth on the inside, and meshing with conjugate teeth on the sprocket wheels. The links are pin-connected flat steel plates usually having straight-sided teeth with an included angle of 60 degrees. As many links are necessary to transmit the power and are connected side by side. Compared with roller-chain drives, silent-chain drives are quieter, operate successfully at higher speeds, and can transmit more load for the same width. Some automobiles have silent-chain camshaft drives.Bead chains provide an inexpensive and versatile means for connecting parallel or nonparallel shafts when the speed and power transmitted are low. The sprocket wheels contain hemispherical or conical recesses into which the beads fit. The chains look like key chains and are available in plain carbon and stainless steel and also in the form of solid plastic beads molded on a cord. Bead chains are used oncomputers, air conditioners, television tuners, and Venetian blinds. The sprockets may be steel, die-cast zinc or aluminum, or molded nylon.Machine Parts (II)FastenerFasteners are devices which permit one part to be joined to a second part and, hence, they are involved in almost all designs.There are three main classifications of fasteners, which are described as follows:(1) Removable. This type permits the parts to be readily disconnected without damaging the fastener. An example is the ordinary nut-and-bolt fastener.(2) Semi permanent. For this type, the parts can be disconnected, but some damage usually occurs to the fastener. One such example is a cotter pin.(3) Permanent. When this type of fastener is used, it is intended that the parts will never be disassembled. Examples are riveted joints and welded joints.The importance of fasteners can be realized when referring to any complex product. In the case of the automobile, there are literally thousands of parts which are fastened together to produce the total product. The failure or loosening of a single fastener could result in a simple nuisance such as a door rattle or in a serious situation such as a wheel coming off. Such possibilities must be taken into account in the selection of the type of fastener for the specific application.Nuts, bolts, and screws are undoubtedly the most common means of joining materials. Since they are so widely used, it is essential that these fasteners attain maximum effectiveness at the lowest possible cost. Bolts are, in reality, carefully engineered products with a practically infinite use over a wide range of services.An ordinary nut loosens when the forces of vibration overcome those of friction. In a nut and lock washer combination, the lock washer supplies an independent locking feature preventing the nut from loosening. The lock washer is useful only when the bolt might loosen because of a relative change between the length of the bolt and the parts assembled by it. This change in the length of the bolt can be caused by a number of factors-creep in the bolt, loss of resilience, difference in thermal expansion between the bolt and the bolted members, or wear. In the above static cases, the expanding lock washer holds the nut under axial load and keeps the assembly tight. When relative changes are caused by vibration forces, the lock washer is not nearly as effective.Rivets are permanent fasteners. They depend on deformation of their structure for their holding action. Rivets are usually stronger than the thread-type fastener and are more economical on a first-cost basis. Rivets are driven either hot or cold,depending upon the mechanical properties of the rivet material. Aluminum rivets, for instance, are cold-driven, since cold working improves the strength of aluminum. Most large rivets are hot-driven, however.ShaftVirtually all machines contain shafts. The most common shape for shafts is circular and the cross section can be either solid or hollow (hollow shafts can result in weight savings).Shafts are mounted in bearings and transmit power through such devices as gears, pulleys, cams and clutches. These devices introduce forces which attempt to bend the shaft; hence, the shaft must be rigid enough to prevent overloading of the supporting bearings. In general, the bending deflection of a shaft should not exceed 0.01 in. per ft. of length between bearing supports.For diameters less than 3 in., the usual shaft material is cold-rolled steel containing about 0.4 percent carbon. Shafts are either cold-rolled or forged in sizes from 3 in. to 5 in. .For sizes above 5 in. , shafts are forged and machined to size. Plastic shafts are widely used for light load applications. One advantage of using plastic is safety in electrical applications, since plastic is a poor conductor of electricity.Another important aspect of shaft design is the method of directly connecting one shaft to another. This is accomplished by devices such as rigid and flexible couplings.BearingA bearing can be defined as a member specifically designed to support moving machine components. The most common bearing application is the support of a rotating shaft that is transmitting power from one location to another. Since there is always relative motion between a bearing and its mating surface, friction is involved. In many instances, such as the design of pulleys, brakes, and clutches, friction is desirable. However, in the case of bearings, the reduction of friction is one of the prime considerations:Friction results in loss of power, the generation of heat, and increased wear of mating surfaces.The concern of a machine designer with ball bearings and roller bearings is fivefold as follows:(1) Life in relation to load; (2) stiffness, i.e. deflections under load;(3) friction; (4) wear; (5) noise. For moderate loads and speeds the correct selection ofa standard bearing on the basis of load rating will usually secure satisfactoryperformance. The deflection of the bearing elements will become important where loads are high, although this is usually of less magnitude than that of the shafts or other components associated with the bearing. Where speeds are high special cooling arrangements become necessary which may increase frictional drag. Wear is primarily associated with the introduction of contaminants, and sealing arrangements must be chosen with regard to the hostility of the environment.Notwithstanding the fact that responsibility for the basic design of ball bearings and roller bearings rests with the bearing manufacturer, the machine designer must form a correct appreciation of the duty to be performed by the bearing and be concerned not only with bearing selection but with the conditions for correct installation.The fit of the bearing races onto the shaft or onto the housings is of critical importance because of their combined effect on the internal clearance of the bearing as well as preserving the desired degree of interference fit. Inadequate interference can induce serious trouble from fretting corrosion. The inner race is frequently located axially by abutting against a shoulder. A radius at this point is essential for the avoidance of stress concentration and ball races are provided with a radius or chamfer to allow space for this.A journal bearing, in its simplest form, is a cylindrical bushing made of a suitable material and containing properly machined inside and outside diameters. The journal is usually the part of a shaft or pin that rotates inside the bearing.Journal bearings operate with sliding contact, to reduce the problems associated with sliding friction in journal bearings, a lubricant is used in conjunction with compatible mating materials. When selecting the lubricant and mating materials, one must take into account bearing pressures, temperatures and also rubbing velocities. The principle function of the lubricant in sliding contact bearings is to prevent physical contact between the rubbing surfaces. Thus the maintenance of an oil film under varying loads, speeds and temperature is the prime consideration in sliding contact bearings.Introduction to Machinery DesignMachinery design is either to formulate an engineering plan for the satisfaction of a specified need or to solve an engineering problem. It involves a range of disciplines in materials, mechanics, heat, flow, control, electronics and production.Machinery design may be simple or enormously complex, easy or difficult, mathematical or nonmathematical, it may involve a trivial problem or one of great importance. Good design is the orderly and interesting arrangement of an idea to provide certain results or effects. A well-designed product is functional, efficient, and dependable. Such a product is less expensive than a similar poorly designed product that does not function properly and must constantly be repaired.People who perform the various functions of machinery design are typically called industrial designers. He or she must first carefully define the problem, using an engineering approach, to ensure that any proposed solution will solve the right problem. It is important that the designer begins by identifying exactly how he or she will recognize a satisfactory alternative, and how to distinguish between two satisfactory alternatives in order to identify the better. So industrial designers must have creative imagination, knowledge of engineering, production techniques, tools, machines, and materials to design a new product for manufacture, or to improve an existing product.In the modern industrialized world, the wealth and living standards of a nation are closely linked with their capabilities to design and manufacture engineering products. It can be claimed that the advancement of machinery design and manufacturing can remarkably promote the overall level of a country’s industrization. Our country is playing a more and more vital role in the global manufacturing industry. To accelerate such an industrializing process, highly skilled design engineers having extensive knowledge and expertises are needed.Machinery ComponentsThe major part of a machine is the mechanical system. And the mechanical system is decomposed into mechanisms, which can be further decomposed into mechanical components. In this sense, the mechanical components are the fundamental elements of machinery. On the whole, mechanical components can be classified as universal and special components. Bolts, gear, and chains are the typical examples of the universal components, which can be used extensively in different machines across various industrial sectors. Turbine blades, crankshaft and aircraftpropeller are the examples of the special components, which are designed for some specific purposes.Mechanical Design ProcessProduct design requires much research and development. Many concepts of an idea must be studied, tried, refined, and then either used or discarded. Although the content of each engineering problem is unique, the designers follow the similar process to solve the problems.Recognition of NeedSometimes, design begins when a designer recognizes a need and decides to do something about it. The need is often not evident at, all; recognition is usually triggered by a particular adverse circumstance or a set of random circumstances, which arise almost simultaneously. Identification of need usually consists of an undefined and vague problem statement.Definition of ProblemDefinition of problem is necessary to fully define and understand the problem, after which it is possible to restate the goal in a more reasonable and realistic way than the original problem statement. Definition of the problem must include all the specifications for the thing that is to be designed. Obvious items in the specifications are the speeds, feeds, temperature limitations, maximum range, expected variation in the variables, and dimensional and weight limitations.SynthesisThe synthesis is one in which as many alternative possible design approaches are sought, usually without regard for their value or quality. This is also sometimes called the ideation and invention step in which the largest possible number of creative solutions is generated. The synthesis activity includes the specification of material, addition of geometric features, and inclusion of greater dimensional detail to the aggregate design.AnalysisAnalysis is a method of determining or describing the nature of something by separating it into its parts. In the process the elements, or nature of the design, are analyzed to determine the fit between the proposed design and the original design goals.EvaluationEvaluation is the final proof of a successful design and usually involves thetesting of a prototype in the laboratory. Here we wish to discover if the design really satisfies the needs.The above description may give an erroneous impression that this process can be accomplished in a linear fashion as listed. On the contrary, iteration is required within the entire process, moving from any step back to any previous step, in all possible combinations, and doing this repeatedly.PresentationCommunicating the design to others is the finial, vital presentation step in the design process. Basically, there are only three means of communication. These are the written, the oral, and the graphical forms. A successful engineer will be technically competent and versatile in all three forms of communication. The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, the greatest gains are obtained by those willing to risk defeat.Contents of Machinery DesignMachinery design is an important technological basic course in mechanical engineering education. Its objective is to provide the concepts, procedures, data, and decision analysis techniques necessary to design machine elements commonly found in mechanical devices and systems; to develop engineering students’ competence of machine design that is the primary concern of machinery manufacturing and the key to manufacture good products.Machinery design covers the following contents:Provides an introduction to the design process, problem formulation, safety factors.Reviews the material properties and static and dynamic loading analysis, including beam, vibration and impact loading.Reviews the fundamentals of stress and defection analysis.Introduces static failure theories and fracture-mechanics analysis for static loads.Introduces fatigue-failure theory with the emphasis on stress-life approaches to high-cycle fatigue design, which is commonly used in the design of rotation machinery.Discusses thoroughly the phenomena of wear mechanisms, surface contact stresses, and surface fatigue.Investigates shaft design using the fatigue-analysis techniques.Discusses fluid-film and rolling-element bearing theory and application.Gives a thorough introduction to the kinematics, design and stress analysis of spur gears, and a simple introduction to helical, bevel, and worm gearing.Discusses spring design including helical compression, extension and torsion springs.Deals with screws and fasteners including power screw and preload fasteners.Introduces the design and specification of disk and drum clutches and brakes.机械零件(I)齿轮齿轮是直接接触,成对工作的实体,在称为齿的凸出物的连续啮合作用下,齿轮能将运动和力从一个旋转轴传递到另一个旋转轴,或从一个轴传递到一个滑块(齿条)。

GEAR AND SHAFT INTRODUCTION

GEAR AND SHAFT INTRODUCTION

GEAR AND SHAFT INTRODUCTION——齿轮和轴的介绍GEAR AND SHAFT INTRODUCTIONAbstract: The important position of the wheel gear and shaft can''''''''''''''''t falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, useding for many situations respectively.So we must be the multilayers to the understanding of the wheel gear and shaft in many ways . Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn. Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle. When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often go 马棚网od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft”covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load.A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two in 马棚网ertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows:1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force,(b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run todefinite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel”or “overrun”because the driver is stopped or because another source of power increase the speed of the driven. This 马棚网type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained. Introduciton of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete.Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining.Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on thebasis of. Many parts, if any other means of production belonging to the large-scale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting ParametersCutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool.Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry -- to the tip plane and cutter angle characteristics -- for each cutting process must be correct. Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts -- with knives. Generally, the more hard work piece material, the lower the rate.Progressive Tool to speed iscut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。

齿轮和轴的介绍外文文献翻译、中英文翻译

齿轮和轴的介绍外文文献翻译、中英文翻译

XX设计(XX)外文资料翻译院系专业学生姓名班级学号外文出处Manufacturing Engineering andTechnology-Machining附件:1.外文资料翻译译文(约3000汉字);2.外文资料原文(与课题相关的1万印刷符号左右)。

附件1:外文资料翻译译文齿轮和轴的介绍摘要在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。

齿轮和轴主要安装在主轴箱来传递力的方向。

通过加工制造它们可以分为许多的型号,分别用于许多的场合。

所以我们对齿轮和轴的了解和认识必须是多层次多方位的。

关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。

我们将研究作用力具有三维坐标的齿轮。

因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。

而在锥齿轮的情况中各回转轴线互相不平行。

像我们要讨论的那样,尚有其他道理需要学习,掌握。

斜齿轮用于传递平行轴之间的运动。

倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。

齿的形状是一渐开线螺旋面。

如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。

如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。

直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。

斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。

在直齿圆柱齿轮中,接触是平行于回转轴线的。

在斜齿轮中,该先是跨过齿面的对角线。

它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。

斜齿轮使轴的轴承承受径向和轴向力。

当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。

双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。

他们产生相反的轴向推力作用,这样就消除了轴向推力。

当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。

中英文文献翻译-轴和齿轮的设计及应用

中英文文献翻译-轴和齿轮的设计及应用

英文原文:SHAFT AND GEAR DESIGNAbstract: The important position of the wheel gear and shaft can' t falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, useding for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many waysKey words : Wheel gear ; ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane .We shall study gears in which the forces have three dimensions.The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid. The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side byside on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft,the hand of the gears should be selected so as to produce the minimum thrust load Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power There is on difference between a crossed heli cal gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is , a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same handWorm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and wormgear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gearsWorm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. . A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of doubleenveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand ofhelix as for crossed helical gears, but the helix angles are usually quite different The helix angle on the worm is generally quite large, and that on the gear very small Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angleWhen gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity In these cases it is often go od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution The tooth action between such gears is a combination of rolling and sliding alonga straight line and has much in common with that of worm gears A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength tobe important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time The word "shaft" covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculatethem so that he knows they are within acceptable limits Whenever possible, the power-transruission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake two in ertias 11 and 12 traveling at the respective angular velocities Wl and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall beinterested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GEAR AND SHAFT INTRODUCTIONAbstract: The important position of the wheel gear and shaft can't falter in traditional machine and modern machines.The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box.The passing to process to make them can is divided into many model numbers, using for many situations respectively.So we must be they to the understanding of the wheel gear and shaft in many ways .Key words: Wheel gear;ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be selected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is ,a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtainedwhen the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm.. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered.It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that ofworm gears.A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elements pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles.:a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits. Whenever possible, the power-transmission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliability.Because of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as flows1.Rim type with internally expanding shoes2.Rim type with externally contracting shoes3.Band type4.Disk or axial type5.Cone type6.Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1.Assume or determine the distribution of pressure on the frictional surfaces.2.Find a relation between the maximum pressure and the pressure at any point3.Apply the condition of statical equilibrium to find (a) the actuating force, (b) thetorque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required.Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because the driver is stopped or because anot her source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtained.齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。

相关文档
最新文档