大地坐标转换为施工坐标
大地坐标转换成施工坐标公式修订稿

大地坐标转换成施工坐标公式Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】大地(高斯平面)坐标系工程坐标系转换大地坐标系--->工程坐标系?========================待转换点为P,大地坐标为:Xp、Yp?工程坐标系原点o:大地坐标:Xo、Yo工程坐标:xo、yo工程坐标系x轴之大地方位角:adX=Xp-XodY=Yp-YoP点转换后之工程坐标为xp、yp:xp=dX*COS(a)+dY*SIN(a)+xoyp=-dX*SIN(a)+dY*COS(a)+yo工程坐标系--->大地坐标系========================待转换点为P,工程坐标为:xp、yp工程坐标系原点o:大地坐标:Xo、Yo工程坐标:xo、yo工程坐标系x轴之大地方位角:adx=xp-xody=yp-yoP点转换后之工程坐标为xp、yp:xp=Xo+dx*COS(a)-dy*SIN(a)yp=Yo+dx*SIN(a)+dy*COS(a)坐标方位角计算程序置镜点坐标:ZX?ZY后视点坐标:HXHY方位角:W两点间距离:SLb10←{A,B,C,D}←A〝ZX=〞:B〝ZY=〞:C〝HX=〞:D〝HY=〞:W=tg1((D-B)÷(C-A)):(D-B)>0=>(C-A)>0=>W=W:∟∟(D-B)>0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)<0=>W=W+180:∟∟(D-B)<0=>(C-A)>0=>W=360+W∟∟W=W◢S=√((D-B)2+(C-A)2)◢Goto?0←CASIO?fx-4500p坐标计算程序根据坐标计算方位角W=W+360△W:“ALF(1~2)=”L1?A“X1=”:B“Y1=”:Pol(C“X2”-A,D“Y2”-B:“S=”▲W<0直线段坐标计算L1X“X(0)”:Y“Y(0)”:S“S(0)”:A“ALF”L2Lb12L3{L}:L“LX”L4M“X(Z)”=X+(L-S)cosA▲L5?N“Y(Z)”=Y+(L-S)sinA▲L6{B}:B“B(L)”:Q“Q”L7?O“X(L)”=M+Bcos(A+Q+180)▲L8?P“Y(L)”=N+Bsin(A+Q+180)▲L9{C}:C“B(R)”L10?U“X(R)”=M+Ccos(A+Q)▲L11?V“Y(R)”=N+Csin(A+Q)▲L12Goto2园曲线段坐标计算L1S“S(0)-Km”:X“X(0)”:Y“Y(0)”:A“ALF”:R“R”:K“K(L=1,R=2)”L2Lb12L3{L}:L“L(X)”L4V=180/π×(L-S)/R:W=V/2L5C=A+(-1)K×W:D=2RsinW:F=A+(-1)K×VL6M“X(Z)”=X+DcosC▲L7?N“Y(Z)”=Y+DsinC▲L8{E}:E“B(L)”:Q“Q”L9?O“X(L)”=M+Ecos(F+Q+180)▲L10?P“Y(L)”=N+Esin(F+Q+180)▲L11{G}:G“B(R)”L12?T“X(R)”=M+Gcos(F+Q)▲L13?U“Y(R)”=N+Gsin(F+Q)▲L14Goto2正向缓和曲线段坐标计算L1S“ZH-Km”:X“X(ZH)”:Y“Y(ZH)”:A“ALF”:R“R”:H“LS”:K“K(L=1,R=2)”L2Lb12L3{L}:L“L(X)”L4D=30(L-S)2/π/R/H:C=L-S-(L-S)5/90/(R×H)2:B=A+D(-1)K:E=A+3D(-1)KL5U“X(Z)”=X+CcosB▲L6?V“Y(Z)”=Y+CsinB▲L7{G}:G“B(L)”:Q“Q”L8?F“X(L)”=U+Gcos(E+Q+180)▲L9?I“Y(L)”=V+Gsin(E+Q+180)▲L10{J}:J“B(R)”L11?M“X(R)”=U+Jcos(E+Q)▲L12?N“Y(R)”=V+js in(E+Q)▲L13Goto2卵形曲线坐标计算X=1,D=2)”L1?S“Km-YH”:E“X(YH)”:F“Y(YH)”:G“ALF”:B“R1”:D“A”:K“K(L=1,R=2)”:Q“R1-R2 L2Lb12L3{Z}:Z“L(X)”L4J“L1”=D2/B:R“RP”=D2B/(D2+(-1)Q(Z-S)B):L“LP”=D2/RL5M=(L-J)-(L5-J5)/40/D4+(L9-J9)/3456/D8L6?N=(L3-J3)/6/D2-(L7-J7)/336/D6+(L11-J11)/42240/D10L7T=G-(-1)Q(-1)K×J2×90/D2/πL8X“X(Z)”=E+(-1)QMcosT-(-1)KNsinT▲L9?Y“Y(Z)”=F+(-1)QMsinT+(-1)KNcosT▲L10?A“ALF(P)”=G+(-1)K(Z-S)×90×(1/B+1/R)/πL11{H}:H“B(L)”:U“Q”L12W“X(L)”=X+Hcos(A+U+180)▲L13?V“Y(L)”=Y+Hsin(A+U+180)▲L14{C}:C“B(R)”L15?I“X(R)”=X+Ccos(A+U)▲L16?P“Y(R)”=Y+Csin(A+U)▲L17Goto2公路逐桩坐标计算4800程序公路逐桩坐标计算程序(可以计算对称、不对称缓和曲线)Lb1?0Z=V=W=V+2:Fixm{K}Lb11K>Z[W+5Z+4]=>W=W+1:Goto1⊿(判断桩号在哪个交点范围,就是该交点曲线起点至下一交点曲线起点) S=K-Z[W+5Z+3](计算该桩号与曲线起点的距离)R=Z[W+2Z+2]:L=Z[W+3Z+2]:E=Z[W+4Z+2](读取该交点曲线要素R、Ls1、Ls2)Pol(Z[W]-Z[W-1],Z[W+Z+2]-Z[W+Z+1])(计算该交点与下一交点直线方位角)J<0=>J=J+360⊿A=JPol(Z[W-1]-Z[W-2],Z[W+Z+1]-Z[W+Z])(计算该交点与上一交点直线方位角)J<0=>J=J+360⊿C=A-J:A=J?(计算偏角)W=V+2=>Goto2⊿(如果桩号在起点与第一交点曲线起点之间,则转Lb12)I=Abs(tan(c÷2))M=L÷2-L^3÷240R^2:N=E÷2-E^3÷240R^2P=L^2÷6R-L^4÷336R^3-R(1-cos(90L÷πR))Q=E^2÷6R-E^4÷336R^3-R(1-cos(90E÷πR))D=(P-Q)I÷2:F=(P+Q+2R)I÷2M=F+M-D:Q=F+N+DN=πRAbsC÷180+(L+E)÷2X=Z[W-1]-McosAY=Z[W+Z+1]-MsinAM=Z[W-1]+Qcos(A+C)V=Z[W+Z+1]+Qsin(A+C)Q=AbsC÷CS≤L=>P=0:Goto3⊿(如果桩号在第一缓和曲线内,则转Lb13)S≤N-E=>S=S-L:Goto4⊿(如果桩号在圆曲线内,则转Lb14)S≤N=>S=N-SQ=-Q:A=A+C-180:X=M:Y=V:L=E:P=180:Goto3⊿(如果桩号在第二缓和曲线内,则转Lb13)P=A+C:S=S-N:D=M+ScosP:F=V+SsinPGoto6(如果桩号在直线内,则转Lb16)Lb12P=A+CD=Z[W-1]+ScosPF=Z[W+Z+1]+SsinP:Goto6Lb1?3I=S-S^5÷40R^2÷L^2+S^9÷3456R^4÷L^4J=Q(S^3÷6RL-S^7÷336R^3÷L^3)P=P+A+90QS^2÷πRL:Goto5Lb1?4M=90(2S+L)÷πRI=RsinM+L÷2-L^3÷240R^2J=Q(L^2÷24R+R(1-cosM))P=A+QMLb1?5D=X+IcosA-js inA:F=Y+JcosA+IsinALb16D″X=″◢(结果显示X坐标)F″Y=″◢(结果显示Y坐标)P″AT=″◢(结果显示该桩号方位角){BO}:B″S″O″⊿″(输入边桩距离,交角)P=P+OL″XB″=D+BcosP◢(结果显示边桩X坐标)M″YB″=F+BsinP◢(结果显示边桩Y坐标)以上是坐标计算程序,括号内是程序计算的大致原理及说明,中间部分为直线、圆曲线、缓和曲线计算的各种公式,大家也知道,书上也有。
施工坐标与测量坐标转换公式是什么

施工坐标与测量坐标转换公式是什么简介在工程施工过程中,施工坐标和测量坐标是两种不同的坐标系统,但在实际操作中需要进行相互转换。
本文将介绍施工坐标和测量坐标之间的转换公式,并解释其应用。
背景在建筑和土木工程中,施工坐标用于指示工程项目的实际位置,并进行施工操作。
测量坐标则是通过测量设备获得的坐标,用于记录和测量地理位置。
由于测量设备和施工过程不同,施工坐标和测量坐标的坐标系和原点位置也不同,因此需要进行转换。
施工坐标和测量坐标的差异施工坐标和测量坐标的主要差异在于其坐标系和原点位置。
施工坐标通常以工程项目的设计平面或控制点为原点,以工程单位(如米、厘米)为单位。
而测量坐标则以全球定位系统(GPS)或其他测量工具的起始点为原点,并以经度和纬度表示。
此外,施工坐标和测量坐标还存在坐标系的差异。
施工坐标通常采用笛卡尔坐标系,而测量坐标则常用大地坐标系或UTM坐标系。
这些差异导致了施工坐标与测量坐标之间的转换需求。
施工坐标转测量坐标如果需要将施工坐标转换为测量坐标,可以使用以下公式:经度 = 施工坐标X + 施工坐标原点经度纬度 = 施工坐标Y + 施工坐标原点纬度首先,将施工坐标X添加到施工坐标原点经度上,即可得到转换后的经度。
同样,将施工坐标Y添加到施工坐标原点纬度上,即可得到转换后的纬度。
需要注意的是,施工坐标原点经度和纬度需要提前获得,并确保其精度与测量坐标系统相匹配。
此外,还需要确认施工坐标的单位与测量坐标系统一致,否则可能导致转换错误。
测量坐标转施工坐标如果需要将测量坐标转换为施工坐标,可以使用以下公式:施工坐标X = 经度 - 施工坐标原点经度施工坐标Y = 纬度 - 施工坐标原点纬度通过将经度减去施工坐标原点经度,可以得到转换后的施工坐标X。
同样,通过将纬度减去施工坐标原点纬度,可以得到转换后的施工坐标Y。
同样需要确保测量坐标的原点经度和纬度精度与施工坐标系统相匹配,并且测量坐标的单位与施工坐标一致。
工程测量中fx-5800P计算器基本程序

工程测量中fx-5800P计算器基本程序的编写及实际放线的应用刘兵策刘杰摘要在日常工程测量工作中,计算器是必不可少的工具。
目前行业内用fx-5800P。
本文介绍测量工作中坐标正反算、大地转施工、施工转大地等常用程序的原理及编写,并对其比较复杂的实际放线的灵活应用进行解析,为类似的测量工作提供借鉴。
关键词工程测量fx-5800P程序应用1 引言控制测量是施工的基础,为了便于施工,放线一般使用施工坐标系,坐标轴平行于建筑物主轴线。
对于建筑物主轴线与坐标轴不平行的,为了方便放线,一般不再改变坐标系,用计算器程序进行计算,迅速判断需要定位的点。
利用fx-5800P计算器根据测出的坐标数据计算出与设计图纸上的差值,指挥棱镜进行移动,找到准确的设计位置。
测量工作中主要用到坐标正反算,大地转施工,施工转大地等常用程序,下面介绍这几个程序的原理和编写,总结一些在实际工作中的应用。
2 Fx-5800计算器程序的原理与编写2.1 大地坐标转换为施工坐标大地坐标转换为施工坐标见图1。
Xp、Yp分别是P点在XOY坐标系中的纵横坐标,xp,yp分别是xo’y坐标系中的纵横坐标值,Xo,Yo分别是xo’y坐标系的坐标原点o’在XOY坐标系中的纵、横坐标值,Δα为两坐标系坐标纵轴的夹角。
将P点从XOY坐标系转换到xo’y坐标系中,即大地转施工的公式如下:图1 大地坐标与施工坐标转换图xp=(Yp-Yo)sinΔα+(Xp-Xo)cosΔα;yp=(Yp-Yo)cosΔα-(Xp-Xo)sinΔα;用fx-5800P编制程序时,只要输入大地坐标的原点o’的坐标和要转换的点P点的大地坐标,即在坐标系XOY坐标系中的坐标,再用上述公式带入,输出P点的施工坐标。
基本程序如下:“X1=”?A:”Y1=”?B: (输入xoy的原点的大地坐标)“X2=”?U:”Y2=”?V: (输入要转换的P点的大地坐标)“F=”:F (输入方位角)“X=”:(V-B)sinF+(U-A)cosF->X (输出P点的施工坐标X值)“Y=”:(V-B)cosF-(U-A)sinF->Y (输出P点的施工坐标Y值)输出坐标时,可以用计算器中的一个极坐标的逆运算代替,即去掉最后两行,换成Pol(U-A,V-B):J<0=>J+360->J“W=”:J-F->WRec(I,W)这种方法计算器的运算效率比较高,编程也比较简便。
施工坐标与测量坐标的换算有哪几种方法

施工坐标与测量坐标的换算有哪几种方法在工程建设领域,施工坐标与测量坐标是两个常用的坐标系统。
施工坐标通常用于指导施工作业,而测量坐标则用于测量和记录实际地理位置。
在实际工作中,经常需要进行施工坐标与测量坐标之间的换算。
下面将介绍几种常见的换算方法。
1. 坐标转换法坐标转换法是最常用的施工坐标与测量坐标换算方法之一。
该方法通过坐标系之间的线性变换关系,将施工坐标转换为测量坐标。
需要注意的是,坐标转换法需要有已知的参考点,并且参考点的坐标在两个坐标系中是已知的。
通过测量这些参考点在两个坐标系中的坐标,可以建立转换参数,再根据转换参数将施工坐标转换为测量坐标。
2. 矩阵变换法矩阵变换法是另一种常用的施工坐标与测量坐标换算方法。
该方法通过矩阵运算将施工坐标转换为测量坐标。
具体步骤包括建立坐标转换矩阵、计算矩阵的逆矩阵以及矩阵乘法运算。
通过这一系列运算,可以将施工坐标转换为测量坐标。
需要注意的是,矩阵变换法也需要有已知的参考点,并且参考点的坐标在两个坐标系中是已知的。
3. 转角测量法转角测量法是一种基于测量方位角的换算方法。
方位角是指物体或点相对于某一参考方向的角度。
在转角测量法中,先测量施工坐标系和测量坐标系中的方位角,并记录下来。
然后根据两个方位角的差值,求得转角。
最后根据转角和已知参考点的坐标,通过三角函数的计算,将施工坐标转换为测量坐标。
4. 公式换算法公式换算法是一种基于数学公式的换算方法。
通过已知的数学公式,将施工坐标与测量坐标进行相互转换。
具体的换算公式根据不同的坐标系和工程要求而定,可以是简单的线性变换公式,也可以是复杂的非线性变换公式。
使用公式换算法的关键是找到适合的公式,并确保公式的准确性和可靠性。
5. 特殊换算法除了上述常见的换算方法之外,根据具体的工程要求,还可以使用一些特殊的换算方法。
这些特殊的换算方法通常与特定的应用领域相关,比如大地坐标系到平面坐标系的换算、高斯投影坐标系到经纬度坐标系的换算等。
大地坐标转换成施工坐标公式

大地坐标转换成施工坐标公式大地坐标转换成施工坐标是土木工程中常见的任务之一、在一些大型工程项目中,需要将地球上的大地坐标转换为施工现场上的施工坐标,以便准确地进行定位和测量工作。
在本文中,将介绍大地坐标转换成施工坐标的公式及其原理。
在进行坐标转换之前,有几个基本概念需要了解。
大地坐标是一种地球表面上的坐标系统,通常以经度和纬度表示。
经度是指在地球上从东向西的方向上测量的角度,而纬度是指在地球上从南向北的方向上测量的角度。
施工坐标是指在施工现场上的坐标系统,通常以东北天三个方向上的距离表示。
转换大地坐标为施工坐标的公式如下:X = N * cos(L) * (L0 - L0₀)Y=M*(L-L₀)其中,X和Y代表施工坐标,N和M是地球的半径在经纬度方向上的变化率,L0和L分别是工地和目标地点的经度,L₀代表了大地坐标副短轴方向的角度偏差。
这个公式的原理是基于以下几个假设:1.地球是一个近似于椭球体的几何体。
由于地球的自转和形状不规则,地球的形状是稍微扁平的。
2.地球的形状变化是由于重力的作用而引起的。
在大地测量中,通过测量地球表面上的引力,可以确定地球形状的变化。
3.地球的形状变化与地球上方的引力场有关。
根据地球引力测量理论,可以将地球的形状变化转换成地球上表面的坐标变化。
根据上述原理和公式,可以在计算机程序中实现大地坐标转换成施工坐标的功能。
在实际的施工现场中,通常可以使用全球定位系统(GPS)等技术来测量目标地点的大地坐标。
然后,将这些大地坐标输入到相应的计算程序中,使用上述公式和算法进行计算,得到施工坐标。
最后,可以使用施工坐标来指导施工工作。
需要注意的是,大地坐标转换成施工坐标的精度可能会受到多种因素的影响,包括地球形状的变化、测量误差等。
因此,在实际应用中,还需要进行一些误差校正和精度评估的工作,以确保转换结果的准确性。
综上所述,大地坐标转换成施工坐标是一项重要的土木工程任务。
通过使用适当的公式和算法,结合实际测量数据,可以实现大地坐标到施工坐标的转换,为施工现场的工作提供准确的定位和指导。
施工坐标和测量坐标怎么转换出来

施工坐标和测量坐标的转换方法1. 引言施工坐标和测量坐标是在工程项目中经常涉及的两种坐标系统。
施工坐标是用于实际施工过程中的坐标系统,用于指导施工人员进行现场操作;测量坐标是通过专业的测量设备获得的准确坐标,用于记录和分析工程数据。
在工程项目中,需要将测量坐标转换为施工坐标,以便实际施工过程中使用。
本文将介绍施工坐标和测量坐标之间的转换方法,以帮助读者更好地理解和应用这两种坐标系统。
2. 施工坐标和测量坐标的定义施工坐标是指在工程项目中实际使用的坐标系统,一般以现场固定点作为基准点,采用局部坐标系。
施工坐标通常是以米为单位表示,用于指导施工人员进行拆除、安装、布置等操作。
测量坐标是通过专业的测量设备精确获得的坐标系统,一般以国家或地区规定的大地坐标系为基准,采用全球统一的坐标体系。
测量坐标通常是以经度和纬度方式表示,用于记录工程数据和进行精确计算。
3. 施工坐标和测量坐标的转换方法施工坐标和测量坐标的转换可以通过以下几种方法进行:3.1 坐标平移法坐标平移法是最常用的施工坐标和测量坐标转换方法之一。
首先确定施工坐标系中的基准点和测量坐标系中的基准点,然后通过测量基准点之间的坐标差,计算出两个坐标系之间的平移向量。
最后,将测量坐标系中的所有坐标点都加上平移向量,即可得到相应的施工坐标。
3.2 坐标旋转法坐标旋转法适用于施工坐标系和测量坐标系之间存在旋转变换的情况。
首先确定施工坐标系和测量坐标系中的共同基准点,然后通过测量共同基准点在两个坐标系中的坐标差,计算出两个坐标系之间的旋转角度。
最后,将测量坐标系中的所有坐标点绕共同基准点进行旋转,即可得到相应的施工坐标。
3.3 坐标缩放法坐标缩放法适用于施工坐标系和测量坐标系之间存在缩放变换的情况。
首先确定施工坐标系和测量坐标系中的共同基准点,然后通过测量共同基准点在两个坐标系中的坐标差,计算出两个坐标系之间的缩放比例。
最后,将测量坐标系中的所有坐标点乘以缩放比例,即可得到相应的施工坐标。
施工坐标和大地测量坐标转换

施工坐标和大地测量坐标转换在工程测量领域中,施工坐标和大地测量坐标是两种常见的坐标系统。
施工坐标是指以某一参考坐标系为基准的坐标系统,用于实际施工中的测量和定位。
而大地测量坐标是指以地球形状和地球椭球体参数为基础建立的坐标系统,用于精确测量和导航等应用。
由于两种坐标系统的基准和计算方法不同,因此在实际应用中,需要进行施工坐标和大地测量坐标的转换。
施工坐标系统施工坐标系统是为了满足实际施工需求而建立的坐标系统。
在施工坐标系统中,通常以某一固定点作为原点,建立直角坐标系,以确定工程测量点的位置。
施工坐标系统的建立通常考虑了工程项目的需要,可以更好地满足施工测量的要求。
施工坐标系统主要包括平面坐标和高程坐标两个方面。
平面坐标是指在施工坐标系中,点的水平位置坐标,一般采用直角坐标系表示,以东西方向和南北方向的直角坐标值表示。
而高程坐标是指点的垂直位置坐标,一般采用高程值表示,可以表示点相对于某一参考面的高度。
大地测量坐标系统大地测量坐标系统是为了满足精确测量和导航等需求而建立的坐标系统。
在大地测量坐标系统中,通常以地球椭球体参数作为基础,建立球坐标系或椭球坐标系,以确定地球上点的位置。
大地测量坐标系统的建立考虑了地球形状的要素,可以更精确地表示和计算地球上点的位置。
大地测量坐标系统主要包括经纬度和大地高两个方面。
经纬度是指点在地球上的位置,通常用度表示,用于确定点在赤道和子午线上的位置。
大地高是指点相对于重力等势面的高度,通常用米表示,可以表示点相对于地球表面的高度。
施工坐标和大地测量坐标的转换在实际工程测量应用中,施工坐标和大地测量坐标之间的转换是一个重要的问题。
由于两种坐标系统的基准和计算方法不同,因此需要进行转换,以保证数据的准确性和一致性。
施工坐标到大地测量坐标的转换将施工坐标转换为大地测量坐标的过程称为施工坐标到大地测量坐标的正算。
正算的主要目的是将施工坐标转换为大地测量坐标,以满足精确测量和导航等需求。
大地坐标转换为施工坐标

**** 大桥关于大地坐标转化为施工坐标的报告**** 监理公司:**** 大桥为特大型桥梁,对测量精度要求高、施工难度大。
在实际施工测量当中,例如承台等结构尺寸比较简单的结构,在模板的安装的时候需要不断的测量、调整,直到满足要求。
在上述过程中需要用放样模式来确定设计位置,待模板调整后又要切换到测量模式检查坐标的偏差,如果没有满足要求,又需要切换到放样模式来确定设计位置。
如此反复,给我们施工放样带来了不必要的时间浪费,根据特大跨径桥梁施工的特点方便大桥测量定位,我项目部拟大地坐标系转化为独立的施工坐标系。
转化方法及过程从国家坐标系转换到施工坐标系,具体转换公式:E X X1 cos Y Y1 sinF Y Y1 cos X X1 sin (做了修改)施工坐标系以桥轴线为E轴,且以桩号增加方向为正向;以垂直于E轴为F 轴,水平向右为正向。
高程采用设计提供的85黄海高程,式中E、F 为转换后的施工坐标系坐标;X、丫为国家坐标系下坐标,Xl、Y为施工坐标原点在国家坐标系下坐标;表示桥轴正向在国家坐标系下的方位角。
本桥梁起点桩号为K119+大地坐标为X:,丫:,方位角为289° 2' 5具体转化过程如下:以DQ06 为例DQ06大地坐标为X:,丫:。
F 丫丫1 cos X X1 sin4351.265 5380.6574 cos 289.0494444 5157.7791 5034.6566 sin 289.04944441013.2052(做了修改)E X X1 cos 丫丫1 sin5157.7791 5034.6566 cos289.0494444 4351.265 5380.6574 sin 289.0494444 219.1972见下图:由上可知,DQ06的施工坐标为(X:, Y:)。
用以上公式同样可以求出控制点施工坐标,列表如下:****大桥的快速、优质的完成。
望贵单位批准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
****大桥关于大地坐标 转化为施工坐标的报告
****监理公司:
****大桥为特大型桥梁,对测量精度要求高、施工难度大。
在实际施工测量当中,例如承台等结构尺寸比较简单的结构,在模板的安装的时候需要不断的测量、调整,直到满足要求。
在上述过程中需要用放样模式来确定设计位置,待模板调整后又要切换到测量模式检查坐标的偏差,如果没有满足要求,又需要切换到放样模式来确定设计位置。
如此反复,给我们施工放样带来了不必要的时间浪费,根据特大跨径桥梁施工的特点方便大桥测量定位,我项目部拟大地坐标系转化为独立的施工坐标系。
转化方法及过程
从国家坐标系转换到施工坐标系,具体转换公式: ()()θθsin cos 11⨯-+⨯-=Y Y X X E
()()θθsin cos 11⨯-+⨯--=X X Y Y F (做了修改)
施工坐标系以桥轴线为E 轴,且以桩号增加方向为正向;以垂直于E 轴为F 轴,水平向右为正向。
高程采用设计提供的85黄海高程,式中E 、F 为转换后的施工坐标系坐标;X 、Y 为国家坐标系下坐标,1X 、1Y 为施工坐标原点在国家坐标系下坐标;θ表示桥轴正向在国家坐标系下的方位角。
本桥梁起点桩号为K119+375.781,大地坐标为X: 5034.6566,Y: 5380.6574,方位角为289°2′58″=289.289.0494444° 具体转化过程如下: 以DQ06为例
DQ06大地坐标为X: 5157.7791,Y: 4351.265。
()()θθsin cos 11⨯-+⨯--=X X Y Y F
()()0494444
.289sin 5034.65665157.77910494444.289cos 5380.65744351.265⨯--⨯-= 2052.1013=(做了修改)
()()θθsin cos 11⨯-+⨯-=Y Y X X E
()()0494444
.289sin 5380.65744351.2650494444.289cos 5034.65665157.7791⨯-+⨯-= 1972.219-= 见下图:
(0,0)
由上可知,DQ06的施工坐标为(X:1013.205,Y:-219.197)。
用以上公式同样可以求出控制点施工坐标,列表如下:
在全桥施工当中施工坐标系的建立会给我部施工带来很大的便利,有利于****大桥的快速、优质的完成。
望贵单位批准。
****大桥项目部 _年_月_日。