2.1.2换元微分法

合集下载

微积分中的换元积分法

微积分中的换元积分法

微积分中的换元积分法在微积分中,换元积分法是一种非常重要的积分方法,它主要用于解决一些较难的积分问题。

换元积分法是一种基本的数学思想,它可以将一个复杂的积分转化为一个简单的积分,从而更加方便地求解。

本文将详细地介绍换元积分法的基本思想和应用方法,并结合一些典型的例子进行讲解。

一、基本思想换元积分法的基本思想是通过变量替换的方式,将一个积分式中的变量替换成另一个变量,从而把一个较难的积分问题转化成一个较简单的积分问题。

具体来说,设有一个积分式:∫f(x)dx如果能够将x用t表示出来,并且求出dt/dx,那么就可以把积分式中的x全部用t来表示,将原来的积分式变成:∫f(t)(dt/dx)dx然后再将t看作自变量,x看作因变量,对f(t)(dt/dx)进行积分,最终得到原来的积分值。

二、应用方法换元积分法的应用方法比较灵活,下面将分别介绍三种典型的应用方法。

1.代换法代换法是换元积分法中最常用的方法,其具体思路是将积分式中的变量用一个新的变量表示出来,然后对新的变量进行求导,最终得到积分式中的原变量的微元。

代换法的一般步骤如下:(1)根据积分式中的特点选取代换变量(2)用代换变量表示出积分式中的自变量,并求出代换变量的微分(3)将代换变量看作自变量,其它变量看作常数,将原积分式变为代换后的积分式(4)对代换后的积分式进行求解,得到最终答案代换法的应用可以通过一个例子来具体说明。

例1:求积分∫x√(1+x^2)dx。

解:积分式中含有根号,所以很难直接求解,这时就可以采用代换法来解决。

选取代换变量t=1+x^2,此时x^2=t-1。

对t求导,得到dt/dx=2x,即dx=(1/2√t)dt。

将x√(1+x^2)dx用代换变量表示为(t-1)√tdt/2,完成了变量替换。

此时将代换变量看作自变量,其它变量看作常数,积分式变为:∫(t-1)√tdt/2对上式进行积分,最终得到积分值为:(2/3)(1+x^2)√(1+x^2)-2/3arcsin(x)+C其中C是积分常数。

常用积分换元公式

常用积分换元公式

第一类换元积分法
部分常用的凑微分公式:
(1)
1
()
dx d ax b
a
=+(2)1
1
()
1
n n
x dx d x
n
+
=
+
(3
d
=(4)
2
11
()
dx d
x x
=-
(5)1
(ln)
dx d x
x
=(6)()
x x
e dx d e
=
(7)cos(sin)
xdx d x
=(8)sin(cos)
xdx d x
=-
常用的凑微分公式
第二类换元积分法
1.当被积函数中含有
1)sin
x a t
=或cos
x a t
=;
2)tan
x a t
=;
3)sec
x a t
=.
通过三角代换化掉根式。

但是,去掉被积函数根号并不一定要采用三角代换,
22
ch sh1
t t
-=,采用双曲代换sh
x a t
=或ch
x a t
=消去根式,所得结果一致。

所以应根据被积函数的具体情况尽量选取简单的方法对根式进行有理化代换。

2.当有理分式函数中分母的阶数较高时,可采用倒代换
1
x
t
=.
3.类型f dx
⎰:可令t=;类型f dx
⎰:可令t=(第四节内容)
4.类型()x
f a dx
⎰:可令x
t a
=.
适合用分部积分法求解的被积函数。

不定积分计算的各种方法

不定积分计算的各种方法

本人签名: 导师签名:
日期: 日期:
巢湖学院 2015 届本科毕业论文(设计)
不定积分计算的各种方法
摘 要
不定积分的求解问题对求解各种积分具有重要作用, 其求解方法 新颖且多样.本论文将要介绍一些不定积分的各种计算方法以及某些 特殊不定积分的求解方法,例如:直接积分法、换元积分法(第一换 元积分法和第二换元积分法)、分布积分法以及一些特殊类型函数的 积分;其中一些特殊类型函数的积分有:有理函数的不定积分、三角 函数有理式的不定积分、某些无理根式的不定积分,这类积分方法技 巧做了介绍;除此之外介绍了一些求解不定积分的新方法,这些方法 在不定积分的计算中使用的次数较高而且较为简单, 并且这些方法在 运算和运用过程中既简单又实用.本论文是通过结合例题探讨各种快 捷方便的不定积分的解题方法.
Key words: indefinite integral, immediate integration, integration by substitution, integration by parts, special type function integral
II



引言.......................................................................................................................................... 1 1.不定积分的概念.................................................................................................................. 1 2.不定积分的计算方法............................................................................ 错误!未定义书签。 2.1 直接积分法........................................................................................ 错误!未定义书签。 2.2 换元积分法...................................................................................................................... 3 2.2.1 第一换元积分法.......................................................................................................... 4 2.2.2 第二换元积分法.......................................................................................................... 6 2.3 分部积分法...................................................................................................................... 8 2.3.1 公式法.......................................................................................................................... 8 2.3.2 列表法.......................................................................................................................... 9 3.一些特殊类型函数的积分................................................................................................ 10 3.1 有利函数的不定积分.................................................................................................... 10 3.2 三角函数有理式的不定积分........................................................................................ 12 3.3 某些无理根式的不定积分............................................................................................ 12 4.求两类不定积分 .............................................................................................................. 14 5.结束语................................................................................................................................ 15 参考文献................................................................................................................................ 16

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。

(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nx x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。

高等数学-换元积分法

高等数学-换元积分法


න = න


1
= −න
( )′

1
= −න


= − | | + .
同理可得 ‫ | | = ׬‬+ .
8
01 第一类换元积分法
例3

1
求不定积分‫׬‬

2
令 2 = ,则 = , = .
2
+1−1



=න
= න
1+
1+
1 + 2

1
= න(1 −
) = − | 1 + | +
1+
= 2 − | 1 + 2| + .
14
02 第二类换元积分法
通过变量代换去掉根号的主要形式有:


= 5,考虑将被积函数恒等变形,得

1
1
1
1
1
= ⋅
⋅5= ⋅
⋅ (5 − 2)′
5 − 2 5 5 − 2
5 5 − 2
此时令 = 5 − 2, 得到
4
01 第一类换元积分法
1
1
1

= න
(5 − 2)′
5 − 2
5 5 − 2
1
1
= න
( 5 − 2)
0,又设[()] ′ ()的一个原函数为(),则
න()
= ()
න[()] ′ () = [() + ]=−1()
该公式称为第二换元公式. 其中 = −1 ()为函数
= ()的反函数.

[微积分常用公式]学好微积分的技巧换元公式如何运用

[微积分常用公式]学好微积分的技巧换元公式如何运用

[微积分常用公式]学好微积分的技巧换元公式如何运用导读:就爱阅读网友为大家分享了多篇关于“[微积分常用公式]学好微积分的技巧换元公式如何运用”资料,内容精辟独到,非常感谢网友的分享,希望从中能找到对您有所帮助的内容。

相关资料一: 学好微积分的技巧换元公式如何运用学好微积分的技巧换元公式如何运用第一类换元法,也称为凑微分法,顾名思义,就是把f[g(x)]g’(x)dx转化为f[g(x)d(g(x))的形式,所以用好这一方法的关键就是把给定的积分里的被积分式写成f[g(x)]g’(x)dx。

要求对基本初等函数的导数,基本初等函数与其导数的关系很清楚(比如有些函数求导后,函数的形式不变,像露幂函数,指数函数)。

除此,多项式的因式分解,三角函数恒等式等等都会用到。

学习的方法就是多做题,多看典型的例题,并做好总结。

第二类换元法,模式是把f(x)dx经过代换x=g(t)转化为f[g(t)]g’(t)dt,求出原函数后再回代x=g(t)的反函数t=h(x)。

常用的代换是根式代换,三角代换,倒代换。

适用于含有简单的根式,根式下是一次函数,如1/(√x+1)的积分,就可以考虑把√x代换;或被积函数里有√(a±x),√(x-a);还有些题目可以适用到代换,把1/x代换一下,如1/(x√(1+x))的积分。

熟能生巧!!相关资料二: 微积分常用公式及运算法则(下册)同济二版微积分(下)微积分公式等价无穷小:当x→0时,x~sinx~tanx~arcsinx~arctanx ~ln(1+x)~ex1;21?cosx~x2;(1+x)a?1~ax(a≠0);ax?1~xlna(a>0,a≠1).基本积分表∫kdx=kx+C(k=1时,∫dx=x+C)∫xμdx=xμ+1μ+1+C∫1xdx=ln|x|+C∫11+x2dx=arctanx+Cx=arcsinx+C∫cosxdx=sinx+C∫sinxdx=?cosx+C∫1sec2cos2xdx=∫xdx=tanx+C∫1sin2xdx=∫csc2xdx=?cotx+C∫secxtanxdx=secx+C∫cscxcotxdx=?cscx+C ∫exdx=ex+C∫xdx=axalna+C(a>0,a≠1)∫sinhxdx=coshx+C∫coshxdx=sinhx+C不定积分线性运算法则∫[αu(x)+βv(x)]dx=α∫u(x)dx+β∫v(x)dx不定积分的换元法∫f[?(x)]?′(x)dx=??∫f(u)du?u=(x)∫f(x)dx=[f[υ(t)]υ′(t)dt]t=υ?1(x)积分公式∫dx1xa2+x2=aarctana+C=arcsinxa+C=1barcsinbxa+C(a>0,b>0)∫dxx2?a2=12alnx?ax+a+C∫secxdx=ln|secx+tanx|+C∫cscxdx=ln|cscx?cotx|+C=ln(x++C(a>0)=ln|x+C不定积分的分部积分法∫uv′dx=uv?∫u′vdx或∫udv=uv?∫vdu定积分的换元法设函数f∈C[a,b].如果函数x=?(x)满足:(1)?(α)=a,?(β)=b,且?([α,β])?[a,b]或?([β,α])?[a,b];(2)?′∈C[α,β](或?′∈C[β,α])那么:∫baαf[?(t)]?′(t)dt1微积分常用公式微积分常用公式及运算法则(下册) 同济二版微积分(下)若f∈C[?a,a],并且为偶函数,则∫aaf(x)dx=2∫af(x)dx;若f∈C[?a,a],并且为奇函数,则∫a?af(x)dx=0∫ππ20f(sinx)dx=∫20f(cosx)dx∫ππxf(sinx)dx=π∫20∫ππ2nsi nxdx=∫20cosnxdx定积分的分部积分法∫buv′dx=[uv]bbaa?∫avu′dx∫baudv=[uv]bba∫avdum=1,2,3,?第五章向量代数与空间解析几何向量的运算1??.向量的加法a??+??b(a+??=b+b)+??ac=??a+(b??+??c)2.向量与数的乘法(数乘)λ(μ??a)=(λμ)??a(λ+μ)??a=λ??a+μ??a λ(??a+??b)=λ??a+λ??b3.不等式||??a|?|??b||≤|??a±b??|≤|??a|+|??b|4.单位向量eaa=|a|空间两点间的距离公式|PP12|=向量的坐标表示以点M1(x1,y1,z1)为起点,M2(x2,y2,z2)为终点的坐标M??1M??ab=|??a||??b|cosθ a0=??0???a=0 ab=|??a|Prj??=|b??|Prj??abba即:Prja???ab=??|a|=ea?bab=(ax,ay,az)?(bx,by,bz)=axa??bx+ayby+azbz a=|??2a? b??a|??a?(??=b???a(λ??b+c)a)?(μ??=a?b+a?cb)=λμ(??ab)向量??a与??b的夹角满足公式cosθ=a?|b(其中0≤θ≤π)若??a||b|a=(a?? x,ay,az),b=(bx,by,bz),则cosθ=ab+ab+ab2微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)若??a=(ax,ay,az),b=(bx,by,bz),则a⊥b??的充要条件是a+a xbxyby+azbz=0向量的向量积设??a和b??是两个向量,规定??a 与???a??b??的充要条件是??a×??b=??0=(a?aybz?azby)i+(azbxxbz)j+(axby?aybx)k=ayaz??ax??bbi+azj+axay??b??y??zbxbxbkyijzk=axayazbxbybz两向量的向量积的几何意义(i)??a×b??由于|??的模a×??:b|=|??a||b??|sinθ=|所以|??a|h(h=|b|sinθ),a×??b|表示以??a和b??为邻边的平行四边形的面积.(??ii)??a×??b的方向:a×b??与一切既平行于??a又平行于?? b的平面垂直.向量的混合积(a×b)?c=ayazbcazaxx+cxayy+aybzbzbxbxbczyaxayaz=bxbybzcxcycz[abc]=[bca]=[cab三向量??a,b??,?? ]c共面的充要条件是axayazbxbybz=0cxcycz平面的方程1.点法式方程过点My??0(x0,0,z0)且以n=(A,B,C)为法向量的平面Π的方程为A(x?x0)+B(y?y0)+C(z?z0)=02.一般方程三元一次方程Ax+By+Cz+D=0(A,B,C不同时为零)的图形是平面,其中x,y,z的系数A,B,C 是平面的法向量的坐标即n??,=(A,B,C)是平面的法向量.特殊的平面:A=0,平行于x轴的平面;B=0,平行于y轴的平面;C=0,平行于z轴的平面;D=0,过原点的平面;A=B=0,垂直于z轴的平面;B=C=0,垂直于x轴的平面;C=A=0,垂直于y轴的平面.平面的夹角cosθ=n??1?n2|nn=1||2|3微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)平面Π1和Π2相互垂直的充要条件是:A1A2+B1B2+C1C2=0 相互平行的充要条件是:A1B1CA=B=122C2点到平面的距离点P0(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为:d=直线的方程1.参数方程过M,y??0(x00,z0)且以s=(m,n,p)为方向向量的直线L的方程为x=x0+tm?y=y0+tn.??z=z0+tp2.对称式方程(点向式方程)过M(x,z??00,y00)且以s=(m,n,p)为方向向量的直线L的方程为x?x0y?y0z?z0m=n=p.3.一般方程直线L可以看作两个平面Π1:A1x+B1y+C1z+D1=0与Π2:A2x+B2y+C2z+D2=0的交线.空间一点M(x,y,z)在直线L上,当且仅当它的坐标x,y,z同时满足Π1与Π2的方程,的下面的直线方程:??A1x+B1y+C1z+D1=0,?A2x+B2y+C2z+D2=0.其中A1=B1=C1AB不成立.22C2两直线的夹角直线??L1与L2的方向向量分别是s??1=(m1,n1,p1),s2=(m2,n2,p2),则夹角公式为:cos?=s1?s2|s=1||s2|直线L1和L2相互垂直的充要条件是:m1m2+n1n2+p1p2=0相互平行的充要条件是:m1n1p1m==2n2p2直线与平面的夹角直线??L与平面Π法线的方向向量分别是s=(m,n,p),n?? =(A,B,Csin?=|n??),则夹角公式为:s||n||s|=直线L和平面Π相互垂直的充要条件是:ABCm=n=p;相互平行的充要条件是:Am+Bn+Cp=0.旋转曲面若在曲线C的方程f(y,z)=0中z保持不变而将y改写成±就得到曲线C绕z轴旋转而成的曲面的方程f(z)=0;若在f(y,z)=0中y保持不变而将z改写成就得到曲线C绕y轴旋转而成的曲面的方程f(y,=0.二次曲面图形及方程1.椭球面4微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)x2y2z2a2+b2+c2=1??x=asinθcos??y=bsinθsinz=ccosθ其中θ∈[0,π],?∈[0,2π]2.抛物面(1)椭圆抛物面x2y2a2+b2=±z??x=avcosu?y=bvsinuz=v2其中u∈[0,2π],v∈[0,+∞)(2)双曲抛物面x2y2a2?b2=±z??x=a(u+v)?y=b(u?v)??z=4uvx=或?auy=bvz=u2v2u,v∈R3.双曲面(1)单叶双曲面x2y2z2a2+b2?c2=1??x=acoshucosv?y=bcoshusinv ??z=csinhuu∈R,v∈[0,2π](2)双叶双曲面x2a2+y2b2?z2c2=?1??x=v??y=vz=cuu∈(?∞,?1]∪[1,+∞),v∈[0,2π] 4.椭圆锥面x2y2z2a2+b2=c2??x=avcosu?y=bvsinuz=cvu∈[0,2π],v∈R第六章多元函数微分学偏导数的几何意义偏导数fx(x0,y0)在几何上表示曲线??z=f(x,y),?y=y在点M(x0,y0,f(x0,y))处的0,切线对x轴的斜率;偏导数fy(x0,y0)在几何上表示曲线??z=f(x,y),?y=y在点M(x0,y0,f(x0,y))处的0,切线对y轴的斜率.全微分若函数z=f(x,y)在区域D内每一点(x,y)处都可微,则f(x,y)在每点处连续且可偏导,其全微分为:dz=fx(x,y)dx+fy(x,y)dy,或dz=zxdx+zydy复合函数的求导法则1.复合函数的中间变量均为一元函数5微积分常用公式微积分常用公式及运算法则(下册)同济二版微积分(下)如果函数u=?(t),v=υ(t)都在点t可导,函数z=f(u,v)在对应点(u,v)具有连续偏导数,则复合函数z=f[?(t),υ(t)]在点t可导,且有:dz?zdu?zdv=?+?dt?udt?vdt设三元函数F(x,y,z)在区域?内是C(1)类函数,点(x0,y0,z0)∈?且满足F(x0,y0,z0)=0,Fz(x0,y0,z0)≠0,则方程F(x,y,z)=0,在点(x0,y0,z0)的某领域内唯一确定了一个C(1)类的二元函数z=z(x,y),它满足条件z0=z(x0,y0),FyFx?z?z且有=?,=?.xFzyFz3.2.复合函数的中间变量均为多元函数如果函数u=?(x,y),v=υ(x,y)都在点(x,y)可微,函数z=f(u,v)在对应点(u,v)具有连续偏导数,则复合函数z=f[?(x,y),υ(x,y)]在点(x,y)可微,且有:?z?z?u?z?v=?+?,?x?u?x?v?x?z?z?u?z?v=?+??y?u?y?v?y 3.复合函数的中间变量既有一元函数,又有多元函数。

高数增长速度口诀

高数增长速度口诀

高数增长速度口诀一天晚上,我碰到一个学生在散步,感觉时间过得真快。

学生们说,如果舒高有一个公式,他们应该已经去了研究生院,并成为成功的学徒。

互笑两声。

经过一些时间的整理,赶在开学前夕,助力挺过疫情的千万学子,莫挂在那棵数(树)上。

1.1 函数有理稠密且有序,全体实数连续性,邻域概念用的多,各种表示需谨记,函数概念已扩充,三种表示均等价,若有界、不唯一,单调性、分区间,奇偶注意定义域,函数周期不唯一。

1.2 初等函数反解莫忘定义域,单调区间方可反,基本初等有五类,幂指对和两三角,一层一层又一层,复合注意定义域,定义了双曲函数,三角函数也差不多。

1.3 数列的极限大学数列无穷项,任意存在来定义,结论倒推反解 n,中间插入以放缩,收敛数列必有界,反之不一定成立,极限存在则唯一,同时具有保号性,原收敛、子列同,子列散、原发散。

1.4 函数的极限无穷极限分正负,倒推反解再梳理,左右等、极限有,唯一有界且保号,子序列,收敛,往往被证明没有极限。

1.5 无穷大与无穷小动态理解无穷小,条件状语莫忽视,相乘相加需有限,有界乘之等于零,无穷大、则无界,无界未必无穷大,两个量相互纠缠,相互转化有神奇的效果。

1.6 极限运算法则若有意义直接代,加减乘除有定理,遇到分式最麻烦,上下同除巧转化,分子有理经常用,高中公式常看看。

1.7 极限存在准则,两个重要极限夹逼准则靠放缩,具体尺度需拿捏,单调有界有极限,转化方程求极限,重要极限凑结构,一步一步慢慢来。

1.8 无穷小的比较高低阶数各不同,只因速度有差异,齐头并进等价量,代换计算效率高,若要两者来相减,十有八九两泪流。

1.9 函数的连续与间断定义连续用极限,左右连续与连续,左右均连第一类,不等跳跃等可去,至少一侧不存在,无穷震荡第二类。

1.10 连续函数的运算与性质加减乘除仍连续,反函数、需单调,复合注意定义域,作用仍是求极限,函数闭区间连续,有最值、且有界,端点异号有零点,天地之间皆可取,一致连续必连续,反之不一定成立。

两类“换元积分法”的联系与区别

两类“换元积分法”的联系与区别

(下转第49页)摘要不定积分是高等数学中的教学重点与难点,不定积分计算方法一般被分为换元积分法、直接积分法与分部积分法几种方式,其中,换元积分法又可以分为第一类换元法与第二类换元法两种,帮助学生掌握好第一类积分法与第二类积分法在归类上的联系与区别,能够有效提高学生应用积分法求解积分问题的能力,第一类积分法与第二类积分法最大的区别就是,第一类积分法不需要设置变量,可以通过凑微法和转化法进行计算,而在使用第二类积分法时,就必须要选择好变量进行替换。

关键词两类“换元积分法”联系区别On the Relationship and Distinction between Two Types of "Integration by Substitution"//Yang YanhuaAbstract Indefinite integral is a key and difficult point of higher mathematics,and the computing methods of indefinite integral are generally classified into integration by substitution,immediate integration and integration by parts,among which integration by substitution can be classified into the first type of substitution and the second type of substitution.To help students master the rela-tionship and distinction between the two types of substitution caneffectively improve students'ability of using integration methodsto solve integration problems.The biggest distinction between the two types of substitution is that variables are not needed in the former but improvising differentiation and conversion method can be used in the computing,while a certain variable must be se-lected to be substituted in the latter.Key words two types of "integration by substitution";relation-ship;distinction不定积分是高等数学中的教学重点与难点,此类知识也是学生学习重积分、定积分与微分方程等知识的学习技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例12 arctan xdx.

u
arctan
x,v
1, u
1
1 x2
,v
x,
arctan
xdx
x
arctan
x
1
x x2
dx
x arctan x 1 ln(1 x2 ) C 2
注 分部积分法适用于两类函数乘积的积分,也适用
于单个反三角函数,单个对数函数的积分.
a
x2 a2
ln x a
x2 a2 a
C ln x
x2 a2 C1,
其中 sec t 和 tan t 可借助辅助直角三角形求出.
例9

dx ( x2 a2 )2
(a 0).

x a tan t,
|
t
|
π 2
,
dx ( x2 a2 )2
a sec2 t a4 sec4 t
容易求出。那么如何选择变换呢?这往往与被积函数 的形式有关。 常用代换有无理代换,三角代换等.
1 无理代换
若被积函数是 x n1 , n2 x , , nk x 的无理式时,设n为
ni (1 i k) 的最小公倍数, 令 t n x即x t n.
例6
du u3u
6x5 x3x
2
dx
d( x a) xa
1 2a
d( x a) xa
1 2a
ln
|
x
a
|
1 2a
ln
|
x
a
|
1 ln x a C. 2a x a
凑微分法7: 分子分母需同时乘以(除以)某个因子
xk ,ex ,sin x,cos x,1 sin x,1 cos x 等然后再凑微分.
例 求sec xdx.
解 (解法一)
sec
xdx
1 cos
x
dx
cos x cos2 x
dx
d(sin x 1 sin2
) x
1 ln 2
1 sin x 1 sin x
C.
(解法二) sec
xdx
sec x(sec x tan sec x tan x
x)
dx
d(sec x tan x) sec x tan x
6
( x2 x 1 1 )dx x 1
x3 x2
6
3
2
x ln x 1 C
2 u 3 3 u 6 6 u 6ln 6 u 1 C
2 三角代换 (1)若被积函数含有 a2 x2 ,一般令 x a sin t (2)若被积函数含有 x2 a2 ,一般令 x asect
xa

1
e
x
e
x
dx
1 1 exd
1 ex
ln 1 e x C.
x1
dx 2ln
x
.
有时,需要将被积函数作适当的恒等变形后,再用
凑微分法求不定积分.
凑微分法5: 有时需将
f
x
变形为 g
x
h
x,
g h
x x
然后观察 g x与h x的关系.例如
例1 tan xdx
sin cos
x x
sin 5 x
8 dx
1 5
sin5
x
8d
5x
8
1 5
cos
5x
8
C
1
x2
e
1 x
dx
1
e xd
1 x
1
e x
C.
凑微分法3:
f sin xcos xdx f sin xd sin x. f cos xsin xdx f cos xd cos x. f tan xsec2 xdx f tan xd tan x. f cot xcsc2 xdx f cot xd cot x.
§2 换元积分法与分部积分法
一、换元积分法
定理8.4 (i) (第一换元积分法)
设 f ( x) 在 区间I 上有定义,( x)在区间J上可导,
且(J) I。并且
f ( x)dx F ( x) C.
换元u ( x )

f (( x))( x)dx f (u)du
回代
F(u) C F (( x)) C. (1)
1
x a
2
1 arctan x C.
a
a
例3 求
dx (a 0).
a2 x2
dx 1 dx
a2 x2 a
1
x a
2
d
x a
arcsin x C
1
x a
2
a
例4 求
dx x2 a2
(a 0).

dx x2 a2
1 2a
1 xa
1 xa
dx
1 2a
简记为 udv uv vdu.
证 由 (u( x)v( x)) u( x)v( x) u( x)v( x) 或 u( x)v( x) (u( x)v( x)) u( x)v( x), 两边积分,得
u( x)v( x)dx u( x)v( x) u( x)v( x)dx.
注 分部积分的关键是把被积表达式 f ( x) 写成 u( x)v( x) 的形式,即如何选取 u,v.
1 2
sin
2t
C
a2 2
arcsin
x a
x a
1 2
a2
arcsin
x a
x
a2
x2
C.
1
x a
2
C
例8 求
dx (a 0). x2 a2
解 设 x a sect, 0 t π , 2
x
dx a sect tan t dt
x2 a2
a tan t
t
sectdt ln | sect tan t | C

cos2
x
sin
xdx
cos2
xd
cos
x
1 3
cos3
x
C
.
凑微分法4:
f ex exdx f ex d ex .
f aex b e xdx 1 f ae x b d ae x b . a f ln x 1 dx f ln xd ln x. x
f a ln x b 1 dx 1 f a ln x bd a ln x b.
(3)若被积函数含有 x2 a2 ,一般令 x a tan t.
例7 求 a2 x2dx (a 0).
解 设 x a sin t, | t | π , 2
a2 x2 dx a cos t d(a sin t)
a2
cos2t
dt
a2 2
(1 cos 2t)dt
a2 2
t
Байду номын сангаас
dt
1 a3
cos2 tdt
1
2a3 (1 cos 2t)dt
x2 a2
x
1 2a 3
(t
sin
t
cos
t)
C
t a
1 2a 3
arctan
x a
ax x2 a2
C.
二、分部积分法
定理8.5 (分部积分法)
若u(x)与v(x)可导, 不定积分 u( x)v( x)dx存在, 则 u( x)v( x)dx 也存在, 且 u( x)v( x)dx u( x)v( x) u( x)v( x)dx.
ln
|
sec
x
tan
x
|
C
.
这两种解法所得结果只是形式上的不同,可以将
它们恒等变形后统一起来.
第二换元积分法
f (u)du f (( x))( x)dx g( x)dx G( x) C
G( 1(u)) C.
(最终不要忘记变量还原).
注 由于第二换元积分法的关键在于选择满足定理
条件的变换 u ( x),从而使的不定积分 g(u)du
xsin x cos x C
类型2 x arctan xdx, x ln xdx, x arcsin xdx
选 v 为 x , u 分别取为 arctan x,ln x,arcsin x.
例13 x3 ln xdx.
解 u ln x,v x3,
u 1 ,v x4 , x4
x3 ln xdx 1 ( x4 ln x x3dx) 4 x4 (4ln x 1) C. 16
b)d (axk1
b).

1 x2
e
1 x
dx.

1
x2
e
1 x
dx
e
1
xd
1 x
令u 1 x
回代 1
eudu eu C e x C .
对换元积分法较熟练后,可以不写出换元变量
u x ,在计算时只需要把 x 视为一个整体
看作一个新的积分变量,可使书写简化. 例如上面几个例子可直接写成
口诀 :反对幂指三(谁在后先就选为 v ),
类型1 xn sin xdx, xn cos xdx, xne xdx
选 u xn,v 分别取为 sin x,cos x,e x
例11 求 x cos xdx.
解 u x,v cos x, u 1,v sin x
x cos xdx xsin x sin xdx
a
a
例 sin5x 8dx.

sin
5
x
8
dx
1 5
sin
5
x
8
d
5
相关文档
最新文档