一元一次方程的解法(提高)知识讲解

合集下载

讲解一元一次方程的解法例如去括号合并同类项移项消元

讲解一元一次方程的解法例如去括号合并同类项移项消元

讲解一元一次方程的解法例如去括号合并同类项移项消元一元一次方程的解法是数学中最基础的内容之一。

解一元一次方程的过程涉及到括号的去除、同类项的合并、移项以及消元等步骤。

本文将详细讲解一元一次方程的解法,并给出相关示例。

一、去括号当一元一次方程中存在括号时,我们首先需要去除括号。

去括号的方法包括以下几种:1. 分配律:对于a(b+c),根据分配律,可以化简为ab+ac。

即将括号内的每一项与括号外的项分别相乘。

2. 双括号法:对于(a+b)(c+d),可以使用双括号法进行展开,得到ac+ad+bc+bd。

即将括号内的每一项与括号外的每一项相乘,并将结果相加。

二、合并同类项在去括号后,我们需要将方程中的同类项进行合并。

同类项指的是具有相同的字母和次数的项,如2x和3x就是同类项,2x和3y则不是。

合并同类项的方法很简单,只需要将同类项的系数相加即可。

例如,2x + 3x = 5x。

三、移项移项是解一元一次方程的重要步骤,它将方程中含有未知数的项移到一个侧,将常数项移到另一个侧。

移项可以分为以下两种情况:1. 移项到左侧:将含有未知数的项移到等号左侧,将常数项移到等号右侧。

例如,2x + 5 = 9可以移项为2x = 9 - 5。

2. 移项到右侧:将含有未知数的项移到等号右侧,将常数项移到等号左侧。

例如,7x - 3 = 2x + 4可以移项为7x - 2x = 4 + 3。

四、消元消元是为了将方程中出现的未知数消除,使方程只含有一个未知数。

消元的方法有以下两种:1. 相加相减法:通过相加或相减两个方程,可以消去一个未知数。

例如,2x + 3y = 10和3x - 2y = 4,可以相加得到5x + y = 14,从而将y消去。

2. 系数倍数法:通过对方程进行倍数运算,可以使得两个方程中某一项系数相等,从而将该项消去。

例如,2x + 3y = 8和4x + 6y = 12,可以将第一个方程的系数扩大两倍,得到4x + 6y = 16,从而将6y消去。

一元一次方程式的解法

一元一次方程式的解法

一)知识要点:1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程.一元一次方程的标准形式是:ax+b=0 (其中x是未知数,a,b是已知数,且a≠0),它的解是x=- .我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0 (a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x 表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程.2.解一元一次方程的一般步骤:(1)方程含有分母时要先去分母,使过程简便,具体做法为:在方程的两边都乘以各分母的最小公倍数.要注意不要漏掉不含分母的项,如方程x+ =3,去分母得10x+3=3就错了,因为方程右边忘记乘以6,造成错误.(2)去括号:按照去括号法则先去小括号,再去中括号,最后去大括号.特别注意括号前是负号时,去掉负号和括号,括号里的各项都要变号.括号前有数字因数时要注意使用分配律.(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边.注意移项要变号.(4)合并项:把方程化成最简形式ax=b (a≠0).(5)把未知数的系数化成1:在方程两边都除以未知数的系数a,得到方程的解x= .解方程时上述步骤有些可能用不到,并且也不一定按照上述顺序,要根据方程的具体形式灵活安排求解步骤.(二)例题:例1.解方程(x-5)=3- (x-5)分析:按常规此方程应先去分母,去括号,但发现方程左右两边都含有x-5项,所以可以把它们看作一个整体,移项,合并,使运算简便.移项得:(x-5)+ (x-5)=3合并得:x-5=3∴ x=8.例2.解方程2x- = -因为方程含有分母,应先去分母.去分母:12x-3(x+1)=8-2(x+2)(注意每一项都要乘以6)去括号:12x-3x-3=8-2x-4(注意分配律及去括号法则)移项:12x-3x+2x=8-4+3合并:11x=7系数化成1:x= .例3.{ [ ( +4)+6]+8}=1解法1:从外向里逐渐去括号,展开求去大括号得:[ ( +4)+6]+8=9去中括号得:( +4)+6+56=63整理得:( +4)=1去小括号得:+4=5去分母得:x+2+12=15移项,合并得:x=1.解法2:从内向外逐渐去括号,展开求去小括号得:{ [ ( + +6]+8}=1去中括号得:{ + + +8}=1去大括号得:+ + + =1去分母得:x+2+3×4+2×45+8×105=945即:x+2+12+90+840=945移项合并得:∴x=1.注意:从上面的两种解法可以看到,解一元一次方程并不一定要严格按照前面说的步骤一步一步来,可以按照具体的题目灵活运用方法.例4.解方程[ ( -1)-2]-2x=3分析:此方程含括号,因为× =1,所以先去中括号简便.去中括号:( -1)- -2x=3去小括号:-1- -2x=3去分母:5x-20-24-40x=60移项:5x-40x=60+44合并项:-35x=104系数化成1得:x=- .例5.解方程- - =0分析:本方程分子、分母中都含有小数,如果直接去分母,会使运算繁琐.但如果利用分数的性质,即分子分母同乘以不等于零的数分数的值不变的性质,使方程左边前两项分子、分母中的小数都化成整数,就能使运算简便.利用分数的性质(即左边第一项分子、分母同乘以10,第二项分子、分母同乘以100),原方程可化为:- - =0去分母:6(4x+9)-10(3-2x)-15(x-5)=0去括号:24x+54-30+20x-15x+75=0移项得:24x+20x-15x=-54+30-75合并得:29x=-99系数化成1:x=- .例6.在公式S= (a+b)h中,已知:a=5, S=44, h=8,求b的值.分析:这是梯形面积公式,四个量S,a, b, h中知道任意3个量的值,都可以求出第四个量的值.解法1:把a=5, S=44, h=8代入公式得44= (5+b)×8这是关于b的一元一次方程化简得:b+5=11移项,合并得:b=6.解法2:先把b看作未知数,把其它量都看作已知数,将公式变形,用其它三个量来表示b,然后再代入已知数的值求出b.S= (a+b)h去分母:2S=(a+b)h去括号:2S=ah+bh移项:2S-ah=bh即bh=2S-ah系数化成1:∵ h≠0,∴ b= -a (一定不要忘记条件h≠0)当a=5, S=44,h=8时,b= -5=11-5=6∴ b=6.例7.当x=2时,式子x2+bx+4的值为0,求当x=3时,x2+bx+4的值.分析:这仍是一元一次方程的应用的例子,要求x2+bx+4的值,先求出b的值,最后求当x=3时,x2+bx+4的值.∵当x=2时,x2+bx+4的值为0,∴ 4+2b+4=0 (得到关于b的一元一次方程)解这个方程得2b=-8,∴ b=-4,∴ x2+bx+4为x2-4x+4,当x=3时,x2-4x+4=32-4×3+4=9-12+4=1,∴当x=3时,这个式子值为1.例8.解绝对值方程:(1) |2x-1|=8(2) =4(3) =4(4) |3x-1|+9=5(5) |1-|x||=2说明:解绝对值方程也是一元一次方程的应用,它的解法主要是:①先把|ax+b|看作一个整体,把绝对值方程看作是以|ax+b|为未知数的一元一次方程,变形成|ax+b|=c的形式;②对|ax+b|=c进行讨论,当c>0时,正确去掉绝对值,得到ax+b=c或ax+b=-c两个一元一次方程,从而求出x的值;当c=0时,得到ax+b=0一个一元一次方程,从而求出x;当c。

一元一次方程的解法

一元一次方程的解法

(2) 调配问题。 从调配后的数量关系中找等量关系, 常见是“和、 差、 倍、 分”关系, 要注意调配对象流动的方向和数量。
例 1 . 学校组织植树活动,已知在甲处植树的有 27 人,在乙处植树的有 18 人.如果要使在甲处植树的人 数是乙处植树人数的 2 倍,需要从乙队调多少人到甲队?
例 2 . 学校组织植树活动,已知在甲处植树的有 23 人,在乙处植树的有 17 人.现调 20 人去支援,使在甲 处植树的人数是乙处植树人数的 2 倍多 3 人,应调往甲、乙两处各多少人?
5
表或画图来帮助理解题意。
例 1 .一项工程,甲、单独做需 20 天完成,乙单独做需 30 天完成,如果先由甲单独做 8 天,再由乙单独 做 3 天,剩下的由甲,乙两人合作还需要几天完成?
例 2. .一项工程,甲独做需12天完成,乙独做24天完成,丙独做需6天完成,现在甲与丙合作2天, 丙因事离去,由甲乙合作,甲乙还需几天才能完成这项工程?
一元一次方程的解法 知识点和方法概述 1、等式 等式:用“=”表示相等关系的式子。 等式的性质: 1) 等式两边都加上 (或减去) 同一个数或同一个整式, 所得结果仍是等式。 即: 若 A=B, 则 A±C=B±C。 2) 等式两边都乘以 (或除以) 同一个数 (除数不为 0) , 所得结果仍是等式。 即: 若 A=B, A B C ≠ 0 ,则 A⋅C=B⋅C, = 。 C C 3)等式的对称性:若 A=B,则 B=A。 4)等式的传递性:若 A=B,B=C,则 A=C。 等式的类型: 1)恒等式:当不论用任何数值代替等式中的字母,其左右两边的值总相等时,这样 的等式叫做恒等式。如 0 ⋅ x = 0 。 2)矛盾等式:如 2=0, 2 x = 2 x + 1 3)条件等式:字母取某特定值时才成立的等式,如 3 x − 4 = 3 2、方程 方程:含有未知数的等式叫做方程。 方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。 方程的根:只含有一个未知数的方程的解,也叫方程的根。 解方程:求方程的解的过程叫做解方程。 同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。 (注:用等式的 两条性质所得的方程与原方程是同解方程。 ) 方程的同解原理: 1)方程两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 2)方程两边都乘以(或除以)同一个数(除数不为 0) ,所得结果仍是等式。 不难看出,方程的同解原理是由等式的性质演变出来的,其实质是一样的。 检验方程的解:检验一个数是不是某个方程的解,其方法是将数分别代入方程的左边和 右边,如果左边=右边,则该数就是原方程的解,否则就不是。 含绝对值符号的方程:绝对值符号内含有未知数的方程,叫含绝对值符号的方程,有时 也简称绝对值方程。 解含绝对值符号的方程的基本思想就是去掉绝对值符号,转化为一般方程。具体操作方 式有两种:其一是对含绝对值符号的各个式子分别讨论其正负,利用绝对值的定义去掉绝对

一元一次方程 的解法(提高)__一元一次方程的解法(提高)知识讲解

一元一次方程 的解法(提高)__一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解责编:康红梅【学习目标】1.熟悉解一元一次方程的一般步骤,理解每步变形的依据;2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3.进一步熟练掌握在列方程时确定等量关系的方法.【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b (a ≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解.b x a=不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,再分类讨论:ax b c +=(1)当时,无解;(2)当时,原方程化为:;(3)当时,原0c <0c =0ax b +=0c >方程可化为:或.ax b c +=ax b c +=-2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:(1)当a ≠0时,;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0bx a=时,方程无解.【典型例题】类型一、解较简单的一元一次方程1.(2014秋•新洲区期末)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A.10 B.-8 C.-10 D.8【答案】B .【解析】解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2由题意知=m ﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5解:移项得3x+7x =2+5,合并得10x =7.,系数化为1得.710x =【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x 移到方程左边应变为-7x ,方程左边的2移到方程右边应变为-2.正确解法:解:移项得3x -7x =5-2, 合并得-4x =3,系数化为1得.34x =-类型二、去括号解一元一次方程2. 解方程:.112[(1)](1)223x x x --=-【答案与解析】解法1:先去小括号得:.11122[]22233x x x -+=- 再去中括号得:.1112224433x x x -+=-移项,合并得:.5111212x -=- 系数化为1,得:.115x =解法2:两边均乘以2,去中括号得:.14(1)(1)23x x x --=- 去小括号,并移项合并得:,解得:.51166x -=-115x =解法3:原方程可化为: .112[(1)1(1)](1)223x x x -+--=-去中括号,得.1112(1)(1)(1)2243x x x -+--=- 移项、合并,得.51(1)122x --=- 解得.115x =【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x -1),因此将方程左边括号内的一项x 变为(x -1)后,把(x -1)视为一个整体运算.3.解方程:.1111111102222x ⎧⎫⎡⎤⎛⎫----=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案与解析】解法1:(层层去括号)去小括号.111111102242x ⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭去中括号.11111102842x ⎧⎫----=⎨⎬⎩⎭去大括号.11111016842x ----= 移项、合并同类项,得,系数化为1,得x =30.115168x =解法2:(层层去分母)移项,得.111111112222x ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭两边都乘2,得.1111112222x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦移项,得.111113222x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 两边都乘2,得.1111622x ⎛⎫--= ⎪⎝⎭移项,得,两边都乘2,得.111722x ⎛⎫-= ⎪⎝⎭11142x -=移项,得,系数化为1,得x =30.1152x =【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:【变式】解方程.111116412345x ⎧⎫⎡⎤⎛⎫--+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案】解:方程两边同乘2,得.1111642345x ⎡⎤⎛⎫--+= ⎪⎢⎥⎝⎭⎣⎦移项、合并同类项,得.111162345x ⎡⎤⎛⎫--=- ⎪⎢⎥⎝⎭⎣⎦两边同乘以3,得.1116645x ⎛⎫--=- ⎪⎝⎭移项、合并同类项,得.111045x ⎛⎫-= ⎪⎝⎭两边同乘以4,得.1105x -=移项,得,系数化为1,得x =5.115x =类型三、解含分母的一元一次方程【高清课堂:一元一次方程的解法388407解较复杂的一元一次方程】4.解方程:.4 1.550.8 1.20.50.20.1x x x----=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】解法1:将分母化为整数得:.40155081210521x x x----=约分,得:8x -3-25x+4=12-10x .移项,合并得:.117x =-解法2:方程两边同乘以1,去分母得: 8x -3-25x+4=12-10x .移项,合并得:.117x =-【总结升华】解此题一般是先将分母变为整数,再去分母,如解法1;但有时直接去分母更简便一些,如解法2.举一反三:【变式】解方程.0.40.90.30.210.50.3y y++-=【答案】解:原方程可化为.4932153y y++-= 去分母,得3(4y+9)-5(3+2y )=15.去括号,得12y+27-15-10y =15.移项、合并同类项,得2y =3.系数化为1,得.32y =类型四、解含绝对值的方程5.解方程:3|2x |-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值.【答案与解析】解:原方程可化为: .223x =当x ≥0时,得,解得:,223x =13x = 当x <0时,得,解得:,223x -=13x =-所以原方程的解是x =或x =.1313-【总结升华】此类问题一般先把方程化为的形式,再根据()的正负分ax b c +=ax b +类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A.B. 2C.D.3【答案】B解:∵|x ﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣),解之得:m=2.类型五、解含字母系数的方程6. 解关于的方程: x 1mx nx -=【答案与解析】解:原方程可化为:()1m n x -=当,即时,方程有唯一解为:;0m n -≠m n ≠1x m n=-当,即时,方程无解.0m n -=m n =【总结升华】解含字母系数的方程时,先化为最简形式,再根据系数是否为零ax b =x a 进行分类讨论.【高清课堂:一元一次方程的解法388407解含字母系数的方程】举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:为正整数,∴应为6的正约数,即可为:1,2,3,64x k =-4k -4k -6∴为:5,6,7,10k 答:自然数k 的值为:5,6,7,10.。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

小学数学点知识归纳带有一元一次方程的解法

小学数学点知识归纳带有一元一次方程的解法

小学数学点知识归纳带有一元一次方程的解法一元一次方程是小学数学中的重要概念,是解决实际问题的常见工具。

本文将归纳整理一元一次方程的解法,并提供实例进行解析。

一、基本概念一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。

其一般形式为:ax+b=0,其中a和b为已知数,a≠0。

二、解法一:倒序逆运算法使用倒序逆运算法解一元一次方程的步骤如下:1. 将方程从等号两侧的式子中,将常数项移到方程的一边,将含有未知数的项移到方程的另一边,使方程变为ax=-b。

2. 对方程左侧的系数a进行倒序逆运算,即将其除以a,得到未知数的系数1.3. 对方程右侧的项-b进行倒序逆运算,即将其除以a,得到未知数的解。

例如,对于方程2x + 3 = 7,可以按照倒序逆运算法进行解答:1. 将方程变形为2x = 7 - 3,得到2x = 4。

2. 对方程左侧的系数2进行倒序逆运算,得到x = 4 / 2。

3. 计算得到x = 2,即方程的解为x = 2。

三、解法二:等式相等法使用等式相等法解一元一次方程的步骤如下:1. 根据方程的性质,通过各种运算将方程化简为ax=b的形式,其中a和b为已知数。

2. 利用等式相等法,构建等式ax=b的两边相等的等式,得到ax=ax。

3. 根据等式相等法的原理,假设方程的解为x=c,将x=c带入方程得到ac=b,验证方程的解是否正确。

例如,对于方程3x + 1 = 10,可以使用等式相等法进行解答:1. 将方程化简为3x = 10 - 1,得到3x = 9。

2. 构建等式3x = 3x,即3x = 3x。

3. 假设方程的解为x = 3,将x = 3带入方程得到3 * 3 = 9,验证方程的解为正确。

四、解法三:图像法使用图像法解一元一次方程的步骤如下:1. 将方程表示为y=ax+b的形式,其中a和b为已知数。

2. 构建坐标系,并在坐标系中绘制直线y=ax+b。

3. 根据直线与x轴相交的点,判断方程的解。

初中数学知识归纳一元一次方程的基本概念与解法

初中数学知识归纳一元一次方程的基本概念与解法

初中数学知识归纳一元一次方程的基本概念与解法一、什么是一元一次方程数学中的方程是指包含了一个或多个未知数的等式。

一元一次方程是指方程中只包含一个未知数,并且该未知数的最高次数为一。

一元一次方程的一般形式为ax + b = 0,其中a和b是已知的实数常量,x是未知数。

二、一元一次方程的解法1. 通过逆运算法解一元一次方程一元一次方程的基本思路是通过逆运算法将未知数从方程中的其他项中分离出来,从而求得方程的解。

例如,我们考虑方程2x + 5 = 0。

为了将x从方程的其他项中分离出来,我们需要使用逆运算,即将5移到方程的另一侧,并且改变其符号,即2x = -5。

接下来,将方程中的系数2除到x的前面,得到x = -5/2。

这就是方程的解。

2. 通过移项法解一元一次方程除了逆运算法,还可以使用移项法来解一元一次方程。

移项法的基本思路是将方程中所有项移至一个侧,从而将方程化简为ax = b的形式,然后通过除法求解出x的值。

举个例子,我们考虑方程3x - 7 = 11。

为了将x的系数3移到方程的另一侧,我们需要在等式两边同时加上7,得到3x = 18。

接下来,将方程中的系数3除到x的前面,得到x = 18/3 = 6。

这就是方程的解。

3. 通过综合运用解一元一次方程有时候,解一元一次方程需要综合使用逆运算法和移项法。

这通常在方程较复杂,或者方程中含有分数等特殊情况下使用。

例如,我们考虑方程4(2x - 3) = 2(x + 5) + 6。

首先,将方程中的括号展开得到8x - 12 = 2x + 10 + 6。

接下来,将方程中的项整理到一个侧得到8x - 2x = 28 + 12。

继续整理得到6x = 40。

最后,将方程中的系数6除到x的前面,得到x = 40/6 = 20/3。

这就是方程的解。

三、例题演练1. 解方程2x - 3 = 5。

解:将方程中的常数项3移到方程的另一侧得到2x = 8。

然后,将方程中的系数2除到x的前面得到x = 4。

一元一次方程的解法-竞赛拓展2-木木

一元一次方程的解法-竞赛拓展2-木木
趁热打铁:
1.解下列方程: (1)|3x﹣5|+4=8
五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点
2.若关于 x 的方程||x﹣2|﹣1|=a 有三个整数解,则 a 的 值是( ) A.0 B.1 C.2 D.3
3.讨论方程||x+3|﹣2|=k 的解的情况.
真正的高手,都是在不断的反思复习中追求卓越!---木木
1
木木数学
五大板块―――1.重点 2.难点 3.考试易错点 4.提高能力点 5.思想方法拓展点
三、解下列关于 x 的方程(拓展提升---含参数) (1)4x+b=ax﹣8;(a≠4)
类型 3:|ax+b|=|cx+d|型 ax+b=±(cx+d)
变式 2:如果|x+1|-|x-3|=-4,求 x.
法二:数形结合
变式 1:如果|x+1|+|x-3|=4,求 x.
变式 2:如果|x+1|+|x-3|=2,求 x.
变式 3:如果|x+1|+|x-3|=7,求 x.
类型 6:|x+a|-|x+b|=m 型 例 8.如果|x+1|-|x-3|=6,求 x. 法一:分类讨论
(2)|4x﹣3|﹣2=3x+4
(3)|x﹣|2x+1||=3
4. 方 程 |||x ﹣ 2006| ﹣ 1|+8| = 2006 的 所 有 x 的 和


(4)|2x﹣1|+|x﹣2|=|x+1|
5.已知|x+2|+|1﹣x|=9﹣|y﹣5|﹣|1+y|,求 x+y 的最大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的解法(提高)知识讲解
【学习目标】
1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;
2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;
3. 进一步熟练掌握在列方程时确定等量关系的方法.
【要点梳理】
要点诠释:
(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.
(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.
(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程
1.含绝对值的一元一次方程
解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.
要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:
(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.
2.含字母的一元一次方程
此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:
(1)当a ≠0时,b x a
=
;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解.
【典型例题】 类型一、解较简单的一元一次方程
1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8
【答案】B.
【解析】
解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2
由题意知=m﹣2
解之得:m=﹣8.
【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.
举一反三:
【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?
3x+2=7x+5
解:移项得3x+7x=2+5,合并得10x=7.,
系数化为1得
7
10
x=.
【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2.
正确解法:
解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得
3
4
x=-.
类型二、去括号解一元一次方程
2. 解方程:112 [(1)](1) 223
x x x
--=-.
【答案与解析】
解法1:先去小括号得:11122
[]
22233
x x x
-+=-.
再去中括号得:
11122
24433
x x x
-+=-.移项,合并得:
511
1212
x
-=-.
系数化为1,得:
11
5
x=.
解法2:两边均乘以2,去中括号得:
14
(1)(1)
23
x x x
--=-.
去小括号,并移项合并得:
511
66
x
-=-,解得:
11
5
x=.
解法3:原方程可化为:112 [(1)1(1)](1) 223
x x x
-+--=-.
去中括号,得1112
(1)(1)(1) 2243
x x x
-+--=-.
移项、合并,得
51
(1)
122
x
--=-.
解得
11
5
x=.
【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.
3.解方程:1111
11110 2222
x
⎧⎫
⎡⎤
⎛⎫
----=
⎨⎬

⎢⎥
⎝⎭
⎣⎦
⎩⎭

【答案与解析】
解法1:(层层去括号)
去小括号1111
1110 2242
x
⎧⎫
⎡⎤
----=
⎨⎬
⎢⎥
⎣⎦
⎩⎭

去中括号1111
110 2842
x
⎧⎫
----=
⎨⎬
⎩⎭

去大括号
1111
10 16842
x----=.
移项、合并同类项,得
115
168
x=,系数化为1,得x=30.
解法2:(层层去分母)
移项,得1111
1111 2222
x
⎧⎫
⎡⎤
⎛⎫
---=
⎨⎬

⎢⎥
⎝⎭
⎣⎦
⎩⎭

两边都乘2,得111
1112 222
x
⎡⎤
⎛⎫
---=

⎢⎥
⎝⎭
⎣⎦

移项,得111
113 222
x
⎡⎤
⎛⎫
--=

⎢⎥
⎝⎭
⎣⎦

两边都乘2,得11
116 22
x
⎛⎫
--=

⎝⎭

移项,得11
17
22
x
⎛⎫
-=

⎝⎭
,两边都乘2,得
1
114
2
x-=.
移项,得1
15
2
x=,系数化为1,得x=30.
【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:
【变式】解方程1111
1641 2345
x
⎧⎫
⎡⎤
⎛⎫
--+=
⎨⎬

⎢⎥
⎝⎭
⎣⎦
⎩⎭

【答案】
解:方程两边同乘2,得111
1642 345
x
⎡⎤
⎛⎫
--+=

⎢⎥
⎝⎭
⎣⎦

移项、合并同类项,得111
162 345
x
⎡⎤
⎛⎫
--=-

⎢⎥
⎝⎭
⎣⎦

两边同乘以3,得11
166 45
x
⎛⎫
--=-

⎝⎭

移项、合并同类项,得11
10 45
x
⎛⎫
-=

⎝⎭

两边同乘以4,得1
10 5
x-=.
移项,得1
1
5
x=,系数化为1,得x=5.
类型三、解含分母的一元一次方程
4.解方程﹣=.
【思路点拨】方程整理后,去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.
【答案与解析】
解:原方程可化为6x﹣=,
两边同乘以6,得36x﹣21x=5x﹣7,
移项合并,得10x=-7
解得:x=﹣0.7.
【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.
举一反三:
【变式】解方程0.40.90.30.2
1
0.50.3
y y
++
-=.
【答案】
解:原方程可化为4932
1 53
y y
++
-=.
去分母,得3(4y+9)-5(3+2y)=15.去括号,得12y+27-15-10y=15.移项、合并同类项,得2y=3.
系数化为1,得32y =. 类型四、解含绝对值的方程 5.解方程:3|2x|-2=0 .
【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值. 【答案与解析】 解:原方程可化为:223x =
. 当x ≥0时,得223x =,解得:13
x =, 当x <0时,得223x -=,解得:13
x =-, 所以原方程的解是x =13或x =13
-. 【总结升华】此类问题一般先把方程化为ax b c +=的形式,再根据(ax b +)的正负分类讨论,注意不要漏解.
举一反三:
【变式】已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )
A. B. 2 C.
D.3
【答案】B
解:∵|x﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣), 解之得:m=2. 类型五、解含字母系数的方程
6. 解关于x 的方程:1mx nx -=
【答案与解析】
解:原方程可化为:()1m n x -=
当0m n -≠,即m n ≠时,方程有唯一解为:1x m n
=
-; 当0m n -=,即m n =时,方程无解.
【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论.
举一反三:
【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.
【答案】
解:∵原方程有解,∴ 40k -≠
原方程的解为:
6
4
x
k
=
-
为正整数,∴4
k-应为6的正约数,即4
k-可为:1,2,3,6
∴k为:5,6,7,10
答:自然数k的值为:5,6,7,10.。

相关文档
最新文档