高频压控振荡器设计

合集下载

高频电路-电容三点式LC振荡器实验报告

高频电路-电容三点式LC振荡器实验报告

《高频电子电路》课程实验报告电容值为50pf:电容值为100pf:电容值为150pf:电容值为200pf:电容值为250pf:电容值为300pf:电容值为350pf:克拉泼振荡电路:电容值为10pf:电容值为50pf:电容值为100pf:电容值为150pf:电容值为200pf:电容值为250pf:电容值为300pf:电容值为350pf:总结:(1)克拉泼电路的振荡频率几乎与C1、C2无关,克拉泼电路的频率稳定度比电容三点式电路要好,但是克拉泼电路只能用作固定频率振荡器或者波段覆盖系数较小的可变频率振荡器。

(2)西勒电路频率稳定性好,振荡频率可以较高,可用作波段振荡器。

1.LC振荡器实质上是满足振荡条件的正反馈放大器。

LC振荡器是指振荡合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。

当振荡器稳定工作时,振荡管工作在非线性状态,通常是依靠晶体管本身的非线性实现稳幅。

若选择晶体管进入饱和区来实现稳幅,则将使振荡回路的等效Q值降低,输出波形变差,频率稳定度降低。

因此,一般在小功率振荡器中总是使静态工作点远离饱和区,靠近截止区。

(2)振荡频率f的计算:振荡频率主要由L、C和C3决定。

(3)反馈系数F的选择:反馈系数F不宜过大或过小,一般经验数据F≈0.1~0.5,本实验取F=0.35.克拉泼和西勒振荡电路6.电容三点式LC振荡器实验电路图中3K05打到“S”位置(左侧)时为改进型克拉泼振荡电路,打到“P”位置(右侧)时,为改进型西勒振荡电路。

3K01、3K02、3K03、3K04控制回路电容的变化。

调整3W01可改变振荡器三极管的电源电压。

3Q02为射极跟随器。

3TP02为输出测量点,3TP01为振荡器直流电压测量点。

3W02用来改变输出幅度。

《高频电子线路》晶体振荡器与压控振荡器实验

《高频电子线路》晶体振荡器与压控振荡器实验

《高频电子线路》晶体振荡器与压控振荡器实验一、实验目的1、掌握晶体振荡器与压控振荡器的基本工作原理。

2、比较LC振荡器和晶体振荡器的频率稳定度。

二、实验内容1、熟悉振荡器模块各元件及其作用。

2、分析与比较LC振荡器与晶体振荡器的频率稳定度。

3、改变变容二极管的偏置电压,观察振荡器输出频率的变化。

三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理1、晶体振荡器:将开关S2拨为“00”,S1拨为“10”,由N1、C3、C10、C11、晶体CRY1与C4构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。

2、LC压控振荡器(VCO):将S2拨为“10”或“01”,S1拨为“01”,则变容二极管D1、D2并联在电感L1两端。

当调节电位器W2时,D1、D2两端的反向偏压随之改变,从而改变了D1和D2的结电容C j,也就改变了振荡电路的等效电感,使振荡频率发生变化。

3、晶体压控振荡器:开关S2拨为“10”或“01”,S1拨为“10”,就构成了晶体压控振荡器。

图6-1 正弦波振荡器(4.5MHz)五、实验步骤1、(选做)温度对两种振荡器谐振频率的影响。

1)将电路设置为LC振荡器(S1设为“01”),在室温下记下振荡频率。

(频率计接于P1处。

)2)将加热的电烙铁靠近振荡管N1,每隔1分钟记下频率的变化值。

3)开关S1交替设为“01”(LC振荡器)和“10”(晶体振荡器),并将数据记于表6-1。

表6-1 振荡器数据对比记载表2、两种压控振荡器的频率变化范围比较1)将电路设置为LC压控振荡器(S1设为“01”),频率计接于P1,直流电压表接于TP7。

2)将W2调节从低阻值、中阻值、高阻值位置(即从左→中间→右顺时针旋转),分别将变容二极管的反向偏置电压、输出频率记于下表中。

将电路设置为晶体压控振荡器(S1拨为“10”),重复步骤2),将测试结果填于下表。

3)六、实验报告要求1、比较所测数据结果,结合新学理论进行分析。

电压控制LC振荡器

电压控制LC振荡器

A题电压控制LC振荡器论文摘要本系统以89C51最小系统为控制核心,由键控显示、时钟、频率合成、功率放大、自动增益控制、电压峰值检测、频率步进与测量等功能模块组成,其中由单片机控制的全集成化锁相环频率合成器为其核心。

系统实现了频率的产生、测量,输出电压峰值的测量,频率步进的变化,功率输出等各种功能。

特色在于:频率输出的控制上有自动扫频、加减步进选频、直接按键选频及步进可选等功能;输出信号峰值、频率等参数的液晶实时显示;相应集成芯片的使用使电路结构简单明了。

指导老师:杜溪水小组成员:陈妤姗吴丽丽翁亚滨一、方案设计与论证1、LC振荡器的制作方法:方案一:采用常规的电容、电感与分立元件组成振荡器。

它是经典的方法,电路成熟,材料容易采购,也容易制作成功,频率范围也容易实现,甚至它的频率调整可以是连续的。

但它最大的缺点是它的频率稳定度最高也只能达到10-3。

它随温度、时间的变化而变化,未能达到高稳定度的要求。

方案二:一般的频率合成技术采用频率合成器,由手动控制。

它的稳定度提高了,可达到10-5,单纯硬件就可实现,更容易捕捉。

但调整频率,其操作比较麻烦,如再要显示频率,峰值等参数,电路更加复杂。

方案三:采用单片机控制的全集成化的设计。

它增加了单片机程序设计的工作量,调试复杂。

但是它只要再键盘上操作就可输出所需的频率,并直接测量其频率、峰值步进和间距等,使系统的性能有很大的提高。

全集化的设计,大大提高了系统的可靠性、稳定性,如配置温度补偿的晶体振荡器,可使输出频率的稳定性提高到10-6以上。

综合考虑制作要求及实际情况,本系统采用方案三。

2、锁相频率合成模块为了提高LC振荡器输出频率的稳定性,电路采用PLL频率合成技术。

其基本组成如图1:图1(1)集成锁相环频合器的选择方案一:采用串行输入频合器(如MB1504,MC145162),内含参考振荡器、参考分频器、相位检测器、可编程÷N计数器及接收串行输入数据所必需的移位寄存器和锁存电路,其优点是工作频率高,占用单片机的外围接口不多,为实现单片机的其它控制节省了硬件资源。

【2019年整理】实验一-压控振荡器VCO的设计-(2)

【2019年整理】实验一-压控振荡器VCO的设计-(2)

(四)ADS软件的使用
本节内容是介绍使用ADS软件设计VCO的 方法:包括原理图绘制,电路参数的调 整优化、仿真等。
下面开始按顺序详细介绍ADS软件的使 用方法。
ADS软件的启动
启动ADS进入如下界面
创建新的工程文件
点击File->New Project设置工程文件名称(本 例中为Oscillator)及存储路径
VCO的设计(续)
设计指标:设计一个压控振荡器,振荡 频率在1.8GHz左右。
第一步根据振荡频率确定选用的三极管, 因为是压控振荡器,所以还需要一个变 容二极管;第二步需要用到ADS的直流 仿真;第三步通过S参数仿真确定变容二 极管的VC曲线;第四步用HB模块来进行 谐波仿真,计算相位噪音。
管子的选取
在optim/stat/Yield/DOE类里面选择GOAL,这里需 要两个,还有一个OPTIM。
在Simulation-DC里面选择一个DC。
上面的器件和仿真器都按照下图放好,并连好线。
按NAME钮出现对话框后,可以输入你需要的 名字并在你需要的电路图上面点一下,就会自 动给电路节点定义名字,如下图中的“Vcb”, “Veb”节点。
瞬时波形,按
,并“new”一个新的
“Marker”,在“Vout”的瞬时波形图中,点击一下, 然后移动鼠标,把“marker”移动到需要的地方,就 可以看到该点的具体数值。
结果如下图所示:
按Eqn编辑公式:
这表示要对“Vout”在“Marker”m3,m4之间进行一 个频率变换,这样出来的“Spectrum”就是m3和m4之 间的频谱。
振荡器采用的初始电路
振荡器采用的初始电路如下图所示,图中的三极 管、二极管以及电阻电容等器件在ADS的器件库 中均可以找到。

高频振荡器

高频振荡器

高频振荡器1. 介绍高频振荡器是一种能够产生非常高频率振荡信号的设备。

它在电子工程、通信、无线电和其他领域中被广泛应用,常用于频率合成、信号调制、射频放大等电路中。

本文将详细介绍高频振荡器的基本原理、分类和应用。

2. 基本原理高频振荡器的基本原理是利用反馈电路将一部分输出信号反馈到输入端,形成一个闭环系统。

通过调节反馈电路中的参数,可以使系统产生稳定的振荡信号。

高频振荡器通常采用共射放大器、共基放大器、共集放大器等类型的放大器作为振荡器的放大元件,并使用电感(inductor)和电容(capacitor)构成谐振电路。

谐振电路的选择决定了振荡器的工作频率。

3. 分类根据振荡器的工作原理和结构特点,高频振荡器可以分为以下几种类型:3.1 LC振荡器LC振荡器是最常见的高频振荡器之一。

它由电感和电容构成的LC谐振电路和放大元件组成。

LC振荡器通过调节电感和电容的数值,可以实现不同的频率输出。

LC振荡器具有简单的结构和稳定的工作性能,常用于射频发射和接收电路。

3.2 压控振荡器(VCO)压控振荡器是一种可以通过改变电压来调节输出频率的振荡器。

它通常由一个可变电容以及LC谐振电路和放大元件组成。

通过改变可变电容的电压,可以改变谐振电路的谐振频率,从而实现频率调节。

压控振荡器广泛应用于调频电路、频率合成器等领域。

3.3 基于锁相环的振荡器(PLL)基于锁相环的振荡器是一种通过反馈控制来实现稳定频率输出的高频振荡器。

它由相锁环(phase-locked loop)组成,利用反馈电路和锁相环控制电路,可以使输出信号与参考信号达到同步。

基于锁相环的振荡器具有高精度、低抖动和高稳定性等优点,常用于时钟发生器、无线通信系统等应用。

4. 应用高频振荡器在各种电子设备和系统中有着广泛的应用。

以下是一些常见的应用领域:•通信系统:高频振荡器被广泛应用于无线通信系统中,用于产生射频信号、频率合成、调制解调等功能。

•无线电:无线电收发器中的振荡器用于产生射频信号,实现无线电信号的调制和解调。

高频压控振荡器在AV1485信号源中的设计与实现

高频压控振荡器在AV1485信号源中的设计与实现

青岛
265 ) 6 5 5
【 摘 要 】 文介 绍 了 一种 在 频 率 合 成 领 域 经 常 被 采 用 的 高频 压 控 振 荡器 的 设 计 和 分 析 方 法 , 要 内容 涉及 负 阻振 荡 器 工作 原 理 、 计 方 本 主 设 法和 应 用 实例 , 最后 介 绍调 试 此 类 振 荡 器 过程 中通 常 遇 到 的 一 些 问题 和 解决 方 法 。
图 31 负 阻 器 件 的 伏 安特 性 .
负阻型 L C振 荡 器 必 须 由负 阻 器 件 。电 流 控 制 型 负 阻 器 件 采 用 与 L 回路 串联 连 接 方 式 , C 以保 证 通 过 器 件 的 电 流 具 有 较 好 的恒 流 特 性 . 而 确 保 工 作 在 负 阻 区 ; 压 控 制 从 电 型 负 阻器 件 应 采 用 并 联 连 接 方 式 . 以保 证 器 件 的 电压 具 有 较 好 的恒 压
是 稳定 的 ) 由图 2 。 . 见振 荡 器 的 这 种 非 线 性特 征 。 2可
( )电流控制型 a
( )电压控制型 b
图 32 L . C振 荡 回路 与 负 阻 器 件 的 连接 负 阻 式 振荡 器 一 般 适 用 于 较 高 的 工 作 频段 。 主要 优 点 是 . 声 小 、 噪
( 闭环 电路模型 a ) () b网络表达式
特 性 , 而确 保 工 作 在 负 阻 区 , 图 32所 示 。可 以 作 为 负 阻 的器 件 有 从 如 - 隧 道 二极 管 、 极 性 三 极 管 ( J ) 场 效 应管 (E ) 。 双 B『 和 r FT等
L R
图 21 基 本 振 荡器 结构 .
O 引 言

两种高频CMOS压控振荡器的设计与研究

两种高频CMOS压控振荡器的设计与研究

两种高频CMOS压控振荡器的设计与研究锁相环在通讯技术中具有重要的地位,在调制、解调、时钟恢复、频率合成中都扮演着不可替代的角色。

可控振荡器是锁相环的核心部分。

最近,鉴于对集成电路低功耗和高集成度的追求,越来越多的研究人员投人到基于CMOS工艺的压控振荡器的设计。

环形压控振荡器因为具有宽的调谐范围和小的芯片面积,在电路的精心设计下也可以具有不错的相位噪声性能,从而在数字通信系统中得到广泛的应用。

而随着CMOS工艺特征尺寸的不断减小,根据CMOS工艺按比例缩小理论,电源电压也要同比例降低。

与采用1.8 V电源电压的0.18 μm CMOS工艺相比,传统全差分延时单元结构的输出信号的摆幅被限制在非常小的区域内,不但降低了输出信号的信噪比(SNR),而且必须经过放大等一系列处理后才能送给下一级电路。

文中分析了影响压控振荡器性能的重要参数,同时设计实现了两种多谐压控振荡器,给出了相应的实验结果。

1 VCO的工作原理与性能指标VCO是一个电压/频率转换电路,在环路中作为被控振荡器,它的输出频率应随控制电压线性地变化。

一个理想的VCO其输出频率和输入频率的关系ωout=ω0+KVCOVcont (1)式中,ω0是控制电压Vcont为零时的振荡器的固定频率,KVCO为VCO的增益或灵敏度(单位为rad/s·V-1)。

由式(1)可以推导出VCO的传输函数由式(2)可以得出,当VCO被放在锁相环中时,其输出经分频器后接到鉴相器的输入,对鉴相器输出起作用的不是其频率,而是相位。

所以在锁相环中VCO通常被看作输入为控制电压,输出为相位的系统。

所以VCO在锁相环系统中就像一个理想的积分器,其传输函数可以表示为在实际应用中,VCO的线性范围有限,超出这个范围之后,环路的参数就会变化较大,不利于环路设计。

通常,评价VCO的好坏主要有以下特征:(1)低抖动或低相位噪声:由于电路结构、电源噪声、地噪声等因素的影响,VCO的输出信号并不是理想的方波或正弦波,其输出信号存在一定的抖动,转换成频域后可看出信号中心频率附近也会有较大的能量分布,即相位噪声。

说明书规范及要求

说明书规范及要求

一、课程设计说明书规范
1.说明书应包括封面、任务书、成绩评定表、正文及参考文献等内容,总字数不少于2000字。

2.说明书格式
页眉,宋体,小四号,加粗,居中;
一级标题,黑体,三号,居中;
二级标题,黑体,小三号;
三级标题,黑体,四号;
正文,宋体,小四号,1.25倍行距。

3.装订顺序:封面→任务书→成绩评定表→设计说明书
4.左侧装订
二、课程设计说明书内容要求
前言
1高频压控振荡器设计原理
2高频压控振荡器电路设计
3高频压控振荡器电路的仿真(其中3.1介绍仿真软件)
4高频压控振荡器电路实现与分析
总结:简要描述课程设计,讨论电路设计的优、缺点以及课设的收获、感想等。

(参见:课程设计说明书样本.doc,注意保持原文的格式和页眉页码)
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言 (1)1高频压控振荡器设计原理压控振荡器 (2)1.1工作原理 (2)1.2变容二极管压控振荡器的基本工作原理 (2)2高频压控振荡器电路设计 (4)2.1设计的资料及设备 (4)2.2变容二极管压控振荡器电路的设计思路 (4)2.3变容二极管压控振荡器的电路设计 (4)2.4实验电路的基本参数 (5)2.5实验电路原理图 (6)3高频压控振荡器电路的仿真 (7)3.1M ULTISIM软件简介 (7)3.2M ULTISIM界面介绍 (8)3.2.1电路仿真图 (9)3.2.2压控振荡器的主要技术指标 (9)3.3典型点的频谱图 (9)4高频压控振荡器电路实现与分析 (16)4.1实验电路连接 (16)4.2实验步骤 (16)4.3实验注意事项 (18)4.4硬件测试 (19)5心得体会 (21)参考文献 (22)压控振荡器广泛应用于通信系统和其他电子系统中,在LC振荡器决定振荡器的LC 回路中,使用电压控制电容器(变容管),可以在一定的频率范围内构成电调谐振荡器。

这种包含有压控元件作为频率控制器件的振荡器就称为压控振荡器。

它广泛应用与频率调制器、锁相环路以及无线电发射机和接收机中。

压控振荡器是锁相环频率合成器的重要组成单元,在很大程度上决定了锁相环的性能。

在多种射频工艺中,COMS工艺以高集成度、低成本得到广泛的应用。

压控振荡器(VCO)在无线系统和其他必须在一个范围的频率内进行调谐的通信系统中是十分常见的组成部分。

许多厂商都提供VCO产品,他们的封装形式和性能水平也是多种多样。

现代表面的贴装的射频集成电路(RFIC)VCO继承了近百来工程研究成果。

在这段历史当中。

VCO技术一直在不断地改进中,产品外形越来越小而相位噪声和调谐线性度越来越好。

对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。

晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。

压控振荡器可分为环路振荡器和LC振荡器。

环路振荡器易于集成,但其相位噪声性能比LC振荡器差。

为了使相位噪声满足通信标准的要求,这里对负阻RC压控振荡器进行了分析。

1高频压控振荡器设计原理压控振荡器1.1工作原理压控振荡器指输出频率与输入控制电压有对应关系的振荡电路,常以符号(VCO)(Voltage Controlled Oscillator)。

其特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。

图1中,uc为零时的角频率ω0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。

使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。

在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。

人们通常把压控振荡器称为调频器,用以产生调频信号。

在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。

图1 压控震荡器的控制特性在电子设备中,压控振荡器的应用极为广泛,如彩色电视接收机高频头中的本机振荡电路、各种自动频率控制(AFC)系统中的振荡电路、锁相环路(PLL)中所用的振荡电路等均为压控振荡器。

振荡器输出的波形有正弦型的,也有方波型的。

1.2变容二极管压控振荡器的基本工作原理在振荡器的振荡回路上并接或串接某一受电压控制的电抗元件后,即可对振荡频率实行控制。

受控电抗元件常用变容二极管取代。

图2 变容二极管压控振荡器原理图变容二极管的电容量Cj 取决于外加控制电压的大小,控制电压的变化会使变容管的Cj 变化,Cj 的变化会导致振荡频率的改变。

对于图中,若C1、C2值较大,C4又是隔直电容,容量很大,则振荡回路中与L 相并联的总电容为: '413221321]123[C Cj C C C C C C C C C Cj C C C Cj C +=+++=+=串串 变容管是利用半导体PN 结的结电容受控于外加反向电压的特性而制成的一种晶体二极管,它属于电压控制的可变电抗器件,其压控特性的典型曲线如图所示。

图中,反向偏压从3V 增大到30V 时,结电容Cj 从18pF 减小到3pF ,电容变化比约为6倍。

对于不同的Cj ,所对应的振荡频率为)'(21max C C L f jmix +=π(VR 为最大)'21max min C C f j +=π(VR 为最小)通常将fmax 和fmin 的比值称为频率覆盖系数,以符号Kf 表示,上述振荡回路的频率覆盖系数为图3 振荡回路的频率覆盖系数 ''f f min max min jmax f C C C C K j j ++==2高频压控振荡器电路设计2.1设计的资料及设备模拟电子线路、高频电子线路;软件Multisim 10;计算机一台实验箱2.2变容二极管压控振荡器电路的设计思路本设计主要通过振荡器电路产生2.2GHZ-2.5GHZ的振荡频率。

设计的大体框图图4所示。

2.3变容二极管压控振荡器的电路设计图5高频压控振荡器设计电路压控振荡器模块在RZ 9905-R微波接收实验系统箱内,电路如图5所示,它由T1,T2两只晶体三极管及变容二极管T3等电路组成,T1,T3及周围电路组成频率可变的电容反馈三点式振荡器(又称考必兹振荡器),其等效电路如图6所示。

回路电容Cec,Ceb为晶体管极间电容,Lb,C1,T3串联后构成回路电感。

Lb为晶体管基极引线电感,约为10nH。

变容二极管T3的作用是,当外加控制电压经电阻R1加到它上面,变容管T3的等效电容随外加电压变化而攺变,因此图6所示电路中振荡回路的自然谐振频率随之改变。

从而,当外加控制电压变化时,能攺变压控振荡器的振荡频率。

该压控振荡器的频率约为2.2-2.5GHz,由于振荡频率高,晶体管的极间电容、引线电感等参数对振荡频率及工作状态都有很大影响,因此,微波模块对元件、布线、工艺、焊接等的要求非常高。

图6 压控振荡器等效电路图6中,T2及周围电路为压控振荡器的放大输出级。

R5,R6,R7构成 型衰减器,它使压控振荡器和放大输出级隔离,有利于提高压控振荡器的频率稳定度。

L1,L2,L3,L4,L5为高频扼流圈,它们的作用是为两晶体三极管各极提供合适的直流电压。

本模块供电电压为12伏,压控振荡信号从C6输出,其电平约为0dbm。

为了在线测量,压控振荡信号经衰减器送至压控振荡器输出测量接头,电平约为-10dbm。

2.4实验电路的基本参数(1)工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或“GHz”。

(2)输出功率:在工作频段内输出功率标称值,用Po表示。

通常单位为“dBmw”。

(3)输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常单位为“dBmw”。

(4)调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/△VT表示,在线性区,灵敏度最高,在非线性区灵敏度降低。

(5)谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。

(6)推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。

(7)相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定的fm有离F0 1KHz、10KHz和100KHz几种,根据产品特性作相应规定。

产生相噪的因素主要是寄生寄相,但影响寄生寄相的因素较多,较为复杂,不同VCO 产品在提高相噪指标方面都会采取相应设计思路和工艺措施。

(8)3dB调制带宽:是指特定用途的VCO在作调频使用时,调制信号(视频)为1V P-P时,产生的调频频带宽度,主要由双端压控作调频时用户的要求作出设计。

2.5实验电路原理图图7实验电路原理图3高频压控振荡器电路的仿真3.1Multisim软件简介1、NI Multisim 10是美国国家仪器公司(NI,National Instruments)最新推出的Multisim最新版本。

2、目前美国NI公司的EWB的包含有电路仿真设计的模块Multisim、PCB设计软件Ultiboard、布线引擎Ultiroute及通信电路分析与设计模块Commsim 4个部分,能完成从电路的仿真设计到电路版图生成的全过程。

Multisim、Ultiboard、Ultiroute及Commsim 4个部分相互独立,可以分别使用。

Multisim、Ultiboard、Ultiroute及Commsim 4个部分有增强专业版(Power Professional)、专业版(Professional)、个人版(Personal)、教育版(Education)、学生版(Student)和演示版(Demo)等多个版本,各版本的功能和价格有着明显的差异。

3、NI Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”。

NI Multisim 10是一个原理电路设计、电路功能测试的虚拟仿真软件。

4、NI Multisim 10的元器件库提供数千种电路元器件供实验选用,同时也可以新建或扩充已有的元器件库,而且建库所需的元器件参数可以从生产厂商的产品使用手册中查到,因此也很方便的在工程设计中使用。

5、NI Multisim 10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器、逻辑分析仪、逻辑转换器、失真仪、频谱分析仪和网络分析仪等。

6、NI Multisim 10具有较为详细的电路分析功能,可以完成电路的瞬态分析和稳态分析、时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法,以帮助设计人员分析电路的性能。

7、NI Multisim 10可以设计、测试和演示各种电子电路,包括电工学、模拟电路、数字电、射频电路及微控制器和接口电路等。

可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。

在进行仿真的同时,软件还可以存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据等。

8、NI Multisim 10有丰富的Help功能,其Help系统不仅包括软件本身的操作指南,更要的是包含有元器件的功能解说,Help中这种元器件功能解说有利于使用EWB进行CAI教学。

相关文档
最新文档