高中物理《能量守恒定律》教案
物理能量守恒定律的教案设计

物理能量守恒定律的教案设计物理能量守恒定律一、教学目标:1.了解能量的概念,知道能量的不同形式及其转化方式。
2.掌握物理能量守恒定律,掌握应用能量守恒定律解决问题的方法。
二、教学重点:1.能量的概念及其不同形式。
2.物理能量守恒定律的讲解和应用。
三、教学难点:1.物理能量守恒定律的理解。
2.应用能量守恒定律解决实际问题。
四、教学过程:第一节:引入老师先让学生思考以下问题:1.汽车行驶过程中能量转化了吗?2.打篮球时,球弹起的高度和你的力量有关吗?3.做功的条件是什么?引入之后,老师让学生们讲讲自己的看法,并启发学生们思考,引出能量的概念。
第二节:能量的概念老师在此环节中,首先讲解了什么是能量,然后讲解了能量的不同形式。
老师通过图片和视频等多种形式让学生对不同的能量形式有充分的认识。
第三节:能量转化老师讲解了能量的转化方式,让学生在生活中可以观察到能量转化的实例。
第四节:物理能量守恒定律老师让学生了解了物理能量守恒定律,并通过多种形式玩游戏来帮助学生更好地理解守恒定律的含义。
第五节:应用老师让学生通过实例应用能量守恒定律,掌握应用能量守恒定律解决问题的方法。
第六节:归纳练习为了让学生更好地巩固和掌握知识,老师设计了一些练习题,让学生在课堂上积极参与,对分析问题并做出结论有充分的练习和思考。
五、教学效果评价方法:1.教师通过观察和讲学后的带动,评估学生的学习效果。
2.对学生进行作业及及时反馈,检验并且评估学习效果。
3.通过对学生在课堂上的互动表现及对课程内容的问答,评估学生的课堂参与度和掌握程度。
以上就是本次课程设计的详细流程,通过这种方式的教育和学习,对于学生更深层的理解和掌握知识,更能提高学习效率和教学质量。
中学物理能量守恒定律的应用教案

中学物理能量守恒定律的应用教案一、教学目标1. 理解能量守恒定律的基本概念,能够准确地描述能量守恒定律的内容与原理。
2. 掌握应用能量守恒定律解决物理问题的方法与步骤。
3. 能够运用能量守恒定律解决与能量转化相关的实际问题,提高问题解决能力。
二、教学重点1. 能量守恒定律的基本概念与原理。
2. 能量守恒定律在实际问题中的应用方法。
三、教学难点能量守恒定律在实际问题中的应用步骤。
四、教学过程1. 导入环节引导学生回顾物理学中已学习的有关能量守恒的知识,以引起学生对本节课内容的兴趣与思考。
2. 理论学习解释能量守恒定律的基本概念,即在一个封闭系统中,能量总量不会改变,只会从一种形式转化为另一种形式。
例如,机械能的转化,热能的转化等。
介绍能量守恒定律的数学表达式和计算方法,并结合示意图进行说明,以帮助学生更好地理解。
3. 实例讲解选择几个具体例子,如弹簧振子、摆锤等,通过应用能量守恒定律解决实际问题的过程,详细解释解题步骤和思路,并与学生进行互动讨论。
4. 练习与巩固提供一些应用能量守恒定律解决问题的练习题,让学生独立完成,并进行及时的批改和讲解。
5. 拓展延伸介绍一些与能量守恒定律相关的实际应用,如交通运输中的能源利用、地球能源问题等,引导学生思考能量守恒定律对社会发展的重要性。
鼓励学生进行更多的实际观察与实验,以发现和应用能量守恒定律。
6. 归纳总结让学生围绕能量守恒定律的应用进行小组讨论,总结出解决问题的一般步骤和方法。
7. 课堂检测设计一些能够考察学生对能量守恒定律应用的问题,并进行答题评讲,检验学生的学习效果与掌握程度。
8. 课堂小结对本节课的重点内容进行总结,并强调能量守恒定律的重要性和应用价值。
五、板书设计(根据实际情况设计)六、教学反思在教学过程中,采用了多种教学方法,如例题讲解、小组讨论等,使学生能够主动参与、思考和探究。
通过实例引导,学生更加深入地理解了能量守恒定律以及其在实际问题中的应用方法。
高中物理能量守恒定律教案

高中物理能量守恒定律教案一、教学目标1. 理解能量守恒定律的基本概念和内容;2. 能够应用能量守恒定律解决实际问题;3. 掌握能量守恒定律相关计算方法;4. 培养学生的观察、实验、推理和解决问题的能力。
二、教学内容1. 能量守恒定律的概念介绍;2. 动能与势能的转换;3. 能量转化与能量损失;4. 能量守恒定律在实际问题中的应用。
三、教学重点1. 能量守恒定律的理解和应用;2. 能量转化与能量损失的概念和计算方法。
四、教学步骤【引入】通过引入日常生活中的例子,如弹簧秤实验或小车滑坡实验,让学生观察和思考能量转化过程,并提出问题引发学生对能量转化及其守恒的思考。
【导入】1. 提问:你观察到了哪些现象?能量是如何转化的?2. 学生回答后,引导学生认识到能量守恒定律的存在,并简要介绍能量守恒定律的定义和表达方式。
【展示】1. 介绍动能与势能的概念,并通过实例讲解它们之间的相互转化关系。
2. 分析实例中能量转化与能量损失的情况,引导学生理解能量守恒定律在实际问题中的应用。
【实践】1. 组织学生进行小组讨论,并设计一系列实验,让学生通过实际操作验证能量守恒定律。
2. 学生进行实验操作后,收集数据并进行数据处理。
引导学生通过实验结果总结能量转化和能量损失的规律。
【总结】1. 结合学生实验结果和讨论内容,总结能量守恒定律的基本原理。
2. 引导学生运用能量守恒定律解决实际问题,并进行相关计算实例的讲解。
五、教学拓展1. 配合多媒体教学工具展示更多与能量守恒定律相关的实验和应用案例;2. 引导学生自主学习相关知识,拓宽对能量守恒定律的理解和应用。
六、教学评价1. 学生讨论和实验记录的质量;2. 学生在实际问题中应用能量守恒定律的准确性和熟练程度;3. 学生对于能量守恒定律的理解程度和问题解决能力的评估。
七、教学反思1. 在教学中注意引导学生构建完整的能量转化模型,理解能量守恒定律的适用范围和局限性;2. 通过课后作业等形式,巩固学生对能量守恒定律的理解和应用。
《第三章3能量守恒定律》教学设计教学反思-2023-2024学年高中物理人教版19选择性必修第三册

《能量守恒定律》教学设计方案(第一课时)一、教学目标本节课的目标是使学生理解并掌握能量守恒定律的基本概念。
学生应能认识并列举出日常生活中的能量转换现象,通过探究学习活动,学生将初步了解守恒定律的数学表达式及基本思想,并初步应用此定律解释和分析一些简单现象。
教学目标着重培养学生自主学习、观察、思考的能力。
二、教学重难点重点:通过实例和实验理解能量守恒定律,并能描述各种能量间的转化过程。
难点是对于守恒思想的理解以及如何在变化复杂的场景中准确运用守恒定律进行计算和问题解析。
针对难点,教师应准备直观的实验材料和例子进行引导。
三、教学准备1. 多媒体教学资源:包括PPT演示、相关视频或动画以帮助学生对能量转换的直观理解。
2. 实验材料:例如机械能转换的实验装置,热能转换的实验器材等,以供学生亲自动手操作和观察。
3. 课程相关学习资料:包括教材、习题集等,供学生课后巩固学习。
四、教学过程:一、引入阶段在课程开始之初,教师将通过一个生动的实例来引发学生的兴趣。
教师可以首先问学生:“大家是否注意到过在生活中的能量变化?比如当我们骑自行车上山时,身体需要消耗大量的能量,而到了山顶后,我们的能量是如何的?”随后,教师可以简要描述一下这个现象背后的能量变化过程,引出今天要学习的内容——能量守恒定律。
二、概念解析接着,教师将详细讲解能量守恒定律的概念。
首先,教师将解释什么是能量、能量的形式以及能量在自然界中的重要性。
然后,重点解释能量守恒定律的含义,即能量既不会消失也不会凭空产生,它只能从一种形式转化为另一种形式。
通过图文并茂的方式,展示一些常见的能量转换过程,如机械能转化为电能、热能等。
三、实验演示为了让学生更好地理解能量守恒定律,教师可以进行一些简单的实验演示。
例如,教师可以准备一个水力发电的模型,让学生观察水流如何带动涡轮转动,进而产生电能的过程。
在这个实验中,教师需要着重引导学生观察和分析能量在过程中的变化情况,使学生对能量守恒有更直观的认识。
高中优秀教案高一物理教案:《能量守恒定律》

高一物理教案:《能量守恒定律》高一物理教案:《能量守恒定律》一、教材分析(一)教材地位能量守恒定律是十九世纪自然科学三大发觉之一,对辨证唯物主义思想的建立起了重要作用,是同学树立辨证唯物主义观点的重要基础之一;能量转化和守恒思想贯穿整个高中教材,是熟悉自然、把握自然规律的重要"工具'。
机械能守恒是高中同学对能量转化和守恒的启蒙,它起着承前启后的作用,是必需坚固把握的一个重要规律。
(二)教材处理人教版必修教材,仅以自由落体为例很快得出机械能守恒定律,对同学把握学问(深刻理解机械能守恒的实质和机械能改变的缘由)和训练思维、进展力量不利,这里作了改进,机械能守恒定律的得出,由定性分析到定量实例探究,再结合一般过程作理论推证,然后总结出定律,阐释机械能守恒的实质,最终是定性应用。
符合由特别到一般,再到特别的熟悉规律,并且在探究、推理过程中,有利于培育同学的演绎推理力量、分析归纳力量和探究发觉力量,领悟物理学讨论方法和提高制造性思维力量。
(三)重点和难点依据知能、方法、情感三要素确定。
1、重点:机械能守恒定律的推理分析过程、定律的内容和定律条件的实质性理解;发觉物理规律的一种常用方法(特例探究+演绎推理法)和抽象思维(规律推理、分析归纳)、形象思维(过程描述和想象)、直觉思维力量的训练。
2、难点:依据定律的推理分析过程归纳总结出机械能守恒定律、定律条件的实质性理解和发觉定律科学方法的领悟以及机械能守恒定律空间对称美的熟悉,激发同学心灵深处喜爱物理学的情感。
二、教学目标(一)确定教学目标的依据1、高中新课程总目标(进一步提高科学素养,满意全体同学的终身进展需求)和理念(探究性、主体性、进展性、和谐性)和三维教学目标(学问与技能、过程与方法、情感看法与价值观);2、教材特点(思想性、探究性、规律性、方法性和哲理性融会一体);3、所教同学的学习基础(学问结构、思维结构和认知结构)。
(二)教学目标1、学问与技能目标(1)理解机械能和机械能总量的概念(动能、势能统称为机械能,它们的总和即为机械能总量);(2)把握机械能守恒定律的内涵(由对象、条件、结论组成)和外延(宏观、低速,惯性参考系成立);(3)理解机械能守恒定律条件的实质(能量只在机械动能和势能之间转化);(4)初步会用定律分析实际过程机械能是否守恒(_能量转化法)。
能量守恒定律的备课教案

能量守恒定律的备课教案一、教学目标1. 理解能量守恒定律的概念和内涵;2. 掌握能量守恒定律的定量表述和数学表达方式;3. 能利用能量守恒定律分析和解决实际问题;4. 培养学生的实际动手能力和思维能力。
二、教学重点1. 能量守恒定律的概念和内涵;2. 能量守恒定律的定量表述和数学表达方式。
三、教学难点1. 能量守恒定律的应用和解决实际问题;2. 学生实际动手能力和思维能力的培养。
四、教学方法1. 情境教学法:通过实际场景的呈现,引发学生的兴趣和好奇心;2. 实验演示法:通过实验演示,观察和分析实验现象,巩固学生对能量守恒定律的理解;3. 讨论互动法:鼓励学生积极参与课堂讨论,培养他们的思考能力和表达能力。
五、教学过程第一步:导入(5分钟)通过讲述一个关于能量转化的故事或者展示一段相关视频,激发学生对能量的兴趣,并引入能量守恒定律的概念。
第二步:学习能量守恒定律(15分钟)1. 定义能量守恒定律:能量守恒定律是指在一个孤立系统中,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式,总能量保持不变。
2. 能量守恒定律的表达方式:E₁ + Q₁₂ - W₁₂ = E₂,其中E₁为初始能量,Q₁₂为热量传递,W₁₂为功。
3. 实例分析:通过具体实例,分析能量转化和守恒过程,加深学生对能量守恒定律的理解。
第三步:实验演示(20分钟)进行一个与能量守恒定律相关的实验演示,如小车碰撞实验。
通过观察和分析实验现象,引导学生发现能量守恒的特点,并运用数学表达方式进行计算。
第四步:能量守恒定律的应用(25分钟)1. 分组讨论:将学生分成小组,提供一些日常生活中的场景,让学生讨论并提出能量转化和守恒的观察点,并进行实际测量和计算。
2. 组织展示:每个小组派代表展示自己的讨论结果,其他组进行评价和提问。
第五步:拓展应用(25分钟)1. 通过案例分析,引导学生运用能量守恒定律解决实际问题,如能量资源的合理利用、能源危机等。
中学物理能量守恒定律教案

中学物理能量守恒定律教案一、教学目标通过本节课的学习,学生应该能够:1. 理解能量守恒定律的概念和基本原理;2. 掌握利用能量守恒定律解决物理问题的方法;3. 运用能量守恒定律分析各种现象和实验。
二、教学重点1. 能量守恒定律的概念和基本原理;2. 能量转化与能量守恒的关系;3. 能量守恒定律的应用。
三、教学难点学生理解能量守恒定律的基本原理,运用能量守恒定律解决物理问题。
四、教学准备1. 物理实验器材:小球、斜面、计时器等;2. 多媒体课件。
五、教学过程【引入】1. 利用多媒体课件呈现瀑布流水、摩擦发热、弹簧弹性势能等常见现象,并向学生提问:“这些现象中有什么共同的特点?”2. 引导学生思考,提出能量守恒定律的问题:“在这些现象中,能量是否会凭空消失或产生?”“能量是如何转化的呢?”引导学生了解能量守恒的概念。
3. 呈现能量守恒定律的表达式E₁ + E₂ = E₃,并解释各个变量的含义。
【探究】1. 进行实验,向学生展示小球在斜面上滚动的过程,并记录相关数据。
2. 引导学生利用实验数据,通过能量守恒定律来解释小球滚动的过程。
让学生体验能量转化的过程,并引导他们思考能量转化是否符合能量守恒定律。
【总结】1. 总结能量守恒定律的基本原理和公式表达方式。
强调能量守恒定律适用于所有物理现象和实验。
2. 提醒学生在解决物理问题时要始终遵循能量守恒定律,并通过例题来巩固他们对该定律的理解和应用。
【拓展】1. 引导学生思考更为复杂的能量守恒问题,例如赛车刹车过程中的能量转化、摩擦热和机械能的关系等。
2. 示范更高难度的物理问题,并鼓励学生尝试自主解决。
六、课堂讨论与互动环节1. 学生间展示实验结果,并进行解析和讨论。
2. 学生讨论如何利用能量守恒定律解决一些日常生活中的实际问题。
七、课堂作业1. 预习下一堂课内容;2. 回顾并复习本节课所学的内容,并思考如何将能量守恒定律应用于解决其他物理问题。
八、教学反思本节课通过引入多媒体、实验探究和互动讨论等多种教学手段,旨在激发学生的学习兴趣和思维能力。
高中物理高二物理《能量守恒定律》教案、教学设计

2.能量守恒定律的表达式:
-机械能守恒:物体的动能和势能之和在一个封闭系统中保持不变。
-能量守恒:在一个封闭系统中,各种能量形式(如动能、势能、内能等)相互转换,但总能量保持不变。
3.能量守恒定律的应用:
-分析物体在力的作用下的运动。
-解决碰撞问题、物体在势场中的运动等实际问题。
高中物理高二物理《能量守恒定律》教案、教学设计
一、教学目标
(一)知识与技能
1.理解能量守恒定律的基本概念,掌握能量守恒的表达方式及其在物理学中的应用。
2.学会运用能量守恒定律分析物体在力的作用下的运动,解决实际问题,如碰撞问题、物体在势场中的运动等。
3.掌握能量守恒定律与动量守恒定律的联系与区别,能正确运用两个守恒定律分析复杂的物理现象。
2.教学过程设计:
-导入新课:通过生活中的实例,引出能量守恒的概念,激发学生兴趣。
-知识讲解:系统介绍能量守恒定律的基础知识,注重理论与实践相结合。
-案例分析:选择具有代表性的案例,引导学生运用能量守恒定律分析问题。
-小组讨论:分组讨论典型案例,培养学生的合作意识和解决问题的能力。
-课堂小结:总结本节课的主要内容,强调能量守恒定律的核心要点。
3.教学评价:
-采用形成性评价和终结性评价相结合的方式,全面评估学生的学习效果。
-课堂提问、练习和实验报告等多种形式,关注学生在知识掌握、能力提升、情感态度等方面的表现。
-定期开展学习反馈,了解学生在学习过程中遇到的问题,及时调整教学策略。
4.教学拓展:
-鼓励学生开展课外研究性学习,深入研究能量守恒定律在现实生活中的应用。
二、学情分析
在本章节的教学中,学生已经具备了一定的物理基础知识,对牛顿运动定律、功和能的概念有了初步的了解。在此基础上,学生对能量守恒定律的学习将更为深入和系统。然而,由于能量守恒定律涉及的概念较为抽象,学生在理解上可能存在一定的困难。因此,在教学过程中,需要关注以下几个方面:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量守恒定律本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论.这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律.机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础.各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节.机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能.分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面.教学重点1.理解机械能守恒定律的内容;2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式;3.理解能量转化和守恒定律.教学难点1.从能的转化和功能关系出发理解机械能守恒的条件;2.能正确判断研究对象在所经历的过程中机械能是否守恒.教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子.课时安排1课时三维目标一、知识与技能1.知道什么是机械能,知道物体的动能和势能可以相互转化;2.理解机械能守恒定律的内容;3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式;4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子.二、过程与方法1.初步学会从能量转化和守恒的观点解释现象、分析问题;2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法.三、情感态度与价值观1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题;2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度.教学过程导入新课[实验演示]动能与势能的相互转化教师活动:演示实验1:如下图,用细线、小球、带有标尺的铁架台等做实验.把一个小球用细线悬挂起来,把小球拉到一定高度的A点,然后放开,小球在摆动过程中,重力势能和动能相互转化.我们看到,小球可以摆到跟A点等高的C点,如图甲.如果用尺子在某一点挡住细线,小球虽然不能摆到C点,但摆到另一侧时,也能达到跟A点相同的高度,如图乙.问题:这个小实验中,小球的受力情况如何?各个力的做功情况如何?这个小实验说明了什么?学生活动:观察演示实验,思考问题,选出代表发表见解.小球在摆动过程中受重力和绳的拉力作用.拉力和速度方向总垂直,对小球不做功;只有重力对小球做功.实验表明,小球在摆动过程中重力势能和动能在不断转化.在摆动过程中,小球总能回到原来的高度.可见,重力势能和动能的总和,即机械能应该保持不变.教师活动:演示实验2:如图,水平方向的弹簧振子.用弹簧振子演示动能和弹性势能的相互转化.问题:这个实验中,小球的受力情况如何?各个力的做功情况如何?这个实验说明了什么?学生活动:观察演示实验,思考问题,选出代表发表见解.小球在往复运动过程中,竖直方向上受重力和杆的支持力作用,水平方向上受弹力作用.重力、支持力和速度方向总垂直,对小球不做功;只有弹簧的弹力对小球做功.实验表明,小球在往复运动过程中弹性势能和动能在不断转化.小球在往复运动过程中总能回到原来的位置,可见,弹性势能和动能的总和,即机械能应该保持不变.教师活动:总结、过渡:通过上述分析,我们得到动能和势能之间可以相互转化,那么在动能和势能的转化过程中,动能和势能的和是否真的保持不变?下面我们就用实验来探索这个问题.推进新课一、机械能的转化和守恒的实验探索在学生开始做实验之前,老师应强调如下几个问题:1.该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零.怎样判别呢?2.是否需要测量重物的质量?3.在架设打点计时器时应注意什么?为什么?4.实验时,接通电源和释放纸带的顺序怎样?为什么?5.测量下落高度时,某同学认为都必须从起始点算起,不能弄错.他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?学生活动:思考老师的问题,讨论、交流,选出代表发表见解.1.因为打点计时器每隔0.02 s打点一次,在最初的0.02 s内物体下落距离应为0.002 m,所以应从几条纸带中选择第一、二两点间距离接近 2 mm的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔t=0.02 s.2.因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量 m,而只需验证n n gh v =221就行了.3.打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用.4.必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落.5.这个同学的看法是正确的.为了减小测量 h 值的相对误差,选取的各个计数点要离起始点适当远些好.教师活动:听取学生汇报,点评,帮助学生解决困难.学生活动:学生进行分组实验.数据处理:明确本实验中要解决的问题即研究动能与重力势能的转化与守恒.在右图中,质量为m 的物体从O 点自由下落,以地面作零势能面,下落过程中任意两点A 和B 的机械能分别为:A A A mgh mv E +=221,B B B mgh mv E +=221如果忽略空气阻力,物体下落过程中如果动能的改变量等于势能的改变量,于是有E a =E b ,即B B A A mgh mv mgh mv +=+222121 上式亦可写成B A A B mgh mgh mv mv -=-222121该式左边表示物体由A 到B 过程中动能的增加,右边表示物体由A 到B 过程中重力势能的减少.如果实验证明等式成立,说明物体重力势能的减少等于动能的增加.为了方便,可以直接从开始下落的O 点至任意一点(上图中A 点)来进行研究,这时应有:mhgmv A =221.式中h 是物体从O 点下落至A 点的高度,v A 是物体在A 点的瞬时速度.1.如何求出A 点的瞬时速度v A ?根据做匀加速运动的物体在某一段时间t 内的平均速度等于该时间中间时刻的瞬时速度可求出A 点的瞬时速度v A .右图是竖直纸带由下而上实际打点后的情况.从O 点开始依次取点1、2、3……图中s 1、s 2、s 3……分别为0~2点,1~3点,2~4点……各段间的距离.根据公式t s v =,t=2×0.02 s (纸带上任意两个相邻的点间所表示的时间都是0.02 s ),可求出各段的平均速度.这些平均速度就等于1、2、3……各点相对应的瞬时速度v 1、v 2、v 3……例如:量出0~2点间距离s 1,则在这段时间里的平均速度t s v 1=,这就是点1处的瞬时速度v1,以此类推可求出点2、3……处的瞬时速度v 2、v 3 ……2.如何确定重物下落的高度?上图中h 1、h 2、h 3……分别为纸带从O 点下落的高度.根据以上数值可以计算出任意点的重力势能和动能,从而验证动能与重力势能的转化和守恒.二、机械能守恒定律机械能守恒定律的推导:教师活动:[多媒体展示下列物理情景]在自由落体运动中机械能守恒一个质量为m 的物体自由下落,经过高度为h 1的A 点(初位置)时速度为v 1,下落到高度为h 2的B 点(末位置)时速度为v 2.学生活动:思考并证明如右图所示,设一个质量为m 的物体自由下落,经过高度为h 1的A 点(初位置)时速度为v 1,下落到高度为h 2的B 点(末位置)时速度为v 2.在自由落体运动中,物体只受重力G =mg 的作用,重力做正功.设重力所做的功为W G ,则由动能定理可得21222121mv mv W G -=①上式表示,重力所做的功等于动能的增量.另一方面,由重力做功与重力势能的关系知道,W G =mgh 1-mgh 2②上式表示,重力所做的功等于重力势能的减少.由①式和②式可得2121222121mgh mgh mv mv -=-.③小结:在自由落体运动中,重力做了多少功,就有多少重力势能转化为等量的动能,移项后可得1212222121mgh mv mgh mv +=+或者E k1+E p1=E k2+E p2④上式表示,在自由落体运动中,动能和重力势能之和即总的机械能保持不变.【教师精讲】上述结论不仅对自由落体运动是正确的,可以证明,在只有重力做功的情形下,不论物体做直线运动还是曲线运动,上述结论都是正确的.所谓只有重力做功,是指:物体只受重力,不受其他的力,如自由落体运动和其他方向运动;或者除重力外还受其他的力,但其他力不做功,如物体沿光滑斜面的运动.在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变.这个结论叫做机械能守恒定律,它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况.不仅重力势能和动能可以相互转化,弹性势能和动能也可以相互转化.放开被压缩的弹簧,可以把跟它接触的小球弹出去,这时弹簧的弹力做功,弹簧的弹性势能转化为小球的动能.在弹性势能和动能的相互转化中,如果只有弹力做功,动能和弹性势能之和保持不变,即机械能守恒.【方法引导】解决某些力学问题,从能量的观点来分析,应用机械能守恒定律求解,往往比较方便.应用机械能守恒定律解决力学问题,要分析物体的受力情况.在动能和重力势能的相互转化中,如果只有重力做功,就可以应用机械能守恒定律求解.【例题剖析】(一)机械能守恒条件的判断[例1]下列关于机械能是否守恒的叙述正确的是( )A.做匀速直线运动的物体机械能一定守恒B.做匀变速直线运动的物体的机械能可能守恒C.合外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒解析:A.做匀速直线运动的物体,除了重力做功外,可能还有其他力做功,如降落伞在空中匀速下降时,除了重力做功外,空气阻力也对降落伞做功,所以机械能不守恒,不选.B.做匀变速直线运动的物体可能只受重力且只有重力做功,如自由落体运动,物体机械能守恒,应选.C.如降落伞在空中匀速下降时合外力为零,合外力对物体做功为零,除重力做功外,空气阻力也做功,所以机械能不守恒,不选.D.符合机械能守恒的条件,应选.可见,对物体进行受力分析,确定各力做功情况是判定机械能是否守恒的一般程序. [例2]如图所示,斜面体置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是( )A.物体的重力势能减少,动能增大B.物体的重力势能完全转化为物体的动能C.物体的机械能减少D.物体和斜面体组成的系统机械能守恒解析:由于斜面体放在光滑斜面上,当物体沿斜面下滑时,物体实际位移方向和物体所受支持力的方向不垂直,所以支持力对物体做了功(负功),物体的机械能不守恒,物体的机械能减少了,物体对斜面体的压力对斜面体做了功(正功),斜面体的机械能增加了,斜面体的机械能也不守恒.对物体和斜面体组成的系统,斜面体和物体之间的弹力是内力,对系统做功的代数和为零,即不消耗机械能.在物体和斜面体的运动过程中只有重力做功,所以系统的机械能守恒.物体在下滑过程中重力势能减少,一部分转化为物体的动能,另一部分则转化为斜面体的动能.所以本题选ACD.(二)机械能守恒定律的应用[例3] 一个物体从光滑斜面顶端由静止开始滑下(如图),斜面高 1 m ,长 2 m.不计空气阻力,物体滑到斜面底端的速度是多大?物体沿光滑斜面下滑时机械能守恒分析:斜面是光滑的,不计摩擦,又不计空气阻力,物体所受的力有重力和斜面的支持力,支持力与物体的运动方向垂直,不做功.物体在下滑过程中只有重力做功,所以可用机械能守恒定律求解.解析:题中没有给出物体的质量,可设物体的质量为m .物体在开始下滑到达斜面底端时的速度为v ,则有E p2=0,2221mv E k = ,末状态的机械能2p2k221mv E E =+.此时,E p1=mgh ,E k1=0,初状态的机械能E k1+E p1=mgh .根据机械能守恒定律有E k2+E p2=E k1+E p1 mgh mv =221,所以 4.4m/s m/s 18.922=⨯⨯==gh v .【方法引导】这个问题也可以应用牛顿第二定律和运动学公式求解,但是应用机械能守恒定律求解,在思路和步骤上比较简单.在这个例题中,如果把斜面换成光滑的曲面(如图),同样可以应用机械能守恒定律求解,要直接用牛顿第二定律求解,由于物体在斜面上所受的力是变力,处理起来就困难得多.物体沿光滑曲面下滑时机械能守恒[例4]把一个小球用细绳悬挂起来,就成为一个摆.摆长为L ,最大偏角为θ.小球运动到最低位置时的速度是多大?分析:小球受两个力:重力和悬线的拉力.悬线的拉力始终垂直于小球的运动方向,不做功.小球在摆动过程中,只有重力做功,所以可用机械能守恒定律求解.解析:选择小球在最低位置时所在的水平面为参考平面.小球在最高点时为初状态,初状态的动能E k1=0,重力势能E p1=mg (L -L cos θ),机械能E k1+E p1=mg (L -L cos θ).小球在最低点时为末状态,末状态的动能2221mv E k =,重力势能E p2=0,末状态的机械能为2p2k221mv E E =+.根据机械能守恒定律有E k2+E p2=E k1+E p1)cos (212θ-=L mgL mv 所以)cos 1(2θ-=gL v .【教师精讲】由这两个例题可以看出,应用机械能守恒定律解题,可以只考虑运动的初状态和末状态,不必考虑两个状态之间的过程的细节.这可以避免直接用牛顿第二定律解题的困难,简化解题的步骤.守恒定律不仅给处理问题带来方便,而且有更深刻的意义.自然界千变万化,但有些物理量在一定条件下是守恒的,可以用这些“守恒量”表示自然界的变化规律,这就是守恒定律.寻求“守恒量”已经成为物理学研究中的重要方面.我们学习物理,要学会运用守恒定律处理问题.三、能量转化和守恒定律教师活动:提出问题:我们已学习了多种形式的能,请同学们说出你所知道的能量形式.我们还知道不同能量之间是可以相互转化的,请你举几个能量转化的例子.学生活动:思考并回答问题,列举实例.教师活动:演示实验1:在一个玻璃容器内放入沙子,拿一个小铁球分别从某一高度释放,使其落到沙子中.思考:小球运动过程中机械能是否守恒?请说出小球运动过程中能量的转化情况.演示实验2:在盛有水的玻璃容器中放一小木块,让小木块在水中上下浮动,过一段时间,小木块停止运动.思考:小木块运动过程中机械能是否守恒?请说出小木块运动过程中能量的转化情况.学生活动:观察实验并积极思考讨论后,选出代表发表见解.教师活动:听取学生汇报,总结点评,回答学生可能提出的问题.通过学生举例和演示实验,说明各种形式的能量可以相互转化,增强学生的感性认识,并激发学生的学习兴趣,唤起学生强烈的求知欲.以上实验表明,各种形式的能量可以相互转化,一种能量减少,必有其他能量增加,一个物体的能量减少,必定其他物体的能量增加,能量的总和并没有变化.这就是大自然的一条普遍规律,而机械能守恒定律只是这一条规律的一种特殊情况.学生活动:列举生活中不同能量之间相互转化的例子.教师活动:引导学生阅读教材,说出能量守恒定律的内容,并引导学生说明能量守恒定律的建立有何重大意义.历史上曾有人设想制造一种不需要消耗任何能源就可以不断做功的机器,即永动机,这样的机器能不能制成?为什么?学生活动:认真阅读教材,思考并回答问题.课堂小结本节课我们学习了机械能守恒定律,重点是机械能守恒定律的内容和表达式,难点是判断物体的机械能是否守恒,所以应透彻理解机械能守恒定律成立的条件,从而正确应用机械能守恒定律解题.布置作业课本P37作业4、5、6.板书设计活动与探究有人设计了这样一台“永动机”:距地面一定高度架设一个水槽,水从槽底的管中流出,冲击一个水轮机,水轮机的轴上安装一个抽水机和一个砂轮.他指望抽水机把地面水槽里的水抽上去,这样循环不已.机器不停地转动,就可以永久地用砂轮磨制工件做功了(右图).请你分析一下,高处水槽中水的势能共转变成哪几种形式的能,说明这个机器是否能够永远运动下去.。