《证明三》练习题1
级奥数证明题练习题

级奥数证明题练习题为大家整理的2014初三年级奥数证明题练习题的文章,供大家学习参考!更多最新信息请点击初中奥数网例1.已知:△ABC中,∠B=2∠C,AD是高求证:DC=AB+BD分析一:用分解法,把DC分成两部分,分别证与AB,BD 相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C 辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N求证:AH=2MO,BH=2NO证明一:(加倍法――作出OM,ON的2倍)连结并延长CO到G使OG=CO连结AG,BG则BG∥OM,BG=2MO,AG∥ON,AG=2NO∴四边形AGBH是平行四边形,∴AH=BG=2MO,BH=AG=2NO证明二:(折半法――作出AH,BH的一半)分别取AH,BH的中点F,G连结FG,MN则FG=MN= AB,FG∥MN∥AB又∵OM∥AD,∴∠OMN=∠HGF(两边分别平行的两锐角相等)同理∠ONM=∠HFG∴△OMN≌△HFG……例 3.已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点求证:∠DCE=2∠BCF分析:本题显然应着重考虑如何发挥CE=AD+AE条件的作用,如果只想用加倍法或折半法,则脱离题设的条件,难以见效。
我们可将AE(它的等量DG)加在正方形边CD的延长线上(如左图)也可以把正方形的边CD(它的等量AG)加在AE的延长线上(如右图)后一种想法更容易些。
辅助线如图,证明(略)自己完成例4.已知:△ABC中,∠B和∠C的平分线相交于I,求证:∠BIC=90 + ∠A证明一:(由左到右)∠BIC=180 -(∠1+∠2)=180 - (∠ABC+∠ACB)=180 - (∠ABC+∠ACB+∠A)+ ∠A=90 + ∠A证明二:(左边-右边=0)∠BIC-(90 + ∠A)=180 - (∠ABC+∠ACB)-90 - ∠A=90 - (∠ABC+∠ACB+∠A)=……证明三:(从已知的等式出发,进行恒等变形)∵∠A+∠ABC+∠ACB=180 ∴∠A=180 -(∠ABC+∠ACB) ∠A=90 - (∠ABC+∠ACB)90 + ∠A=180 - (∠ABC+∠ACB),即∠BIC=90 + ∠A。
《证明三》练习题2

D C B A 图3-4EF **《证明三》练习题2***1.如图3-2,平行四边形ABCD 中,经过两对角线交点O 的直线分别交BC 于点E ,交AD 于点F . 若BC = 7, CD = 5, OE = 2, 则四边形ABEF 的周长等于( ).A. 14B. 15C. 16D. 无法确定分析:三角形全等,等量代换****2、如图3-4,平行四边形ABCD 中,E 、F 分别是边BC 、CD 上的点,EF ∥BD .求证: S △ABE = S △ADF .分析:三角形等面积变化****3.已知:四边形ABCD 的边AB = a , BC = b , CD = c , DA = d , 且满足关系式a 2 +b 2 +c 2 +d 2 = 2ac +2bd , 则这个四边形是 四边形.分析:配方法;特殊四边形的判定***4.如图3-8,平行四边形ABCD 中,E 、F 分别是AB 、CD 上的点,且BE = CF ,AF 、DE 相交于M ,BF 、CE 相交于N . 求证:MN ∥= 12AB .分析:平行四边形的性质和判定的综合运用;三角形中位线***5、已知A B C D 的对角线相交于点O ,它的周长为10cm , B C O ∆的周长比A B O ∆的周长多2cm ,则AB= cm 。
分析:平行四边形对角线构成的三角形性质***6、如图,已知E 为A B C D 内任一点,A B C D 的面积为40,那么EAB EC D S S += 。
A DE B C三角形面积与平行四边形面积的关系;数形结合D C B A O 图3-2EF N M D CB A 图3-8E F****7、已知:如图3-10,△ABC 中,D 、E 是BC 的三等分点,BC = 15cm, AD = 13cm,AE = 12cm, F 、G 分别是AB 、AC 的中点. 求:四边形DEGF 的周长和面积.分析:挖掘图形之中隐含条件***8、如图,A B C D 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,请你数一数图中共有( )个平行四边形。
北师大版八下数学《三角形的证明》单元测试1(含答案)

第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。
(典型题)初中数学八年级数学下册第一单元《三角形的证明》测试(含答案解析)(1)

一、选择题1.下列命题中,是假命题的是( )A .两条直角边对应相等的两个直角三角形全等 ;B .每个命题都有逆命题;C .每个定理都有逆定理;D .在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上. 2.在ABC 中,已知::5:12:13AC BC AB =,AD 是ABC 的角平分线,DE AB ⊥于点E .若ABC 的面积为S ,则ACD △的面积为( )A .14SB .518SC .625SD .725S 3.如图,在ABC 中,PD ,PE 分别是AC ,BC 边的垂直平分线,且分别与AB 交于点M ,N 连接CM ,CN .有下列四个结论:①P A B ∠=∠+∠;②ACB MCN P ∠=∠+∠;③ACB ∠与P ∠是互为补角;④MCN △的周长与AB 边长相等其中正确结论的个数是( )A .1B .2C .3D .44.下列说法中,不正确的有( )①不在角的平分线上的点到这个角的两边的距离不相等;②三角形两内角的平分线的交点到各边的距离相等;③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等,⑤到三角形三个顶点距离相等的点有1个A .0个B .1个C .2个D .3个5.如图,平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0),若△POA 是等腰三角形,则m 可取的值最多有( )A .2个B .3个C .4个D .5个6.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( )A .8,10,12B .3,4,5C .5,12,13D .7,24,25 7.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个8.下列说法错误的是( )A .有两边相等的三角形是等腰三角形B .直角三角形不可能是等腰三角形C .有两个角为60°的三角形是等边三角形D .有一个角为60°的等腰三角形是等边三角形9.如图,ABC 中,BAC 60∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=.其中正确的有( )A .①②B .①②③④C .①②④D .②④ 10.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB∠的度数为( )A .105︒B .120︒C .135︒D .150︒ 11.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25°12.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有()A.1个B.2个C.3个D.4个二、填空题13.如图,在△ABC中,∠ABC的平分线与AC的垂直平分线相交于点D,过点D作DF⊥BC,DG⊥AB,垂足分别为 F、G.若BG=5,AC=6,则△ABC 的周长是_____.14.如图,已知一次函数y=﹣x+1的图象与x轴、y轴分别交于点A,B,点M在y轴上(M不与原点重合),并且使以点A,B,M为顶点的三角形是等腰三角形,则M的坐标为_____.15.上午9时,一条船从海岛A出发,以12海里/时的速度向正北航行,11时到达海岛B 处,如图,海岛A在灯塔C的南偏西32°方向,灯塔C在海岛B的北偏东64°方向,则灯塔C到海岛B的距离是______海里.16.如图,∠AOB =30°,点P 在∠AOB 的内部,OP =6cm ,点E 、F 分别为OA 、OB 上的动点,则△PEF 周长的最小值为________cm .17.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .18.如图,在等腰直角三角形ABC 中,90,A AC AB ∠=︒=.BD 为ABC ∠的平分线,交AC 于点D ,若BCD △的面积为2,则ABD △的面积为____________.19.等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是_________.20.如图,50AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.三、解答题21.在平面直角坐标系中,坐标轴上的三个点(),0A a ,()0,B b ,(),0C c ()0,0a b <>满足()210c a b -++=,F 为射线BC 上的一个动点.(1)c 的值为______,ABO ∠的度数为______.(2)如图()a ,若AF BC ⊥,且交OB 于点E ,求证:OE OC =.(3)如图()b ,若点F 运动到BC 的延长线上,且2FBO FAO ∠=∠,O 在AF 的垂直平分线上,求ABF 的面积.22.如图,△ABC 的三个顶点都在方格纸的格点上,其中点A 的坐标是(-1,0),B 点坐标是(-3,1),C 点坐标是(-2,3).(1)作△ABC 关于y 轴对称的图形△DEF ,其中A 、B 、C 的对应点分别为D 、E 、F ; (2)动点P 的坐标为(0,t ),当t 为何值时,PA +PC 的值最小,并写出PA +PC 的最小值;(3)在(1)的条件下,点Q 为x 轴上的动点,当△QDE 为等腰三角形,请直接写出Q 点的坐标.23.已知等边ABC ,点D 为BC 上一点,连接AD .(1)若点E 是AC 上一点,且CE BD =,连接BE ,BE 与AD 的交点为点P ,在图(1)中根据题意补全图形,求出APE ∠的大小;(2)将AD 绕点A 逆时针旋转120︒,得到AF ,连接BF 交AC 于点Q ,在图(2)中根据题意补全图形,用等式表示线段AQ 和CD 的数量关系,并证明.(记得充分利用(1)的解题思路和结论)24.如图,ABE △是等腰三角形,AB AE =,45BAE ∠=︒,过点B 作BC AE ⊥于点C ,在BC 上截取CD CE =,连接AD 、DE 并延长AD 交BE 于点P(1)求证:AD BE =;(2)试说明AD 平分BAE ∠.25.已知,如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线(1)若∠B=30°,∠ACD=45°,AB=2,求BC 的长.(2)若点G 是线段CE 的中点,连接DG ,当DG ⊥EC 时,求证: AB=2CD .(3)在(2)的条件下,试判断∠AEC 与∠B 之间的数量关系,并说明理由.26.已知:任意一个三角形的三条角平分线都交于一点.如图,在ABC 中,BD 、CD 分别平分ABC ∠、ACB ∠,过点D 作直线分别交AB 、AC 于点E 、F ,若AE AF =,解答下列问题:(1)证明:DE DF =;(2)若60A ∠=︒,8AB =,7BC =,5AC =,求EF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据全等三角形的判定,命题与定理及角平分线的判定等知识一一判断即可.【详解】解:A .两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项是正确;B 、每个命题都有逆命题,所以B 选项正确;C 、每个定理不一定有逆定理,所以C 选项错误;D 、在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上,正确.故选C .【点睛】本题考查了全等三角形的判定,命题与定理以及角平分线的判定方法,熟练利用这些判定定理是解题关键.2.B解析:B【分析】根据勾股定理的逆定理可得ABC 为直角三角形,再根据AAS 得出ACD AED ≅,从而得出ACD △的面积=AED 的面积和BE 的长,继而得出AED 的面积和BED 的面积比,即可得出答案【详解】解:∵::5:12:13AC BC AB =,设AC=5k ,BC=12k ,AB=13k ,∴AC 2+BC 2=AB 2∴ABC 为直角三角形,∠C=90°,∵AD 是ABC 的角平分线,DE AB ⊥,∴∠CAD=∠BAD ,∠C=∠AED =90°,∵AD=AD ,∴ACD AED ≅, ∴△△S S =ACD AED ,AE=AC=5k ,∴BE=13k-5k=8k ,∵AED 和BED 同高, ∴8:5△BE △S :S =D AED ,∵ABC 的面积为S , ∴518△S =ACD S . 故选:B【点睛】本题考查了勾股定理的逆定理、全等三角形的性质与判定,根据同高得出8:5△BE △S :S =D AED 是解题的关键.3.D解析:D【分析】根据四边形内角和等于360°,即可得出③正确,再根据三角形内角和定理、等腰三角形的性质可得结论①②正确;根据线段的垂直平分线的性质得到MA MC =,NB NC =,即可判定④正确.【详解】解:∵PD ,PE 分别是AC ,BC 边的垂直平分线,∴90CDP ∠=︒,90CEP ∠=︒,又∵360P AC DP B C CE P ∠∠+∠=∠++︒,∴180P ACB ∠=︒∠+,故结论③正确;又∵180AC A B B ∠+︒∠+∠=, ∴P A B ∠=∠+∠,故结论①正确; 直线PD 是AC 的垂直平分线,AM CM ∴=,∴A ACM ∠=∠同理,NB NC =,B BCN ∠=∠,∵AC MC ACB M N N BC ∠∠+∠∠=+,∴M ACB N A C B ∠∠∠=+∠+,∴ACB MCN P ∠=∠+∠,故结论②正确; AMN △的周长为MC MN NC =++,∴AMN 的周长=AM MN NB AB ++=,故结论④正确;综上所述,①②③④正确,共4个.故选D .【点睛】本题主要考查了线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.C解析:C【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可.【详解】①根据角平分线的判定可知①正确;②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误,∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.5.C解析:C【分析】分两种情况分析:①以点OP 为底,②OP 为腰,讨论点P 的个数,再求出m 的值即可.【详解】解:由点P (m ,0)知点P 在x 轴上,分两种情况:当OP 为底时,以A 点为圆心OA 为半径画圆,交x 轴于点P ,以OA=AP 为腰,点P 的坐标为m=2×3=6,当OP 为腰时,以O 为圆心,OA 长为半径,画圆交x 轴于两点P ,点P 在y 轴左侧或右侧,OP=OA=222313+=,∴m=13±,点P 在y 轴右侧,以OA 为底,作AO 的垂直平分线交x 轴与P ,过A 作AB ⊥x 轴,OP=AP=()2223m +-,则m=()2223m +-,解得m=136,综上,共有4个点P ,即m 有4个值,故选择:C.【点睛】本题考察等腰三角形的性质,解题时分两种情况进行讨论,注意以点A 、O 为顶角顶点时应以点为圆心画弧线,避免有遗漏.6.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A 、∵82+102≠122,∴三条线段不能组成直角三角形,故A 选项符合题意; B 、∵32+42=52,∴三条线段能组成直角三角形,故B 选项不符合题意;C 、∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符合题意;D 、∵72+242=252,∴三条线段能组成直角三角形,故D 选项不符合题意;故选:A .【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算. 7.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.8.B解析:B【分析】利用等腰三角形和等边三角形的判定解答即可.【详解】A.有两边相等的三角形是等腰三角形,所以A选项正确;B.等腰直角三角形就是等腰三角形,故B选项错误;C.有两个角为60°的三角形是等边三角形,正确;D.有一个角为60°的等腰三角形是等边三角形,正确.故选B.【点睛】本题考查了等腰三角形和等边三角形的判定,解题的关键是熟练掌握有关性质.9.C解析:C【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=60°,从而得到∠ABC为等边三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.10.B解析:B【分析】由△ABC 为等边三角形,可求出∠BOA =90°,由△ADO 是等腰三角形求出∠ADO =∠AOD =30°,即可求出∠BOD 的度数.【详解】解:∵△ABC 为等边三角形,BO 为中线,∴∠BOA =90°,∠BAC =60°∴∠CAD =180°﹣∠BAC =180°﹣60°=120°,∵AD =AO ,∴∠ADO =∠AOD =30°,∴∠BOD =∠BOA +∠AOD =90°+30°=120°,故选:B .【点睛】本题主要考查了等边三角形的性质及等腰三角形的性质,解题的关键是熟记等边三角形的性质及等腰三角形的性质.11.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 12.D解析:D【分析】以点O 、A 、B 为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可.【详解】解:如图所示,=时,以点O为圆心,OA为半径作圆,与直线b在O点两侧各有一个交①当OA OB点,此时B点有2个;=时,以点A为圆心,OA为半径作圆,与直线b有另外一个交点,此时B点②当OA AB有1个;=时,作OA的垂直平分线,与直线b有一个交点,此时B点有1个,③当OB AB综上,B点总共有4个,故选:D.【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B是解题的关键.二、填空题13.16【分析】连接ADDC证明Rt△DGA≌Rt△DFC(HL)可得出AG=CF再证明Rt△BDG≌Rt△BDF(HL)得出BG=BF则可求出答案【详解】解:连接ADDC∵BD平分∠ABCDG⊥ABD解析:16【分析】连接AD、DC.证明Rt△DGA≌Rt△DFC(HL)可得出AG=CF,再证明Rt△BDG≌Rt△BDF (HL),得出BG=BF,则可求出答案【详解】解:连接AD、DC.∵BD平分∠ABC,DG⊥AB,DF⊥BC,∴DG=DF.∵D在AC的中垂线上,∴DA=DC.在Rt△DGA与Rt△DFC中,∵DG=DF,DA=DC,∴Rt△DGA≌Rt△DFC(HL).∴AG=CF.又∵BD=BD,DG=DF.∴Rt△BDG≌Rt△BDF(HL).∴BG=BF.又∵AG=CF,∴△ABC的周长=AB+BC+AC=BG﹣AG+BF+FC+AC=2BG+AC=2×5+6=16.故答案为:16.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,属于中考常考题型.14.(01+)(01-)(0-1)【分析】分别以点AB为圆心以AB的长为半径画圆两圆与y轴的交点即为M点再由OA=OB可知原点也符合题意【详解】解:分别以点AB为圆心以AB的长为半径画圆如图共有4个点对解析:(0,1+2),(0,1-2),(0,-1).【分析】分别以点A、B为圆心,以AB的长为半径画圆,两圆与y轴的交点即为M点,再由OA=OB可知原点也符合题意.【详解】解:分别以点A、B为圆心,以AB的长为半径画圆,如图,共有4个点对于y=-x+1,当x=0时,y=1,当y=0时,x=1∴A(1,0),B(0,1)∴OA=OB=1∴2∴当AB 为腰时,BM1∴OM1∴点M1的坐标为(0,),∵OA=1,∴OM 3=1∴点M 3的坐标为(0,-1)∵BM2∴OM2∴点M2的坐标为(0,+1)∵OA=OB∴点M 4的坐标为(0,0)(舍去)综上,点M 的坐标为:(0,0,),(0,-1).故答案为:(0,),(0,),(0,-1).【点睛】此题考查了等腰三角形的性质,勾股定理,以及一次函数与坐标轴的交点,利用了数形结合及分类讨论的思想,在分类讨论分情况解决数学问题时,必须认真审题,全面考虑,做到不重不漏,一次分类必须按同标准进行,分出的每一部分必需都是相互独立的.本题要求学生求出相应线段后,注意根据点在坐标轴上的位置选择合适的符号,进而写出坐标. 15.24【分析】作点C 垂直AB 于点DBE 垂直CE 于点E 由题意可求出AB 的长继而根据方位角可求出∠ACE=∠CAB=∠BCA 即可求解;【详解】解:如图作点C 垂直AB 于点DBE 垂直CE 于点E 由题意知:船的速解析:24【分析】作点C 垂直AB 于点D ,BE 垂直CE 于点E ,由题意可求出AB 的长,继而根据方位角可求出∠ACE=∠CAB=∠BCA ,即可求解;【详解】解:如图,作点C 垂直AB 于点D ,BE 垂直CE 于点E ,由题意知:船的速度为12海里,时间为2小时,∴ ()1211924AB =⨯-=,∵∠CBD=64°,∴∠BCD=90°-64°=26°,∵∠ACE=32°,∴∠BCA=90°-26°-32°=32°,∴∠ACE=∠CAB=∠BCA=32°,∴AB=BC=24,故答案为:24.【点睛】本题考查了平行线的性质,方位角以及等腰三角形的性质,正确掌握知识点是解题的关键.16.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.17.【分析】已知AB=AC 根据等腰三角形的性质可得∠B 的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD 的长再根据等角对等边可得到CD 的长即可求得BC 的长【详解】∵AB=AC ∠C=30°解析:12【分析】已知AB=AC ,根据等腰三角形的性质可得∠B 的度数,再求出∠DAC 的度数,然后根据30°角直角三角形的性质求得BD 的长,再根据等角对等边可得到CD 的长,即可求得BC 的长.【详解】∵AB=AC ,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB ⊥AD ,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.18.【分析】由等腰直角三角形的性质得到然后利用三角形的面积公式即可求出答案【详解】解:作DE ⊥BC 垂足为E 如图:∵为的平分线∴∵∴△ABC 是等腰直角三角形∴∵的面积为2∴∴∴∴的面积为:;故答案为:【点 解析:2【分析】由等腰直角三角形的性质,得到2BCAB ,然后利用三角形的面积公式,即可求出答案.【详解】解:作DE ⊥BC ,垂足为E ,如图:∵BD 为ABC ∠的平分线,∴AD DE =,∵90,A AC AB ∠=︒=,∴△ABC 是等腰直角三角形, ∴2BC AB ,∵BCD △的面积为2, ∴122BC DE •=, ∴1222DE •=, ∴122AB DE •= ∴ABD △的面积为:122AB DE •= 2【点睛】本题考查了角平分线的性质,等腰直角三角形的性质,以及三角形的面积公式,解题的关键是熟练掌握角平分线的性质定理和等腰直角三角形的性质,正确得到2BC AB . 19.60°或30°【分析】由于此高不能确定是在三角形的内部还是在三角形的外部所以要分锐角三角形和钝角三角形两种情况求解【详解】解:分两种情况:①在左图中AB=ACBD ⊥AC ∠ABD=30°∴∠A=60° 解析:60°或30°【分析】由于此高不能确定是在三角形的内部,还是在三角形的外部,所以要分锐角三角形和钝角三角形两种情况求解.【详解】解:分两种情况:①在左图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=180602A ︒-∠=︒; ②在右图中,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故答案为:30°或60°.【点睛】 本题考查了等腰三角形的定义、直角三角形两锐角互余.由于题中没有图,要根据已知画出图形并注意要分类讨论.20.或【分析】求出∠AOC 根据等腰得出三种情况OE=CEOC=OEOC=CE 根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB=50°OC 平分∠AOB ∴∠AOC=25°①当E 在E1时OE解析:25︒,130︒或775︒.【分析】求出∠AOC ,根据等腰得出三种情况,OE=CE ,OC=OE ,OC=CE ,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=50°,OC 平分∠AOB ,∴∠AOC=25°,①当E 在E 1时,OE=CE ,∵∠AOC=∠OCE=25°,∴∠OEC=180°-25°-25°=130°;②当E 在E 2点时,OC=OE ,则∠OCE=∠OEC=12(180°-25°)=77.5°; ③当E 在E 3时,OC=CE ,则∠OEC=∠AOC=25°;故答案为:130°或77.5°或25°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,解题的关键是掌握所学的知识,运用分类讨论思想进行分析.三、解答题21.(1)1; 45°;(2)见解析;(3)93344【分析】(1)根据非负数的性质可求得c 的值,得到OA=OB ,即可求得∠ABO 的度数;(2)证明△AOE ≅△BOC 即可证明OE OC =; (3)连结OF ,过点F 作FG x ⊥轴,垂足为点G ,根据线段垂直平分线的性质得到OA=OF ,证明∠OBC=30°,根据直角三角形的性质、三角形的面积公式计算,得到答案.【详解】(1)∵()210c a b -++=,∴10c -=,0a b +=,∴1c =,∵A(a ,0), B(0,b),∴OA=OB ,∵∠AOB=90°,∴△AOB 是等腰直角三角形,∴∠ABO=45°,故答案为:1;45°;(2)∵AF BC ⊥,∴90AOE BFE ∠=∠=︒,∵AEO BEF ∠=∠,∴OBC OAE ∠=∠,由(1)得:OA=OB ,在AOE △和BOC 中,AO BO AOE BOC OBC OAE =⎧⎪∠=∠⎨⎪∠=∠⎩,∴AOE BOC ≅△△(AAS),∴OE OC =;(3)连结OF ,过点F 作FG x ⊥轴,垂足为点G ,∵O 在AF 的垂直平分线上∴AO OF =,∴OAF OFA x ∠=∠=,∴2GOF OAF OFA x ∠=∠+∠=∵22FBO FAO x ∠=∠=,OB OA OF ==,∴2OFC OBF x ∠=∠=,∴4BCO COF OFB x ∠=∠+∠=,∵90OBC OCB ∠+∠=︒,∴690x =,解得15x =,∴230OBC GOF x ∠=∠==︒,∵1c =,∴C(1,0),1OC =,∵90BOC ∠=°,30OBC ∠=︒,∴22BC OC ==,22OB BC OC 3=-= ∴3OA OF OB === 同理可得:32FG =, ∴31AC AO OC =+=∴()11119331333222244ABF ACB ACF S S S AC FG AC OB ⎛⎫=+=⋅+⋅=++=+ ⎪⎝⎭△△△. 【点睛】 本题考查了全等三角形的判定和性质、线段垂直平分线的性质、等腰直角三角形的性质、含30度角的直角三角形的性质、三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)见解析;(2)t=1,最小值为32;(3)Q (51-+,0)或(51+,0)或(5,0)或(94,0) 【分析】(1)分别作出A ,B ,C 的对应点D ,E ,F 即可.(2)连接CD 交y 轴于点P ,连接PC ,点P 即为所求作.(3)根据等腰三角形的判定画出图形分类求解即可.【详解】解:(1)如图,△DEF 即为所求作;(2)如图,点P 即为所求作,点P 的坐标为(0,1),∴当1t =时,PA +PC 的值最小,最小值为CD=223332+=;(3)DE 22215=+=,如图,当5Q 的坐标为:Q 1(51,0),Q 251,0); 当5Q 的坐标为:Q 3(5,0);当DQ=EQ 时,设Q (m ,0),∵D (1,0),E (3,1),2DQ =2EQ ,∴()()222131m m -=-+, 解得:94m =. ∴Q4(94,0); 综上,满足条件的点Q 的坐标为: (51-+,0)或(51+,0)或(5,0)或(94,0). 【点睛】本题考查了作图-轴对称变换,等腰三角形的性质,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)图见解析,60°;(2)图见解析,12AQ CD =,理由见解析 【分析】(1)根据题意补充图形,通过证明ABD BCE △≌△得到BAD CBE ∠=∠,利用三角形外角的性质可得APE BAD ABP ∠=∠+∠CBE ABP ABC =∠+∠=∠即可求解; (2)根据题意补全图形,通过证明BEQ FAQ ≌得到1122AQ QE AE CD ===,即可得证.【详解】解:(1)补全图形证明:在ABD △和BCE 中,60AB BC ABD C BC CE =⎧⎪∠=∠=︒⎨⎪=⎩()ABD BCE SAS ∴≌BAD CBE ∴∠=∠.APE ∠是ABP △的一个外角,APE BAD ABP ∠=∠+∠∴60CBE ABP ABC =∠+∠=∠=︒;(2)补全图形图2,12AQ CD =, 证明:根据(1)ABD BCE △≌△可知BD EC =,即DC AE =.再证明BEQ FAQ ≌. 得到1122AQ QE AE CD ===. 【点睛】本题考查全等三角形的判定与性质、等边三角形的性质,掌握上述性质定理是解题的关键.24.(1)见解析;(2)见解析【分析】(1)利用SAS 证明△BCE ≌△ACD ,根据全等三角形的对应边相等得到AD=BE .(2)根据△BCE ≌△ACD ,得到∠EBC=∠DAC ,由∠BDP=∠ADC ,得到∠BPD=∠DCA=90°,利用等腰三角形的三线合一,即可得到AD 平分∠BAE .【详解】证明:(1)∵BC ⊥AE ,∠BAE=45°,∴∠CBA=∠CAB ,∴BC=CA ,在△BCE 和△ACD 中, 90BC AC BCE ACD CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△ACD (SAS ),∴AD=BE .(2)∵△BCE ≌△ACD ,∴∠EBC=∠DAC ,∵∠BDP=∠ADC ,∴∠BPD=∠DCA=90°,∵AB=AE ,∴AD 平分∠BAE .【点睛】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△BCE ≌△ACD .也考查了等腰三角形三线合一的性质.25.(11;(2)见解析;(3)32AEC B =∠∠,理由见解析. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半解得AD=DC=1,再结合勾股定理解题即可;(2)由三线合一性质证明DC=DE ,由直角三角形斜边中线等于斜边的一半得到12DE AB =,据此利用等量代换解题即可; (3)由直角三角形斜边中线性质可证BE=ED ,再结合等边对等角解得∠DEC=∠DCE ,最后根据角的和差解题即可.【详解】解:(1)∵AD 是BC 边上的高线∴∠ADC=∠ADB=90°∵∠ACD=45°,∠B=30°∴∠ACD=∠CAD=45°,∠BAD=60°∴AD=DC ,12AD AB =又∵AB=2∴AD=DC=1在Rt △ABD 中,BD =∴1;(2)证明:∵G 是线段CE 的中点,DG ⊥EC∴DC=DE∵CE 是AB 边上的中线,AD ⊥BC ∴12DE AB =∴12DC AB =即AB=2CD ;(3)32AEC B =∠∠,理由如下, ∵12DE AB =,AE=BE ∴BE=ED ∴∠B=∠EDB∵DE=DC∴∠DEC=∠DCE∴∠B=∠EDB=2∠DCE又∵∠AEC=∠B+∠DCE∴∠AEC=3∠DCE ∴32AEC B =∠∠. 【点睛】本题考查含30°的直角三角形的性质、直角三角形斜边的中线、三线合一性质、勾股定理、等边对等角等知识,是重要考点,难度一般,掌握相关知识是解题关键. 26.(1)见解析;(2)4【分析】(1)连接AD 由AE AF =可得AEF 是等腰三角形,由三条角平分线交于一点可证AD 平分BAC ∠即可;(2)在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x ==,易证AEF 为等边三角形,可得2AE AF EF x ===,60AEF ∠=︒,可证BED ≌BMD (SAS )可得DM DE =,82BM BE x ==-,BED BMD ∠=∠60DMN AEF ∠=∠=︒,再证NCD ≌FCD (SAS )可得,52DN DF CN CF x ===-,可证DMN 为等边三角形,由BC BM MN NC =++构造方程解之即可.【详解】(1)证明:连接AD ,AE AF =,∴AEF 是等腰三角形,BD 、CD 分别平分ABC ∠、ACB ∠,∴AD 平分BAC ∠,∴DE DF =;(2)解:在BC 上取点M N 、,使得BE BM CF CN ==,,设2EF x =,则DE DF x==,60A AE AF∠=︒=,,∴AEF为等边三角形,∴2AE AF EF x===,60AEF∠=︒,在BED和BMD中,BE BMEBD MBDBD BD=⎧⎪∠=∠⎨⎪=⎩,∴BED≌BMD(SAS),∴DM DE=,82BM BE x==-,BED BMD∠=∠,60DMN AEF∴∠=∠=︒,在CND△和CFD△中,CN CFBMNCD FCDCD CD=⎧⎪∠=∠⎨⎪=⎩,∴NCD≌FCD(SAS),∴,52DN DF CN CF x===-,又DE DF=,∴DM DN DE x===,又60DMN∠=︒,∴DMN为等边三角形,∴MN DM x==,∴(82)(52)7BC BM MN NC x x x=++=-++-=,即2x=,∴24EF x==.【点睛】本题考查等腰三角形性质,角平分线性质,等边三角形判定与性质,三角形全等判定与性质,利用BC BM MN NC=++构造方程是解题关键.。
《证明三》典型例题分析

《证明三》典型例题分析例1.已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1) 求证:△ADE ≌△CBF ; (2) 若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.例题2.已知:P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,求证:AP =EF.例题3.如图:已知在正方形ABCD 中,AC 、BD 交于点O,点E 是BO 的中点,DG CE 于点G ,交OC 于点F . 如果正方形ABCD 边长为10㎝.求EF 的长.例4.如图,菱形ABCD ,E 、F 分别为BC 、CD 上的点,且∠B=∠EAF=60°,若∠BAE=20°,求∠CEF 的度数.E F O DAC BG例5. 如图所示,在 A B C D 中,对角线AC 、BD 交于点O ,BE 平分ABC ∠的外角,且BE AE ⊥;求证:()BC AB OE +=21例6.如图所示,P 为ABC ∆的BC 边的垂直平分线上一点,且CP BP A PBC ,,21∠=∠的延长线分别交AC 、AB 于点D 、E ,CE BD >;求证:CD BE =例7. 如图所示,在正方形ABCD 中,点E 在AD 上,点F 在CD 上,︒=∠45EBF ,EF BG ⊥于点G ;求证:BG AB =例8.如图,在梯形ABCD 中,AD ‖BC , ∠BAD=90°,AD+AB=14,(AB>AD ) BD=10, BD =DC ,E 、F 分别是BC 、CD 上的点,且CE+CF = 4.(1) 求BC 的长;(2) 设EC 的长为x ,四边形AEFD 的面积为y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)在(2)的条件下,如果四边形AEFD 的面积等于40,试求EC 的长 .A B C E P GDAFEBDCA B CDE F G ABCDEO。
(好题)高中数学选修1-2第三章《推理与证明》检测(含答案解析)

一、选择题1.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品 B .D 作品C .B 作品D .A 作品2.将正整数1,2,3,4,按如图所示的方式排成三角形数组,则第20行从左往右数第1个数是( )A .381B .361C .362D .4003.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在222+++⋅⋅⋅“…”.即代表无限次重复,但原式却是个定值x ,这可以通过方程2x x +=确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B .122C 21D .21-4.某校甲、乙、丙、丁四位同学参加了第34届全国青少年科技创新大赛,老师告知只有一位同学获奖,四人据此做出猜测:甲说:“丙获奖”;乙说:“我没获奖”;丙说:“我没获奖”;丁说:“我获奖了”,若四人中只有一人判断正确,则判断正确的是( ) A .甲B .乙C .丙D .丁5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.0x y =,则0x y ==,假设为( )A .,x y 都不为0B .,x y 不都为0C .,x y 都不为0,且x y ≠D .,x y 至少有一个为07.已知平面直角坐标系内曲线()1:,0C F x y =,曲线()200:(,),0C F x y F x y -=,若点()00,P x y 不在曲线1C 上,则下列说法正确的是( )A .曲线1C 与2C 无公共点B .曲线1C 与2C 至少有一个公共点C .曲线1C 与2C 至多有一个公共点D .曲线1C 与2C 的公共点的个数无法确定8.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇{}n a 中,k a =( )A .n -B .n -C .D .9.===⋅⋅⋅=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4310.下列说法中不正确的是()A .命题:“∈,x y R ,若110x y -+-=,则1x y ==”,用反证法证明时应假设x ≠1或y ≠1.B .若2a b +>,则a ,b 中至少有一个大于1.C .若14-,,,,-x y z 成等比数列,则2y =±. D .命题:“[0,1]∃∈m ,使得12+<m x x”的否定形式是:“[0,1]∀∈m ,总有12m x x+≥”. 11.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过“…”即代表无限次重复,但原式却是个定值x ,这可以通过x =确定出来2x =,类似地,可得112122...+++的值为( )A 1B 1CD12.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系.五棱锥 6 10 6 六棱锥712712个顶点,8个面的扭曲棱柱的棱数是( ) A .14B .16C .18D .20二、填空题13.本学期我们学习了一种求抛物线2yx 与x 轴和直线1x =所围“曲边三角形”面积的方法,即将区间[0,1]分割成n 个小区间,求每个小区间上矩形的面积,再求和的极限.类比上述方法,试求222222222(1)2(21)2lim 2sin 2sin 2sin 2sin cos cos cos cos 844448888n n n n n n n n n n n nn n πππππππππ→∞⎡⎤--⎛⎫+++++++++= ⎪⎢⎥⎝⎭⎣⎦________.14.已知等差数列{}()*n a n N∈中,若10100a=,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b=,则与此相应的等式_________________恒成立.15.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).16.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二17.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.18.集合{,,}{1,2,3}a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说3a ≠,乙说3b =,丙说1c ≠.已知三人中有且只有一个人预测正确,那么10100a b c __________.19.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =__________.20.对于问题“已知关于x 的不等式20ax bx c ++>的解集为(2,3)-,解关于x 的不等式20ax bx c -+>的”,给出一种解法:由20ax bx c ++>的解集为(2,3)-,得2()()0a x b x c -+-+>的解集为(3,2)-.即关于x 的不等式20ax bx c -+>的解集为(3,2)-.类比上述解法,若关于x 的不等式20ax bx c ++>的解集为(1,4),则关于x 的不等式20a bc x x++>的解集为_____. 三、解答题21.(1)已知0a >,0b >,求证:22a b aba b+≥+; (2)已知0a b c ++>,0ab bc ca ++>,0abc >,求证:0a >,0b >,0c >.22.23523.若函数()f x 满足:对于其定义域D 内的任何一个自变量0x ,都有函数值()0f x D ∈,则称函数()f x 在D 上封闭.(1)若下列函数:()121f x x =-,()221xf x =-的定义域为()0,1D =,试判断其中哪些在D 上封闭,并说明理由. (2)若函数()52x ag x x -=+的定义域为()1,2,是否存在实数a ,使得()g x 在其定义域()1,2上封闭?若存在,求出所有a 的值,并给出证明;若不存在,请说明理由.(3)已知函数()f x 在其定义域D 上封闭,且单调递增,若0x D ∈且()()0f f x x =,求证:()00f x x =.24.已知i 为虚数单位,观察下列各等式:()()cos1sin1cos2sin 2cos3sin3i i i ++=+; ()()cos3sin3cos4sin 4cos7sin7i i i ++=+; ()()cos5sin5cos6sin6cos11sin11i i i ++=+; ()()cos7sin7cos8sin8cos15sin15i i i ++=+. 记()cos sin ,f i R αααα=+∈.(1)根据以上规律,试猜想()()(),,f f f αβαβ+成立的等式,并加以证明;(2)计算612i ⎫+⎪⎪⎝⎭.25.已知函数3()3xf x x =+,数列{}n a 对于*n ∈N ,总有1()n n a f a +=,112a =. (1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想. 26.已知()f x =,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断. 详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.2.C解析:C 【分析】本题可根据图中数字的排列规律来思考,先观察每行数字的个数的规律,然后找到每行第一个数之间的规律,然后根据规律得出第20行的第1项的数字. 【详解】解:由图中数字排列规律可知:∵第1行有1个数,第2行有3个数,第3行有5个数,第4行有7个数,… ∴第i 行有(21)i -个数.可设第i 行第j 个数字为.i j a ,其中121j i ≤≤-.观察每行的第1项,可得: 1.11a =, 2.12a =, 3.15a =, 4.110a =,… ∴ 1.11a =,2.1 1.11a a -=,3.1 2.13a a -=,4.1 3.15a a -=,….1 1.123i i a a i ---=.以上各项相加,可得:.1113523i a i =++++⋅⋅⋅+-()(1)(123)12i i -+-=+2(1)1i =-+.∴220.1(201)1362a =-+=. 故选:C . 【点睛】本题主要考查数列排列规律,等差数列的特点及求通项和求和.属于中档题.3.C解析:C 【分析】本题依照题干中的例子进行类比推理进行计算即可得到结果. 【详解】由题意,令12(0)122x x +=>++⋯,即12x x+=, 即2210x x --=,解得1x =或1x =(舍去)121122∴+=++⋅⋅⋅,故选:C 【点睛】 本题主要考查类比推理方法的应用,以及一元二次方程的解法,属于中档题.4.C解析:C 【分析】根据题意知甲和丙的说法矛盾,因此两人中有一人判断正确,据此推断得到答案. 【详解】由题意知,甲和丙的说法矛盾,因此两人中有一人判断正确,故乙和丁都判断错误,乙获奖,丙判断正确. 故选:C. 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力.5.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.B解析:B 【分析】根据反证法,假设要否定结论,根据且的否定为或,判断结果. 【详解】0x y ==的否定为00x y ≠≠或,即x ,y 不都为0,选B.【点睛】本题考查反证法以及命题的否定,考查基本应用能力.属基本题.7.A解析:A 【分析】利用反证法,假设曲线1C 与2C 有公共点()11,Q x y ,推出矛盾,即可得到结论. 【详解】假设曲线1C 与2C 有公共点()11,Q x y ,则()11,0F x y =和()1100(,),0F x y F x y -=同时成立,()00,0F x y ∴=,∴点()00,P x y 在曲线1C 上,这与已知条件点()00,P x y 不在曲线1C 上矛盾. ∴假设不成立,所以曲线1C 与2C 无公共点. 故选:A . 【点睛】本题考查反证法,关键是理解掌握反证法的定义.8.C解析:C 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.9.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】==,====)2,k k N *=≥∈,当6k ==26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.10.C解析:C 【分析】根据反证法的知识判断A,B 两个选项说法正确,根据等比数列的知识判断C 选项错误.根据特称命题的否定是全称命题的知识判断D 选线说法正确. 【详解】对于A 选项,反证法假设时,假设“1x ≠或1y ≠”,说法正确.对于B 选项,假设,a b 两个都不大于1,即1,1a b ≤≤,则2a b +≤与已知矛盾,故假设不成立,原来说法正确.对于C ,假设等比数列公比为()0q q ≠,则()210y q =-⋅<,所以C 选项说法错误.对于D 选项,根据特称命题的否定是全称命题的知识可知D 选项说法正确.综上所述,本小题选C. 【点睛】本小题主要考查反证法的知识,考查等比数列基本量以及项的正负关系,考查全称命题与特称命题互为否定等知识,属于基础题.11.B【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.12.C解析:C 【分析】分析顶点数, 棱数与面数的规律,根据规律求解. 【详解】易知同一凸多面体顶点数, 棱数与面数的规律为: 棱数=顶点数+面数-2,所以,12个顶点,8个面的扭曲棱柱的棱数=12+8-2=18. 故选C. 【点睛】本题考查逻辑推理,从特殊到一般总结出规律.二、填空题13.【分析】先画出的图象再根据和式的几何意义可得所求的极限【详解】关于中心对称其在上的图象如图所示:将区间分为段每段矩形面积为将区间分为段每段矩形面积为其中原式即求在上与轴和所围图形面积利用割补法易知面解析:4π【分析】先画出2sin y x =的图象,再根据和式的几何意义可得所求的极限. 【详解】211sin cos222y x x ==-+,关于1,42π⎛⎫⎪⎝⎭中心对称,其在0,2π⎡⎤⎢⎥⎣⎦上的图象如图所示:将区间0,4⎡⎤⎢⎥⎣⎦π分为n 段,每段矩形面积为211111cos 2sin 424244k k n n n n ππππ⎡⎤⎛⎫⋅-⨯+=⎪⎢⎥⎝⎭⎣⎦,11k =,2,...,n ,将区间,42ππ⎡⎤⎢⎥⎣⎦分为2n 段,每段矩形面积为 22222111cos2sin cos 42228282888k k k n n n n n n ππππππππ⎡⎤⎛⎫⎛⎫⋅--+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 其中21k =,...,2n , 原式即求11cos222y x =-+在0,2π⎡⎤⎢⎥⎣⎦上与x 轴和2x π=所围图形面积,利用割补法易知面积为1224ππ⨯=. 故答案为:4π. 14.【分析】根据等差数列的性质有等比数列的性质有类比即可得到结论【详解】已知等差数列中由等差数列的性质得等比数列且有等比数列的性质得所以类比等式可得故答案为:【点睛】本题考查等差数列和等比数列的性质结合 解析:()*12112199199,N n n n b b b b b b b n n --=<∈【分析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论. 【详解】已知等差数列{}()*n a n N∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N∈,且1001b=,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈.故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.16.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案. 【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A1322101217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰77263A V S h ==⨯=故答案为73【点睛】本题考查了体积的计算,意在考查学生解决问题的能力.17.【解析】【分析】左边根据首数字和数字个数找规律右边为平方数得到答案【详解】等式左边:第排首字母为数字个数为等式右边:第五个等式应为:故答案为:【点睛】本题考查了找规律意在考查学生的应用能力 解析:567891011121381++++++++=【解析】 【分析】左边根据首数字和数字个数找规律,右边为平方数,得到答案. 【详解】等式左边:第n 排首字母为n ,数字个数为21n - 等式右边:2(21)n -第五个等式应为:567891011121381++++++++= 故答案为:567891011121381++++++++= 【点睛】本题考查了找规律,意在考查学生的应用能力.18.【解析】【分析】由题意利用推理的方法确定abc 的值进一步可得的值【详解】若甲自己的预测正确则:据此可知丙的说法也正确矛盾;若乙自己的预测正确则:矛盾;据此可知只能是丙自己的预测正确即:;故:则故答案解析:【解析】 【分析】由题意利用推理的方法确定a ,b ,c 的值,进一步可得10100a b c 的值.【详解】若甲自己的预测正确,则:3,3a b ≠≠,据此可知3c =,丙的说法也正确,矛盾; 若乙自己的预测正确,则:3,3a b ==,矛盾;据此可知只能是丙自己的预测正确,即:3,3,1a b c =≠≠;故:3,1,2a b c ===,则10100213a b c ++=. 故答案为213. 【点睛】本题主要考查推理案例及其应用,属于中等题.19.【解析】【分析】根据递推关系利用叠加法求结果【详解】因为所以【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)比较(比较已知数列)归纳转化(转化为特殊数列)联想(联想常见的数列)等方法 解析:271【解析】 【分析】根据递推关系16(1)n n a a n +-=-,利用叠加法求结果 【详解】因为16(1)n n a a n +-=-, 所以1010998211=()()()6[981]1271.a a a a a a a a -+-++-+=++++=【点睛】由前几项归纳数列通项的常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.20.【分析】关于的不等式可看成不等式中的用代入得来进而可根据不等式ax2+bx+c >0的解集进行求解【详解】若关于的不等式的解集为则关于的不等式看成不等式中的用代入得来则可得解得故答案为:【点睛】本题主解析:114⎛⎫ ⎪⎝⎭,. 【分析】关于x 的不等式20a b c x x ++>可看成不等式20ax bx c ++>中的x 用1x代入得来,进而可根据不等式ax2+bx+c >0的解集进行求解. 【详解】若关于x 的不等式20ax bx c ++>的解集为14(,),则关于x 的不等式20a bc x x++>看成不等式20ax bx c ++>中的x 用1x代入得来, 则可得,114x<< 解得,114x <<. 故答案为:1,14⎛⎫⎪⎝⎭.【点睛】本题主要考查类比推理,同时也考查了不等式的基本性质,属于中档题.三、解答题21.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)利用分析法,0,0a b >>,要证22a b aba b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,只需证明()20a b -≥即可,该式显然成立,从而可得结论;(2)本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法,假设,,a b c ,不全是正数,这时需要逐个讨论,,a b c 不是正数的情形,但注意到条件的特点(任意交换,,a b c 的位置不改变命题的条件),我们只要讨论其中一个数〔例如a ,其他两个数〔例如,b c 〕与这种情形类似. 试题 (1)证明:0,0a b >>,要证22a b ab a b+≥+,只要证()24a b ab +≥,只要证()240a b ab +-≥,即证2220a ab b -+≥,而()22220a ab b a b -+=-≥恒成立,故22a b aba b+≥+成立. (2)假设,,a b c 不全是正数,即其至少有一个不是正数,不妨先设0a ≤,下面分0a =和0a <两种情况讨论,如果0a =,则0abc =与0abc >矛盾,0a ∴=不可能,如果0a <,那么由0abc >可得,0bc <,又0,0a b c b c a ++>∴+>->,于是()0ab bc ca a b c bc ++=++<,这和已知0ab bc ca ++>相矛盾,因此,0a <也不可能,综上所述,0a >,同理可证0,0b c >>,所以原命题成立.【方法点睛】本题主要考查反证法的应用以及利用分析法证明不等式,属于难题.分析法证明不等式的主要事项:用分析法证明不等式时,不要把“逆求”错误的作为“逆推”,分析法的过程仅需寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接关键词. 22.详见解析 【分析】,=边平方整理,推出矛盾即可. 【详解】则由等差数列的性质可得=∴1225=++∴5=∴25=40(矛盾),故假设不成立, ∴【点睛】本题主要考查反证法的应用,还考查了运算求解的能力,属于中档题.23.(1)()2f x 在D 上封闭,理由见解析;(2)存在,2a =,证明见解析;(3)证明见解析 【分析】(1)根据定义域,求得函数的值域,利用新定义,即可得到结论;(2)根据函数封闭定义转化为不等式恒成立问题,再利用变量分离法求解,可求a 的值. (3)函数f (x )在其定义域D 上封闭,且单调递增,假设()00f x x ≠,根据单调函数性质可证假设不成立,由此能证明f (x 0)=x 0. 【详解】(1)当()0,1x ∈时,()()1211,1f x x =-∈-, ∴()1f x 在D 上不封闭;()()2210,1x f x =-∈,∴()2f x 在D 上封闭.(2)设存在实数a ,使得()52x ag x x -=+在()1,2上封闭, 即对一切()1,2x ∈,5122x ax -<<+恒成立, ∵20x +>,∴2524x x a x +<-<+, 即3442x a x -<<-恒成立, ∵()341,2x -∈-∴2a ≥; ∵()422,6x -∈∴2a ≤. 综上,满足条件的2a =. (3)假设()00f x x ≠,①若()00f x x >,∵()00f x x D ∈,,()f x 在D 上单调递增, ∴()()()0ff x f x >,即()00x f x >,矛盾;②若()00f x x <,∵()0f x ,0x D ∈,()f x 在D 上单调递增, ∴()()()0ff x f x <,即()00xf x <,矛盾.∴假设不成立,()00f x x =. 【点睛】本题考查函数的综合运用,根据函数封闭的定义与函数定义域、值域、单调性等知识点进行综合的考查,考查转化能力与函数基础知识的应用,属于中等题. 24.(1) 猜想()()()f f f αβαβ=+,证明见解析;(2)-1【分析】 (1)将()(),f f αβ和()f αβ+之间的关系进行验证,总结出规律,即为猜想,作出证明即可;(2)利用(1)推出的结论,代入求解,即可得到答案. 【详解】(1)猜想()()()ff f αβαβ=+,证明:()()()()cos sin cos sin f f i i αβααββ=++ ()()cos cos sin sin sin cos cos sin i αβαβαβαβ=-++()()()cos sin i f αβαβαβ=+++=+;(2)因为()()()f f f αβαβ=+,所以()()()()()cosn isinn nff f f f n ααααααα===+,∴661cos sin 266i i ππ⎫⎛⎫+=+⎪ ⎪⎪⎝⎭⎝⎭cos sin 1i ππ=+=-. 【点睛】本题主要考查了归纳推理的应用,其中根据题设中各式子的结构,合理归纳是解答的关键,着重考查了推理与计算能力,属于基础题. 25.(1)237a =,338a =,439a =,*3()5n a n n =∈+N (2)见证明 【解析】 【分析】(1) 计算得到237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)利用数学归纳法验证,假设,推导的顺序证明猜想. 【详解】(1)解:由3()3xf x x =+,得13()3n n n na a f a a +==+,因为11326a ==,所以237a =,338a =,439a =,猜想*3()5n a n n =∈+N . (2)证明:用数学归纳法证明如下: ①当1n =时,131152a ==+,猜想成立;②假设当*()n k k =∈N 时猜想成立,即35k a k =+, 则当1n k =+时,133335331535k k k a k a a k k +⋅+===+++++,所以当1n k =+时猜想也成立.由①②知,对*n ∈N ,35n a n =+都成立. 【点睛】本题考查了数列的计算,归纳猜想,数学归纳法,意在考查学生对于数学归纳法的掌握情况.26.详见解析. 【详解】试题分析:将0,1,1,2,2,3x =--代入()f x =()()()()()()01,12,23f f f f f f +-+-+的值;观察()()()()()()01,12,23f f f f f f +-+-+,根据上一步的结果可以归纳出一般的结论:自变量的和为1,则函数值的和为3,根据结论的形式将()f x =可完成证明. 试题 由()f x =,得()()01f f +==,()()12f f -+== ()()23f f -+==. 归纳猜想一般性结论为 ()()1f x f x -++= 证明如下:()()1f x f x -++==x ===【方法点睛】本题通过观察几组等式,归纳出一般规律来考查函数的解析式及归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.。
《证明三》练习题3
***《证明三》练习题3***1、如图,梯形ABCD 中AD//BC ,AB =CD=AD ,AC=BC 。
⑴图中有多少个等腰三角形?请你找出来。
⑵求梯形各个角的度数。
O ADB C分析:等边对等角的灵活运用,等量代换***2、已知,如图在A B C 中,点D 、E 、F 分别是BC 、CA 、AB 边上的中点。
求证:⑴四边形AFDE 是平行四边形;⑵A F D E 周长等于AB+AC 。
D EF ABC分析:数形结合****3.如图3-16,CD 是Rt △ABC 的斜边AB 上的高,∠A 的平分线AE 交CD 于G ,∠BCD 的平分线交BD 于F ,求证:四边形CEFG 是菱形.分析:角平分线提供全等,全等提供菱形判定的条件***4.如图3-17,将矩形ABCD 折叠,使顶点B 与D 重合,折痕为EF ,连接BE 、DF . (1)四边形BEDF 是什么四边形?为什么?(2)若AB = 6cm ,BC = 8cm ,求折痕EF 的长.图3-16G F E B A CD 图3-17F E B A CD****5.如图,点E 、F 分别是正方形ABCD 的边CD 和AD 的中点,BE 和CF 交于点P . 求证:AP =AB. P F EC A DB****6.如图,已知点F 是正方形ABCD 的边BC 的中点,CG 平分∠DCE ,GF ⊥AF. 求证:AF=FG . GF C ADB E分析:辅助线的应用;旋转****7.如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 和 . G F E CA DB分析:等量代换;勾股定理;构造直角三角形****8.如图3-21,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.分析:转化思想,方程观念D C 111B DC B A 1A 图3-21。
2011年10月21日周末练习证明三测试题
1 2 B C D A O F C DE O第4题图第5题图第三章 证明(三)试题一 选择题1、下列命题中不成立...的是( ) A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形 2.如图,要使□ABCD 成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=°D .12∠=∠3.如图, □ABCD 中,AC 、BD 为对角线,BC=6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .244.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ).A .2B .4π-C .πD .π1-5.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于( ) A .352 B .31 C .32D .216.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cm B .220cmC .240cmD.280cm第3题图 第2题图7.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .34 C .23D .28. 在矩形ABCD中,1AB AD AF ==,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE ED =,正确的是( )A .②③B .③④C .①②④D .②③④9.如图是一张矩形纸片ABCD ,AD=10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE=6cm ,则CD=( ) A .4cm B .6cm C .8cm D .10cm10.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( ) A . 70° B .110° C .140° D .150° 二、填空题1.如图,正方形纸片ABCD 的边长为1,M N ,分别是AD BC 、边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ',折痕交AD 于点E ,若M N ,分别是AD BC ,边的中点,则A N '= ;若M N ,分别是AD BC ,边上距DC 最近的n 等分点(2n ≥,且n 为整数),则A N '= (用含有n 式子表示).2.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.3.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.A CDA ′GD B CA D AB COE FHF ED B AC B C O A D第6题图第7题图第8题图 第9题图 第10题图1 A B C 第1题图 第2题图第3题图 第4题图 第5题图 第7题图4.如图,在□ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,1OE =,则AB 的长是 .5.如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的边长为___________.6、用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是____________.7.如图,四边形ABCD 中,AD BC ∥.已知BC CD AC ===AB ,则BD 的长为______________. 8、如图,一活动菱形衣架中,菱形的边均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.三、解答1.如图11所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD .(1)求证:四边形AFCD 是菱形; (2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边MA 'D E A BNA BD D C B A OO DFO D C E B A C 1 D 1 D 2 C 2D C A B A DC B形?为什么?2.在图-1至图-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合, 求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图-2,求证:△FMH 是等腰直角三角形;(3)将图14-2中的CE 缩短到图14-3的情况, △FMH 还是等腰直角三角形吗?(不必说明理由)A D F C EGB 图-1AHC (M )DEBFG (N )G图-2AHCDEBFNM AHCDE 图-3BFG MN。
《形式逻辑学》练习题 答案
《形式逻辑学》练习题及答案第一部分概念一、填空题1.在一个正确的划分中,“母项”与“子项”在外延上具有属种关系,而“子项”与“子项”之间具有全异关系。
2.从“属加种差”的定义的结构看,在定义“负判断是否定某一判断的判断”中,“否定某一判断的”是种差,“判断”是属。
二、单选题1.“有的犯罪不是故意的”这一判断的主项“犯罪”是(B )。
A、单独概念B、普遍概念C、集合概念D、负概念2.“安顺位于贵州”这句话中的“安顺”与“贵州”这两个词项外延之间具有( D )A、真包含于关系B、真包含关系C、交叉关系D、全异关系3.下列各句属于逻辑划分的是(B)A、选言判断分为选言肢和选言联结项B、命题分为简单命题和复合命题C、直言命题分为主项和谓项D、论证分为的论题、论据和论证方式4.“中国人民解放军是祖国的万里长城”作为定义,则(A)A、犯了“以比喻代定义”的逻辑错误B、犯了“定义过窄”的逻辑错误C、犯了“定义过宽”的逻辑错误D、遵守了各项定义规则,没有逻辑错误。
5.下列对概念的概括中,正确的是(B )A、把“律师”概括为“先进律师”B、把“刑法”概括为“法律”C、把“中级人民法院”概括为“高级人民法院”D、把“判断”概括为“推理”。
6.下列概念间的关系中,属于不相容关系的是(D )A、交叉关系B、全同关系C、真包含关系D、全异关系7.在“中华民族是一个伟大、勇敢、勤劳的民族”这句话中,“中华民族”是( C )。
A、非集合概念、正概念B、非集合概念、正概念C、集合概念、正概念D、集合概念、负概念8.设a为“《三国演义》”,b为“《鲁迅全集》”,则a与b的外延关系为( C )。
A、a真包含于bB、b真包含aC、a与b全异D、a与b全同9.下列属于逻辑划分的是( B )。
A、三段论分为大前提、小前提和结论B、思维形式分为概念、判断和推理C、关系判断分为关系项、关系者项和量项D、定义分为被定义项、定义项和定义联项三、双选题1.在“新闻报导应该是实事求是的”这个判断中,“新闻”是( B C )。
逻辑练习题(1)
形式逻辑练习题一、填空题1、“这批产品没有一件是合格品”和“这批产品有些不是合格品”这两个判断具有_________关系。
2、在被研究现象a出现的若干场合中,如果只有一个相关情况A是各场合共同具有的,则可运用______________法确定A与a之间有因果联系。
3、在“如果p并且q则r”中,逻辑常项是____________。
4、以“《示儿》是七言诗”和“《示儿》不是唐诗”为前提,进行三段论推理,可构成第________格,可必然推出的结论是________________________。
5、“商品是劳动产品”这个定义犯了的错误。
6、“赵蒙不是会计系的,就是金融系的”这个判断的逻辑形式是____________。
7、在关系判断“李明认识赵红”中,“认识”属于关系。
8、论证是由____________、____________和____________三部分组成的。
9、划分母项和划分子项之间具有关系,划分子项和划分子项之间具有关系。
10、对SEP进行换质位,正确结论是____________。
11、“加强物质文明建设和加强精神文明建设都是十分重要的,所以,加强精神文明建设是十分重要的。
”这个推理是______________推理,其形式为______________式。
12、根据对当关系,当SIP假时,SAP______________,SOP______________。
13、“如果SIP真,则SOP假”的负判断是________________________,与该负判断等值的联言判断是________________________。
二、判断下列说法的对错,并简要说明理由。
1、必要条件假言推理的正确形式是肯定前件式和否定后件式。
2、一个正确的三段论三个项都可以周延两次。
3、某餐馆规定顾客或者选川菜,或者选鲁菜。
小李选了川菜,因此,他不能选鲁菜。
4、把“喜马拉雅山”概括为“喜马拉雅山脉”,限制为“珠穆朗玛峰”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
B A 图3-3E F *《证明三》练习题1
**1.平行四边形ABCD 中,∠A ︰∠B = 5︰4, 则∠C = °,∠D = °; 分析:平方法
*2.四边形ABCD 中,∠A =∠B =∠C =∠D , 则四边形ABCD 是 ;
分析:特殊四边形的判定定理
**3.顺次连接矩形四边中点所构成的四边形是 ;
**4、已知A B C ∆三边分别为5、6、7,则顺次连接A B C ∆各边中点所得到的三角形的周长是 。
分析:中点四边形;矩形的性质
***5.如图3-1,平行四边形ABCD 中,对角线AC 、BD 相交于
点O ,则图中全等的三角形共有 对.
分析:平行四边形的性质,全等三角形的判定,观察能力
***6.平行四边形ABCD 的周长为60cm ,两对角线相交于点O ,若△AOB 的周长比△BOC 的周长多8cm ,则BC = cm ,CD = cm ;
***7.若平行四边形的一边长为10cm ,则它的两条对角线的长度可以是( );
A. 5cm 和7cm
B. 18cm 和28cm
C. 6cm 和8cm
D. 8cm 和12cm
分析:对角线分割出来的三角形的性质
**8、解答题:如图3-3,平行四边形ABCD 中,延长AB 到E , 使BE = AB . 过点E 作AD 的平行线交DB 的延长线于点F .
求证:EF = BC .
分析:全等三角形的应用
***9.以下条件中,能判定四边形是平行四边形的是( );
A. 一组对边相等,另一组对边平行
B. 一组对边平行,一组对角相等
C. 一组对边相等,一组邻角相等
D. 一组对边平行,一组邻角相等
***10.不能判定四边形ABCD 是平行四边形的题设是( ).
A. AB = CD , AD = BC
B. AB ∥=
DC C. AB = CD , AD ∥BC D. AB ∥DC , AD ∥BC
***11、下列四个命题中,正确的是( )
A.一组对边平行,一组对边相等的四边形是平行四边形
B.一组对边平行,一组对角相等的四边形是平行四边形
C.一组对边相等,一组对角相等的四边形是平行四边形
D.一组对边平行,一组邻角互补的四边形是平行四边形
分析:平行四边形的判定
**12.顺次连接四边形各边中点所得到的四边形是 四边形;
D
C B
A O 图3-1
**13.△ABC 三条中位线构成的三角形的周长为18,则△ABC 的周长是 .
分析:中位线的运用
**14.已知:△ABC 的周长等于16,D 、E 分别是AB 、AC 的中点,那么,△ADE 的周长等于( );
A. 4
B. 6
C. 8
D. 10
***15.下列命题是真命题的是( );
A.有一个角是直角的四边形是矩形
B.两条对角线相等的四边形是矩形
C.有三个角是直角的四边形是矩形
D.对角线互相垂直的四边形是矩形
分析:矩形的判定
**16.若矩形两邻边的长度之比为2︰3,面积为54cm 2, 则其周长为( ).
A. 15cm
B. 30cm
C. 45cm
D. 90cm
分析:辅助量的灵活运用,循序渐进
***17.下列判断中,正确的是( ).
A. 一组邻边相等的四边形是菱形
B. .对角线相等的平行四边形是菱形
C. 对角线互相垂直的四边形是菱形
D. 对角线交点到各边距离相等的四边形是菱形
分析:菱形的判定
***18.若矩形两对角线相交所成的角等于120°,较长边为6cm ,则该矩形的对
角线长为 cm ;
**19.直角三角形两直角边长分别为6cm 和8cm, 则斜边上的中线长为 cm ,
斜边上的高为 cm.
分析:勾股定理的灵活运用,面积法
***20、如图,在A B C D 中,E 、F 分别是AB 、CD 上的点且BE =DF ,要证明四边形AECF 是平行四边形,只需证明 ,此时用的判定定理是 。
A
D B C F
E
分析:开放型题目,平行四边形的判定 ***21、等腰梯形ABCD 的对角线AC 、BD 相交于点O ,则图中共有 对全等三角形,有 个等腰三角形。
O
A D
B C
分析:数形结合,提高观察能力
***22、解答题:如图3-5,四边形ABCD 是平行四边形,延长BA 到E ,延长DC
到F ,使BE = DF , 连接AF 、CE , 分别交BC 、AD 于P 、Q . 求证:PF = QE . 分析:平行四边形的判定的连续运用 D
C
B A
图3-5Q E
P F。