机器人外文翻译(文献翻译-中英文翻译)
机器人外文翻译(文献翻译-中英文翻译)

外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
步行机器人中英文对照外文翻译文献

步行机器人中英文对照外文翻译文献(文档含英文原文和中文翻译)图1 远程脑系统的硬件配置图2 两组机器人的身体结构图3 传感器的两个水银定位开关图4 层次分类图5 步行步态该输入处理器是作为参考程序块和一个图像搜索窗口形象该大小的搜索窗口取决于参考块的大小通常高达16 * 16且匹配。
该处理器计算价值块在搜索窗口,还找到最佳匹配块,这就是其中的最低当目标平移时块匹配是非常有力的。
然而,普通的块匹配方法当它旋转时无法跟踪目标。
为了克服这一困难,我们开发了一种新方法,跟随真正旋转目标的图6 双足步行图6 双足步行图7 双足步行实验图8 一系列滚动和站立运动通过集成传感器网络转型的综合为了使上述描述的基本动作成为一体,我们通过一种方法来描述一种被认为是根据传感器状况的网络转型。
图9显示了综合了基本动作机器人的状态转移图:两足行走,滚动,坐着和站立。
这种一体化提供了机器人保持行走甚至跌倒时的problems and advance the study of vision-based behaviors, we have adopted a new approach through building remote-brained robots. The body and the brain are connected by wireless links by using wireless cameras and remote-controlled actuators.As a robot body does not need computers on-board,it becomes easier to build a lightweight body with many DOFS in actuation.In this research, we developed a two-armed bipedal robot using the remote-brained robot environment and made it to perform balancing based on vision and getting up through cooperating arms and legs. The system and experimental results are described below.2 The Remote-Brained SystemThe remote-brained robot does not bring its own brain within the body. It leaves the brain in the mother environment and communicates with it by radio links. This allows us to build a robot with a free body and a heavy brain. The connection link between the body and the brain defines the interface between software and hardware. Bodies are designed to suit each research project and task. This enables us advance in performing research with a variety of real robot systems[10].A major advantage of remote-brained robots is that the robot can have a large and heavy brain based on super parallel computers. Although hardware technology for vision has advanced and produced powerful compact vision systems, the size of the hardware is still large. Wireless connection between the camera and the vision processor has been a research tool. The remote-brained approach allows us to progress in the study of a variety of experimental issues in vision-based robotics.Another advantage of remote-brained approach is that the robot bodies can be lightweight. This opens up the possibility of working with legged mobile robots. AsFigure 4 shows some of the classes in the programming environent for remote-brained robot written in Euslisp. The hierachy in the classes provides us with rich facilities for extending development of various robots.4 Vision-Based BalancingThe robot can stand up on two legs. As it can change the gravity center of its body by controling the ankle angles, it can perform static bipedal walks. During static walking the robot has to control its body balance if the ground is not flat and stable.In order to perform vision-based balancing it is re-quired to have high speed vision system to keep ob-serving moving schene. We have developed a tracking vision board using a correlation chip[l3]. The vision board consists of a transputer augmented with a special LSI chip(MEP[14] : Motion Estimation Processor) which performs local image block matching.The inputs to the processor MEP are an image as a reference block and an image for a search window.The size of the reference blsearch window depends on the size of the reference block is usually up to 32 by 32 pixels so that it can include 16 * 16 possible matches. The processor calculates 256 values of SAD (sum of absolute difference) between the reference block and 256 blocks in the search window and also finds the best matching block, that is, the one which has the minimum SAD value.Clock is up to 16 by 16 pixels.The size of the search window depends on the size of the reference block is usually up to 32 by 32 pixels so that it can include 16 * 16 possible matches. The processor calculates 256 values of SAD (sum of absolute difference) between the reference block and 256 blocks in the search window and also finds the best matching block, that is, the one which has the minimum SAD value.Block matching is very powerful when the target moves only in translation. However, the ordinary block matching method cannot track the target when it rotates. In order to overcome this difficulty, we developed a new method which follows up the candidate templates to real rotation of the target. The rotated template method first generates all the rotated target images in advance, and several adequate candidates of the reference template are selected and matched is tracking the scene in the front view. It remembers the vertical orientation of an object as the reference for visual tracking and generates several rotated images of the reference image. If the vision tracks the reference object using the rotated images, it can measures the body rotation. In order to keep the body balance, the robot feedback controls its body rotation to control the center of the body gravity. The rotational visual tracker[l5] can track the image at video rate.5 Biped WalkingIf a bipedal robot can control the center of gravity freely, it can perform biped walk. As the robot shown in Figure 2 has the degrees to left and right directions at the ankle position, it can perform bipedal walking in static way.The motion sequence of one cycle in biped walking consists of eight phases as shown in Figure 6. One step consists of four phases; move-gravity-center-on-foot,lift-leg, move-forward-leg, place-leg. As the body is described in solid model, the robot can generate a body configuration for move-gravity-center-on-foot according to the parameter of the hight of the gravity center. After this movement, the robot can lift the other leg and move it forward. In lifting leg, the robot has to control the configuration in order to keep the center of gravity above the supporting foot. As the stability in balance depends on the hight of the gravity center, the robot selects suitable angles of the knees.Figure 7 shows a sequence of experiments of the robot in biped walking6 Rolling Over and Standing UpFigure 8 shows the sequence of rolling over, sitting and standing up. This motion requires coordination between arms and legs.As the robot foot consists of a battery, the robot can make use of the weight of the battery for the roll-over motion. When the robot throws up the left leg and moves the left arm back and the right arm forward, it can get rotary moment around the body. If the body starts turning, the right leg moves back and the left foot returns its position to lie on the face. This rollover motion changes the body orientation from face up to face down. It canbe verified by the orientation sensor.After getting face down orientation, the robot moves the arms down to sit on two feet. This motion causes slip movement between hands and the ground. If the length of the arm is not enough to carry the center of gravity of the body onto feet, this sitting motion requires dynamic pushing motion by arms. The standing motion is controlled in order to keep the balance.7 Integration through Building Sensor-Based Transition NetIn order to integrate the basic actions described above, we adopted a method to describe a sensor-based transition network in which transition is considered according to sensor status. Figure 9 shows a state transition diagram of the robot which integrates basic actions: biped walking, rolling over, sitting, and standing up. This integration provides the robot with capability of keeping walking even when it falls down.The ordinary biped walk is composed by taking two states, Left-leg Fore and Right-leg Fore, successively.The poses in ‘Lie on the Back’ and ‘Lie on the Face’are as same as one in ‘Stand’. That is, the shape ofthe robot body is same but the orientation is different.The robot can detect whether the robot lies on the back or the face using the orientation sensor. When the robot detects falls down, it changes the state to ‘Lie on the Back’ or ‘Lie on the Front’ by moving to the neutral pose. If the robot gets up from ‘Lie on the Back’, the motion sequence is planned to exe cute Roll-over, Sit and Stand-up motions. If the state is ‘Lie on the Face’, it does not execute Roll-over but moves arms up to perform the sitting motion.8 Concluding RemarksThis paper has presented a two-armed bipedal robot which can perform statically biped walk, rolling over and standing up motions. The key to build such behaviors is the remote-brained approach. As the experiments have shown, wireless technologies permit robot bodies free movement. It also seems to change the way we conceptualize robotics. In our laboratory it has enabled the development of a new research environment, better suited to robotics and real-world AI.The robot presented here is a legged robot. As legged locomotion requires dynamic visual feedback control, its vision-based behaviors can prove the effectiveness of the vision system and the remote-brained system. Our vision system is based on high speed block matching function implemented with motion estimation LSI. The vision system provides the mechanical bodies with dynamic and adaptive capabilities in interaction with human. The mechanical dog has shown adaptive behaviors based on distance。
机器人技术发展中英文对照外文翻译文献

机器人技术发展中英文对照外文翻译文献(文档含英文原文和中文翻译)外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need.Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, for instance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide.Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now I have a brief account of China's robot development of the basic profiles. As our country there are many other factors that problem. Our country in robotics research of the 20th century the late 1970s. At that time, we organized at the national, a Japanese industrial automation products exhibition. In this meeting, there are two products, is a CNC machine tools, an industrial robot, this time, our country's many scholars see such a direction, has begun to make a robot research But this time, are basically confined to the theory of phase .Then the real robot research, in 7500 August 5, 1995, 15 nearly 20 years of development, The most rapid development, in 1986 we established a national plan of 863 high-technology development plan, As robot technology will be an important theme of the development of The state has invested nearly Jiganyi funds begun to make a robot, We made the robot in the field quickly and rapid development.At present, units like the CAS ShenYng Institute of Automation, the original machinery, automation of the Ministry, as of Harbin Industrial University, Beijing University of Aeronautics and Astronautics, Qinghua University, Chinese Academy of Sciences, also includes automation of some units, and so on have done a very important study, also made a lot of achievements Meanwhile, in recent years, we end up in college, a lot of flats in robot research, Many graduate students and doctoral candidates are engaged in robotics research, we are more representative national study Industrial robots, underwater robots, space robots, robots in the nuclear industry are on the international level should be taking the lead .On the whole of our country Compared with developed countries, there is still a big gap, primarily manifested in the We in the robot industry, at present there is no fixed maturity product, but in theseunderwater, space, the nuclear industry, a number of special robots, we have made a lot of achievements characteristics.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue,relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign t o complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, people would not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through amanipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.We regard this country excel, it should be said that the United States, Russia and France, in our nation, also to the international forefront, which is the CAS ShenYang Institute of Automation of developing successful, 6,000 meters underwater without cable autonomous underwater robot, the robot to 6,000 meters underwater, can be conducted without cable operations. His is 2000, has been obtained in our country one of the top ten scientific and technological achievements. This indicates that our country in this underwater robot, have reached the advanced international level, 863 in the current plan, the development of 7,000 meters underwater in a manned submersible to the ocean further development and operation, This is a great vote of financial and material resources.In this space robotics research has also been a lot of development. In Europe, including 16 in the United States space program, and the future of this space capsule such a scheme, One thing is for space robots, its main significance lies in the development of the universe and the benefit of mankind and the creation of new human homes, Its main function is to scientific investigation, as production and space scientific experiments, satellites and space vehicles maintenance and repair, and the construction of the space assembly. These applications, indeed necessary, for example, scientific investigation, as if to mock the ground some physical and chemical experiments do not necessarily have people sitting in the edge of space, because the space crew survival in the day the cost is nearly one million dollars. But also very dangerous, in fact, some action is very simple, through the ground, via satellite control robot, and some regularly scheduled completion of the action is actually very simple. Include the capsule as control experiments, some switches, buttons, simple flange repair maintenance, Robot can be used to be performed by robots because of a solar battery, then the robot will be able to survive, we will be able to work, We have just passed the last robot development on the application of the different areas ofapplication, and have seen the robots in industry, medical, underwater, space, mining, construction, service, entertainment and military aspects of the application .Also really see that the application is driven by the development of key technologies, a lack of demand, the robot can not, It is because people in understanding the natural transformation of the natural process, the needs of a wide range of robots, So this will promote the development of key technologies, the robot itself for the development of From another aspect, as key technology solutions, as well as the needs of the application, on the promotion of the robot itself a theme for the development of intelligent, and from teaching reappearance development of the current local perception of the second-generation robot, the ultimate goal, continuously with other disciplines and the development of advanced technology, the robot has become rich, eventually achieve such an intelligent robot mainstream.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。
机器人类外文文献翻译穿越深渊的机器人中英文翻译、外文翻译

英文原文The Abyss Transit System- James Cameron commissions the making of robots for a return to theTitanicBy Gary StixAt the beginning of the movie that made Leonardo DiCaprio a megastar, a camera-toting unmanned robot ventured into a cavernous hole in the wreck that sits on the bottom of the Atlantic, 12,640 feet from the surface. The 500-pound vehicle, christened Snoop Dog, could move only about 30 feet along a lower deck, hampered by its bulky two-inch-diameter tether hitched to a submarine that waited above. The amount of thrust needed to move its chunky frame stirred up a thick cloud. “The vehicle very quickly silted out the entire place and made imaging impossible,” director James Cameron recalls.But the eerie vista revealed by Snoop Dog on that 1995 expedition made Cameron hunger for more. He vowed to return one day with technology that could negotiate anyplace within the Titanic's interior.In the past six months two documentaries—one for IMAX movie theaters called Ghosts of the Abyss, the other, Expedition: Bismarck, for the DiscoveryChannel—demonstrated the fruits of a three-year effort that Cameron financed with $1.8 million of his own money to make this vision materialize. The payoff was two 70-pound robots, named after Blues Brothers Jake and Elwood, that had the full run of two of the world's most famous wrecks, the Titanic and the Bismarck, which they visited on separate expeditions.The person who took Jake and Elwood from dream to robot is Mike Cameron, James's brother, an aerospace engineer who once designed missiles and who also possesses a diverse background as a helicopter pilot, stunt photographer and stuntman. (Remember the corpse in the movie The Abyss, from whose mouth a crab emerges?) Giving the remotely operated vehicles freedom of movement required that they be much smaller than Snoop Dog and that the tether's width be tapered dramatically so as not to catch on vertical ship beams.Mike Cameron took inspiration from the wire-guided torpedoes used by the military that can travel for many miles. His team created vehicles operable to more than 20,000 feet (enough to reach as much as 85 percent of the ocean floor). The dimensions of the front of the robot are 16 inches high by 17 inches across, small enough to fit in a B deck window of the Titanic. The bots have an internal battery so that they do not need to be powered through a tether. Instead the tether—fifty-thousandths of an inch in diameter—contains optical fibers that relaycontrol signals from a manned submersible vehicle hovering outside and that also send video images in the other direction. The tether pays out from the robot, a design that prevents it from snagging on objects in the wreck.James Cameron thought the project would be a straightforward engineering task, not much harder than designing a new camera system. “This turned out to be a whole different order of magnitude,” he says. “There was no commercial off-the-shelf hardware that wo uld work in the vehicles. Everything had to be built from scratch.” If the team had known this early on, he added, “we wouldn't have bothered.” Water pressure on the cable that carried the optical fibers could create microscopic bends in the data pipe, completely cutting off the control signals from the submersibles. Dark Matter in Valencia, Calif. (Mike Cameron's company), had to devise a fluid-filled sheath around the fiber to displace the minuscule air pockets in the cable that could lead to the microbending.To save weight, the frame—similar to a monocoque body of a race car—was made up of small glass hollow spheres contained in an epoxy matrix. The thruster contained a large-diameter, slowly rotating blade with nozzles that diffused the propulsive flow, minimizing the churning that would otherwise disturb the caked silt.A high-resolution video camera, along with an infrared camera for navigation, was placed in the front of the craft along with three light-emitting-diode arrays for fill lighting and two quartz halogen lamps for spotlighting.The winter of 2001 marked a critical juncture. It was six months before dives to the Titanic could be safely attempted, and James had to determine whether to proceed or wait another year. “Mike was really, really negative on the idea, but I decided to go for it,” the director says. He felt he couldn't afford to wait longer and thought that a fixed deadline would focus the engineering staff at Dark Matter. Forhis part, Mike was contending with an unending series of design challenges. “It was such an overwhelming set of problems that I had very little confidence that certain parts would be solvable in the time we had,” Mike says.A few weeks before the dives commenced in the summer of 2001, the robots' lithium sulfur dioxode-based batteries caught fire while being tested in a pressure tank, destroying what was to have been a third robot. Mike wanted to delay the dives, but James found a supplier of another type of lithium battery and pressed ahead.At the dive site, Jake and Elwood took starring roles with their 2,000-foot tethers, exploring for the first time in about 90 years remote parts of the ships, including the engine room, the firemen's mess hall and the cabins of first-class passengers—even focusing in on a bowler hat, a brass headboard and an intact, upright glass decanter. The images lack the resolution and novel quality of the high-definition, three-dimensional IMAX images, the other major technological innovation of Ghostsof the Abyss. Jake and Elwood's discoveries, however, draw the viewers' interest because of what they convey of the Titanic's mystique. “You actually feel like you're out there in the wreck,” Mike says. He remembers his brother piloting the robots with the helicopter stick that had been installed in the Russian submersible from which the robots were launched. “Jim ended up being a cowboy pilot,” Mike says. “He was far more aggressive with the system than I was.”One scene in Ghosts of the Abyss reveals the tension that sometimes erupted between the brothers. James contemplates moving one of the robots through a cabin window that is still partially occluded by a shard of glass that could damage the vehicle or cut the data tether. When James declares that he is going to take Jake in, moviegoers can hear Mike pleading with his brother not to do it, ultimately relenting once the bot has negotiated the opening.The decision to install a new type of battery at the last minute came to haunt the expedition; Elwood's lithium-polymer battery ignited while in the bowels of the ship. James manipulated the remaining robot into the Titanic to perform a rescue operation by hooking a cord to the grill of the dead bot and towing it out. At the surface—on the deck of the Russian scientific vessel the Keldysh, from which the two submarines carrying Jake and Elwood to the Titanic were launched—Mike rebuilt Elwood with a backup battery. During the next dive, the robot caught fire again while it was still mounted on the submarine, endangering the crew. Finally, Mike worked for an 18-hour stretch to adapt a lead-acid gel battery used for devices onboard the mother ship into a power source for Elwood, enabling the expedition to continue.The bots, now fitted with a new, nonflammable battery that Mike designed, may find service beyond motion pictures. The U.S. Navy has funded Dark Matter to help it assess the technology for underwater recovery operations of ships or aircraft. The bots also have potential for scientific exploration of deep-sea trenches. After traveling to the Titanic and the Bismarck, the team went on to probe mid-Atlantic hydrothermal vents, discovering mollusks in a place where scientists had never encountered them before. As adventure aficionados, the brothers speculate that a descendant of Jake and Elwood might even be toted on a mission to Europa, one of Jupiter's moons, to investigate the waters that are suspected to exist below its icy shell. The Cameron siblings, who tinkered with home-built rafts and rockets as children in Ontario near Niagara Falls, hope to be around long enough to witness their robotic twins go from the bottom of the ocean to the depths of space.中文译文穿越深渊的机器--新型的机器人可在数百公尺深的水底残骸间自由穿梭游览作者╱斯蒂克斯( Gary Stix )曾一举捧红超级巨星李奥纳多狄卡皮欧的电影「铁达尼号」中,片头是一台无人驾驶的遥控装置,携带着摄影机深入大西洋,在3852公尺深的铁达尼号残骸里冒险的画面。
焊接机器人中英文对照外文翻译文献

中英文资料外文翻译Weld robot application present conditionAccording to incompletely statistics, the whole world about has in the industrial robot of service nearly half of industrial robots is used for multiform weld to process realm, weld robot of application in mainly have two kinds of methods most widespreadly, then order Han and electricity Hu Han.What we say's welding robot is in fact welding to produce realm to replace a welder to be engaged in the industrial robot of welding the task.These weld to have plenty of to design for being a certain to weld a way exclusively in the robot of, but majority ofly weld robot in fact is an in general use industrial robot to pack up a certain weld tool but constitute.In many task environments, a set robot even can complete include weld at inside of grasp a thing, porterage, install, weld, unload to anticipate etc. various tasks, robot can request according to the procedure with task property and automatically replace the tool on the robot wrist, the completion corresponds of task.Therefore, come up to say from a certain meaning, the development history of industrial robot is the development history that welds robot.Know to all, weld to process to request that welder have to have well-trained operation technical ability, abundant fulfillment experience, stability of weld level;It is still a kind of labor condition bad, many smoke and dust, hot the radiation is big, risk Gao of work.The emergence of the industrial robot makes people naturally thought of first the handicraft that replace a person with it welds and eases the welder's labor strength, can also promise to weld quality and exaltation to weld an efficiency at the same time.However, weld again with other industry process process different, for example, electricity Hu Han process in, drive welder piece because of part heat melt with cool off creation transform, the Han sews of the track will therefore take place to change.Handicraft Han the experienced welder can sew position according to the actual Han observed by eyes adjustment Han in good time the position, carriage of the gun and run about of speed to adapt to the variety that the Han sews a track.However the robot want to adapt to this kind of variety, have to the position and status of gun that want to"see" this kind of to change, then adopt homologous measure to adjust Han like person first, follow while carrying out to sew actually to the Han.Because the electricity Hu welds to have in process strong arc light, giveor get an electric shock Hu noise, smoke and dust and Rong drop transition unsteady and causable Han silk short circuit, big electric current strong magnetic field etc. complicated environment factor of existence, the robot wants to examine and identifies a withdrawing of the signal characteristic needed for sewing Han and don't seem to be industrial the other in the manufacturing to process the examination of process so easily, therefore, welding the application of robot is to used for to give or get an electric shock the process of Hu Han in the beginning.Actually, industrial robot at welded the application of realm to produce on-line electric resistance to order a Han beginning from the car assemble at the earliest stage.The reason lies in the process that the electric resistance orders Han opposite more simple, control convenient, and not need Han to sew a track follow, to the accuracy of the robot and repeat the control of accuracy have lower request.Order the Han robot assembles to produce a great deal of on-line application to consumedly raise the rate of production that the car assemble welds and weld quality in the car, at the same time again have a gentle characteristics for welding, then want ~only change procedure, can produce in the same on-line carry on assemble to weld to different cars type.BE born till the beginning of this 80's in century from the robot, the robot technique experienced a development process of long term slowness.90's, along with the rapid development of calculator technique, micro-electronics technique, and network technique...etc., the robot technique is also flown soon a development.The manufacturing level, control speed and control accuracy and dependable sex etc. of industrial robot continuously raises, but manufacturing cost and price of robot continuously descend.Is social in the west, with contrary robot price BE, the person's labor force cost contains the trend to continuously increase.United Nations European Economic Committee(UNECE) statisticses from the variety curve of 1990-2000 years of the robot price index number and labor force cost index number.Among them the robot price of 1990 index number and labor force cost the index number is all reference to be worth 100, go to 2000, labor force cost index number is 140, increased 40%;But robot under the sistuation that consider a quality factor the price index number is lower than 20, lowered 80%, under the sistuation that take no account of a quality factor, the price index number of robot is about 40, lowered 60%.Here, the robot price that takes no account of a quality factor means actual price of the robot of now with compared in the past;And consider that the quality factor means because the robot make the exaltation of craft technique level, manufacturing quality and function of robot even if want also under the condition of equal price compare high before, therefore, if pressed the past robot equaled quality and function to consider, the price index number of robot should be much lower.Can see from here, national in the west, because the exaltation of labor force cost brings not small pressure for business enterprise, but the lowering of robot price index number coincidentally expands application to bring a chance further for it again.Reduce the equipments investment of employee and increment robot, when their expenses attains some one balance point, the benefit of adoption robot obviously wants to compare to adopt the benefit that the artificial brings big, it on the other hand can consumedly raise the automation level of producing the equipments and raise to labor rate of production thus, at the same time again can promote the product quality of business enterprise, raise the whole competition ability of business enterprise.Although robot 1 time invests a little bit greatly, its daily maintenance and consume is more opposite than its to producing far is smaller than completing the artificial expenses that the same task consumes.Therefore, from farsighted see, the production cost of product also consumedly lowers.But the robot price lower to make some small and medium enterprises invest to purchase robot to become easy to accomplish.Therefore, the application of industrial robot is soon flown a development in every trade.According to the UNECE statistics, the whole world has 750,000 in 2001 set the industrial robot is used for industry manufacturing realm, among them 389,000 in Japan, 198,000 in EU, 90,000 in North America, 73,000 at rest nation.Go to at the end of 2004 the whole world to have at least in the industrial robot of service about 1,000,000.Because the robot controls the exaltation of speed and accuracy and particularly give or get an electric shock the development that the Hu spreads a feeling machine to combine to weld in the robot in get an application, make the robot give or get an electric shock the Han of Hu Han to sew a track to follow and control a problem to some extent and get very solution, the robot welds in the car to make the medium application orders Han to soon develop into the car zero from originally more single car assemble partses and electricity Hu within assemble process Han.Robot's giving or getting an electric shock the biggest characteristics of Hu Han is gentle, can immediately pass to weave a distance at any time a change to weld a track and weld sequence, therefore most be applicable to quilt welder piece the species variety is big, the Han sew short but many, product with complicated shape.This at the right moment again characteristics according to car manufacturing.Being the renewal speed of the particularly modern social car style is very quick, adopting the car production line of robot material can nicely adapt to this kind of variety.Moreover, robot's giving or getting an electric shock Hu Han not only used for a car manufacturing industry, but also can used for other manufacturing industries that involve to give or get an electric shock Hu Han, like shipbuilding, motorcycle vehicle, boiler, heavy type machine etc..Therefore, the robot gives or gets an electric shock the application of Hu Hangradually extensive, on the amount greatly have exceed the robot order the power of Han.Along with car reducing in weight manufacturing the technical expansion, some high strong metal alloy materials and light metal alloy material(is like aluminum metal alloy, and magnesium metal alloy...etc.) get an application in the material in the car structure.These materials' welding usually can not solve with the welding of tradition method, have to adopt to lately weld a method and weld a craft.Among them, Gao power laser Han and agitation rub Han etc. to have to develop a potential most .Therefore, robot and Gao power laser Han and agitation rub combining of Han to become inevitable trend.Be like the public in Shanghai to wait domestic to most have the car manufacturer of real strenght in fact at their new car type manufacturing process in have already in great quantities used robot laser to weld.Give or get an electric shock Hu Han to compare with robot, robot laser the Han of the Han sews to follow accuracy to have higher request.According to the general request, the robot gives or gets an electric shock the Han of Hu Han(include GTAW and GMAW) to sew to follow accuracy to control in 1| of the electrode or the Han silk diameter 2 in, at have the condition that fill the silk under the Han sew to follow accuracy to loosen appropriately.But to laser Han, the laser projects light upon the light spot in the work piece surface while welding diameter usually at 0.6 in, is farer small than Han silk diameter(be usually bigger than 1.0), but the laser weld usually and not add to fill Han silk, therefore, the laser is welding if only the spot position has a little bit deviation, then will result in to be partial to Han and leak Han.Therefore, the robot laser of the public in Shanghai's car car crest Han in addition to pack in the work tongs up adopt measure to prevent from welding to transform, still just the robot laser Han gun front installed the high accuracy laser of SCOUT company in Germany to spread a feeling machine to used for Han to sew a following of track.The structure form of industrial robot is a lot of, in common usely have right angle to sit mark type, flexible type, and crawl along type...etc. by mark type, many joints by mark type, surface of sphere by mark type, pillar noodles, according to different use still at continuously development in.It is many robots of joint types of the mimicry person's arm function to weld what robot can adopt a different structure form according to the applied situation of dissimilarity, but use at most currently, this because the arm vivid of many joint type robots is the biggest, it can make space position and carriage of Han gun adjust into arbitrarily the status weld by satisfying a demand.Theoretically speak, the joint of robot is many more, the freedom degree is also many more, the joint redundancy degree is big more, and the vivid is good more;But also go against the sitting of kinetics control of marking the transformation and each joint position for robot to bring complexity at the same time.Because weld to usually need in the process with the space right angle sit to mark the Han on the representative workpiece to sew position conversion for the Han gun carry the space position and carriage of department and pass robot again go against the kinetics compute a conversion for to the control of robot each joint angle position, but the solution of this transformation process usually isn't unique, the redundancy degree is big, solve more many more.How select by examinations the steady that the quite the cheese solution welds to exercise in the process to the robot very important.Different treatment of system to this problem of the robot control doesn't exert a homology.Is general to come to speak, have 6 controls request of positions and space carriages that the robots of joints basically can satisfy a Han gun, 3 among those freedoms degree(XYZ) space position used for controling a Han gun to carry a department, another 3 freedom degrees(ABC) are used for the space carriage that controls a Han gun.Therefore, currently weld robot majority as 6 joint types.For some weld situation, work piece because of leading big or the space is several what the shape is too complicated, make the Han gun of welding the robot can not arrive appointed Han to sew position or Han gun carriage, have to pass the freedom degree of the way increment robot of increasing 1~3 exterior stalks at this ually have two kinds of way of doings:One is the orbit that the robot Be packed to to move small car or Dragon gate up, the homework space of extension robot;Two is to let the work piece move or turn, make work piece up of weld the homework space that the part gets into robot.Also have of adopt two kinds of above-mentioned ways at the same time, let the welding of work piece part and robots all be placed in the best weld position.Weld the plait distance of robot method currently still with on-line show and teach a way(Teach-in) is lord, but wove the interface ratio of distance machine to have many improvements in the past, particularly is the adoption of LCD sketch monitor and make and weld the plait distance of the robot interface lately gradually friendly, operation more easy.However robot plait distance Han's sewing the key point on the track to sit to mark position still have to pass to show to teach the way how to obtain, then deposit the sport instruction of procedure.This sews track to some Hans of complicated shapes to say, have to cost a great deal of time to show to teach and lowered the use efficiency of robot thus and also increased the labor strength of weaving the distance personnel.The method that solves currently includes 2 kinds:One is show to teach a plait distance just rough obtain a few Hans to sew a few keys on the track to order, then spread a feeling machine(usually is give or get an electric shock Hu to spread feeling machine or laser sense of vision to spread a feeling machine) through the sense of vision of welding the robot of auto follow the actual Han sew a track.Although this waystill cans not get away from to show to teach a plait distance,this way cans ease to show the strength of teaching the plait distance to some extent and raises to weave a distance efficiency.But because of the characteristics of electricity Hu Han, the sense of vision of robot spreads a feeling machine be not sew forms to all apply to all Hans.Two is the way that adopts a completely off-line plait distance, make the robot weld drawing up of procedure and Han to sew a track to sit to mark adjusting of obtaining of position, and procedure to try all to compute in a set to independently complete on board, don't need participation of robot.Robot off-line plait distance as early as several years ago have, just in order to being subjected to restriction of the calculator function at that time, off-line plait distance software with text originally way is lord, wove a distance member to need to acquaint with the all instruction systems and phrasing of robot, also needed to know how made sure that the space position that the Han sews a track sits a mark, therefore, wove a distance work to not and easily save time.Along with exaltation and calculator of the calculator function 3D sketch technical development, present robot off-line plait distance system majority can under the 3D sketch environment movement, the plait distance interface amity, convenience, and, obtaining Han to sew a sitting of track to mark position usually can adopt the way of "conjecture show to teach"(virtual Teach-in), using a mouse to easily click the welding of work piece in the 3D virtual environment the part can immediately the space acquiring the sit a mark;In some systems, can sew directly born Han of position to sew a track through the Han that define in advance in the CAD sketch document, then the automatically born robot procedure combines to download robot to control system.Thus and consumedly raised the plait distance of the robot efficiency, also eased the labor strength of weaving the distance member.Currently, it is international to there have been using an off-line plait distance of robot according to the company of common PC machine on the market software.It is like Workspace5, and RobotStudio...etc..Figure 9 show develop by oneself for the writer of according to PC of 3D can see to turn an off-line plait distance of robot system.The system can IRB140 robots aiming at ABB company carry on an off-line plait distance, the Han in the procedure sews a track to pass conjecture to show to teach to acquire, and can let the robot press the track in the procedure to imitate sport in the 3D sketch environment, examine its accuracy and rationality with this.The procedure woven can pass a network directly the download to the robot controller.The industrial robot of our country"75" science and technologies offend a pass to start starting from the 80's, currently already basic control a robot operation of the design manufacturing of the machine technique, control system hardware and software to design technique, kinetics and track to program a technique, gave birth to parts of robot key dollarspare part, develop to spray a paint, Hu Han and order robots, such as Han, assemble and porterage...etc.;The robot of Hu Han has already applied in the Han of car manufactory to pack on-line.But total of come to see, our country of industrial robot technique and it engineering application of level and abroad than still have certain distance, such as:Credibility low outside the country product;The robot application engineering starts a little bit late and apply realm narrow, production line system technique and abroad than have a margin;The applied scale is small, didn't form robot industry.The robot of the current our country the production is all request that applies a door, list door the single time re- design, the species specification is many, small batch quantity, zero partses are in general use to turn degree low, provide a goods period long, the cost is not low either, and the quality, credibility is unsteady.Consequently and urgently need to solve industry to turn an ex- key technique for expecting, Be to the product carry on programing completely, make good series to turn, in general use turn, the mold piece turn a design and actively push forward industry to turn progress.3, weld robot development trendThe international robot boundaries are enlarging a research, carry on robot currently total technical research.The development trend sees from the robot technique, weld robot similar to the other industrial robot, continuously turn to the intelligence and diversify a direction to develop.Is concrete but talk, performance in as follows a few aspects:1).The robot operates machine structure:Pass a limited dollar the analysis and mold Tai analyze and imitate the usage of true design etc. modern design method and carry out robot operation organization of excellent turn a design.Quest high strength light quality material, raise a load further|hold with dignity a ratio.For example, take Germany's KUKA company as the representative's robot company, have already merged robot the parallelogram structure change to opening chain structure and expand the work scope of robot, the application of light quality aluminum metal alloy material add, consumedly raise the function of robot.The RV that in addition adopts a forerunner decelerates a machine and communicates servo electrical engineering, make robot operation machine almost become don't need support system.The organization facing mold piece turns and can weigh to reach a direction development.For example, the servo electrical engineering in the joint mold piece, decelerate machine and examine system Christian Trinity to turn;From joint mold piece, connect a pole mold piece is constructed robot the whole machine with the reorganization method;The abroad has already had the mold piece the disguise to go together with a robot product to askcity.The structure of the robot is getting clever, control system smaller and smaller, twos just turn a direction development toward the integral whole.The adoption merges organization and makes use of a robot technique, realization Gao accuracy measure and process, this is the robot technique to number control technique of expand, carried out robot and number to control technique integral whole to turn to lay foundation for future.Italian COMAU company, companies like Japan FANUC,etc developed this kind of product.焊接机器人应用现状据不完全统计,全世界在役的工业机器人中大约有将近一半的工业机器人用于各种形式的焊接加工领域,焊接机器人应用中最普遍的主要有两种方式,即点焊和电弧焊。
机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。
机器人外文文献翻译、中英文翻译

机器⼈外⽂⽂献翻译、中英⽂翻译外⽂资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could bewelding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off. The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production. The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中⽂翻译机器⼈⼯业机器⼈是在⽣产环境中⽤以提⾼⽣产效率的⼯具,它能做常规乏味的装配线⼯作,或能做那些对于⼯⼈来说是危险的⼯作,例如,第⼀代⼯业机器⼈是⽤来在核电站中更换核燃料棒,如果⼈去做这项⼯作,将会遭受有害放射线的辐射。
机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)机器人外文翻译(中英文翻译)With the rapid development of technology, the use of robots has become increasingly prevalent in various industries. Robots are now commonly employed to perform tasks that are dangerous, repetitive, or require a high level of precision. However, in order for robots to effectively communicate with humans and fulfill their intended functions, accurate translation between different languages is crucial. In this article, we will explore the importance of machine translation in enabling robots to perform translation tasks, as well as discuss current advancements and challenges in this field.1. IntroductionMachine translation refers to the use of computer algorithms to automatically translate text or speech from one language to another. The ultimate goal of machine translation is to produce translations that are as accurate and natural as those generated by human translators. In the context of robots, machine translation plays a vital role in allowing them to understand and respond to human commands, as well as facilitating communication between robots of different origins.2. Advancements in Machine TranslationThe field of machine translation has experienced significant advancements in recent years, thanks to breakthroughs in artificial intelligence and deep learning. These advancements have led to the development of neural machine translation (NMT) systems, which have greatly improved translation quality. NMT models operate by analyzinglarge amounts of bilingual data, allowing them to learn the syntactic and semantic structures of different languages. As a result, NMT systems are capable of providing more accurate translations compared to traditional rule-based or statistical machine translation approaches.3. Challenges in Machine Translation for RobotsAlthough the advancements in machine translation have greatly improved translation quality, there are still challenges that need to be addressed when applying machine translation to robots. One prominent challenge is the variability of language use, including slang, idioms, and cultural references. These nuances can pose difficulties for machine translation systems, as they often require a deep understanding of the context and cultural background. Researchers are currently working on developing techniques to enhance the ability of machine translation systems to handle such linguistic variations.Another challenge is the real-time requirement of translation in a robotic setting. Robots often need to process and translate information on the fly, and any delay in translation can affect the overall performance and efficiency of the robot. Optimizing translation speed without sacrificing translation quality is an ongoing challenge for researchers in the field.4. Applications of Robot TranslationThe ability for robots to translate languages opens up a wide range of applications in various industries. One application is in the field of customer service, where robots can assist customers in multiple languages, providing support and information. Another application is in healthcare settings, where robots can act as interpreters between healthcare professionals and patientswho may speak different languages. Moreover, in international business and diplomacy, robots equipped with translation capabilities can bridge language barriers and facilitate effective communication between parties.5. ConclusionIn conclusion, machine translation plays a crucial role in enabling robots to effectively communicate with humans and fulfill their intended functions. The advancements in neural machine translation have greatly improved translation quality, but challenges such as language variability and real-time translation requirements still exist. With continuous research and innovation, the future of machine translation for robots holds great potential in various industries, revolutionizing the way we communicate and interact with technology.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。