常微分方程-拉氏变换法求解常微分方程
常微分方程-拉氏变换法求解常微分方程

03 拉普拉斯变换的逆变换
定义与性质
定义
逆变换是拉普拉斯变换的逆过程,将 拉普拉斯变换后的函数还原为原函数。
性质
逆变换具有线性性、时移性、微分性、 积分性和相似性等性质,这些性质在 求解常微分方程时具有重要作用。
逆变换的求解方法
表格法
通过查表或计算公式,将拉普拉 斯变换后的函数还原为原函数。 这种方法适用于已知拉普拉斯变 换函数的简单情况。
幂级数法
通过幂级数展开,将拉普拉斯变 换后的函数展开为无穷级数,然 后逐项积分得到原函数。这种方 法适用于较为复杂的拉普拉斯变 换函数。
积分法
通过积分运算,将拉普拉斯变换 后的函数进行积分,得到原函数。 这种方法需要熟练掌握积分运算 和拉普拉斯变换的性质。
04 拉普拉斯变换法的优缺点
优点
高效性
对于一些复杂或难以直接求 解的常微分方程,拉普拉斯 变换法能够提供一种简洁、 高效的求解方法。
普适性
拉普拉斯变换法适用于各种 类型的初值问题,具有广泛 的适用性。
易于计算
拉普拉斯变换的逆变换相对 容易计算,使得求解过程相 对简单。
可处理多变量问题
通过引入偏导数,拉普拉斯 变换法可以处理多变量微分 方程,这是其他方法难以做 到的。
缺点
不易理解物理意义
拉普拉斯变换将原始的微分方程转换为复 平面上的函数,这使得初学者不易理解其
性质
拉普拉斯变换具有线性性、时移性、 微分性、积分性和复共轭性等性质, 这些性质使得求解常微分方程变得更 为简便。
拉普拉斯变换的应用
求解常微分方程
通过拉普拉斯变换,可以将常微分方程转化为代数方程,从而简化求 解过程。
系统分析
在控制工程和信号处理等领域,拉普拉斯变换被广泛应用于系统分析 和系统设计。
拉氏变换

于是 L[ f (t )] e
skT
所以
对周期函数来说,求广义积分就转化为求
0
1 L[ f (t )] 1 e sT
k 0
T
T
0
1 f (t ) e dt 1 e sT
st
T
0
f (t ) e st dt
f (t ) e st dt
在一个周期区间[0, T]上的定积分,上式就是 周期函数的拉氏变换公式.
15
故
1 1 2 sb 1 1 sb sb 2 L[ f (t )] [ ( e 2 e 1 )] [ ( 1 e )] 2 sb 2 st 2 2 1 e s 1 (e ) s 1 e sb 1 sb 2 2 th( ) sb s (1 e ) s 2
0
f (t ) e st dt
st ( k 1)T kT
f (t ) e dt f (t ) e dt ..........
k 0 ( k 1)T kT
2T
f (t ) e st dt ......
f (t ) e st dt
kt kt st ( s k )t
所以
1 L[e ] sk
kt
(s k )
为了简便起见,求拉氏变换时,可以不再指出 收敛区域。
7
二、常用函数的拉氏变换 我们已经求了常值函数,指数函数的拉氏变
换,下面我们再求其它常用函数的拉氏变换。
例3 求正弦函数f(t)=sinkt(k为实数)的拉氏变换。
19
2.求下列函数的拉氏变换 (1) 0t 4 1
拉氏变换

)
=
⎧0(t
⎨ ⎩
t
(t
< ≥
0) 0)
L[t] =
1 s2
4.加速度函数
f
(t )
=
⎪⎧ ⎨ ⎪⎩
0(t < 0) 1 t 2 (t ≥ 0) 2
L[ 1 2
t2] =
1 s3
5
时间域:δ(t)→ 1(t)→t→ t2/2 复数域: 1→1/s→1/s2→1/s3
4.指数函数
f (t) = e−at (t ≥ 0)
t →0+
s→∞
证明方法同上。只是要将s→∞取极限。
15
(6) 衰减定理 若f2(t)=e-at f1(t), 则
F2(s) =F1(s+a)
L[e−at f (T )] = F (s + a)
16
8
(7) 延迟定理 (处理复杂时间函数) 若 f2(t)=f1(t-a), 则 F2(s)=e-as F1(s)
=
f (t) ∞ 0
= lim t→∞
f (t) −
f (0)
右边 = lim [sF (s) − f (0)] = lim sF (s) − f (0)
s→0
s→0
∴ lim f (t ) = lim sF (s)
t→∞
s→0
14
7
(5)初值定理
若 f(t) 在t=0+处有初值f(0+),则
lim f (t) = f (0+ ) = lim sF (s)
1
= 1 (1 − 1)
(s + a)(s + b) b − a s + a s + b
常微分方程课件:拉普拉斯变换及应用

estdt 1 est 1
0
0
s 0s
当a 0时 eat (t ) (t )
(3)单位冲激函数
L[ (t)]
(t )e st dt
0 (t)es0dt 1
0
0
2 拉普拉斯变换的基本性质 一、线性
若L[ f1(t )] F1(S ) , L[ f2(t )] F2(S )
00
SF (S) f (0)
例3 应用导数性质求下列函数的象函数:
1) f (t) cos(t);
2) f (t) (t).
解 : 1)L[cos(t)] L[ 1 d (sin(t))] dt
1
(s
s2
2
0)
s2
s
2
2)由 于 (t) d (t), L[ (t)] 1
dt
s
上述函数的定义域为[0, ∞),求其象函数。
解 : 1)L[sin(t )] L[ 1 (e jt e jt )]
2j 1[ 1 1 ]
2 j S j S j
S2 2
2)L[K (1 eat )] L[K ] L[Ke at ] K K Ka s s a s(s a)
设:L[ f (t)] F (S) 当t t0时,f (t t0 ) 0
则:L[ f (t t0 ) (t t0 )] est0 F(S)
证:L[ f (t t0 )]
0
f
(t
t0 )estdt
令t t0
t0
est0
f (t t0 )estdt
f ( )es d
则 L[af1(t) bf2(t)] aF1(S ) bF2(S )
证:0[af1(t ) bf2 (t )]est dt
拉斯变换解微分方程

§2-3拉普拉斯变换及其应用时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。
例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种.一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。
有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习一些基本时域信号拉氏变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49) 且(2-50)所以(2-51) 说明:单位脉冲函数可以通过极限方法得到。
设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。
当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。
由单位脉冲函数的定义可知,其面积积分的上下限是从到的。
因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。
由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。
所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为 (2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为 ( 2-56) 为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58) 拉氏变换为 (2-59)(5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。
(整理)拉普拉斯拉斯变换可用于求解常系数线性微分方程

拉普拉斯拉斯变换可用于求解常系数线性微分方程,是研究线性系统的一种有效而重要的工具。
拉普拉斯拉斯变换是一种积分变换,它把时域中的常系数线性微分方程变换为复频域中的常系数线性代数方程。
因此,进行计算比较简单,这正是拉普拉斯拉斯变换(简称:拉氏变换)法的优点所在。
拉普拉斯拉斯变换的定义一个定义在区间的函数,其拉氏变换定义为L[f(t)]=F(s)=式中:s=б+jω为复数,有时称变量S为复频域。
应用拉普拉斯拉斯变换进行电路分析有称为电路的复频域分析,有时称为运算法F(s)又称为f(t)的象函数,而f(t)称为F(s)的原函数。
通常用“L[ ]”表示对方括号内的函数作拉氏变换。
拉普拉斯变换的基本性质本节将介绍拉氏变换的一些基本性质,利用这些基本性质,可以很容易的求得一些较复杂的原函数的象函数,同时,这些基本性质对于分析线性非时变网络也是非常必要的。
一、唯一性定义在区间的时间函数与其拉氏变换存在一一对应关系。
根据可以唯一的确定其拉氏变换;反之,根据,可以唯一的确定时间函数。
唯一性是拉氏变换非常重要的性质,正是这个性质,才是我们有可能将时域中的问题变换为复频域中的问题进行求解,并使在复频域中求得的结果有可能再返回到时域中去。
唯一性的证明从略。
二、线性性质若和是两个任意的时间函数,其拉氏变换分别为和,和是两个任意常数,则有证根据拉氏变换的定义可根据拉氏变换的定义可得例求的拉氏变换。
解三、时域导数性质(微分性质)例应用时域导数性质求的象函数。
四、时域积分性质(积分规则)例:求单位斜坡函数及的象函数。
五、时域平移性质(延迟性质)作业:书后习题1、2、3、4。
课后记事:注意板书层次,因为内容很多,不要太乱。
常用时间函数的象函数一览表,见教材221页。
8-2、8-3拉普拉斯反变换和运算电路图(4学时)(教材第221页)教学目的:具有单根、复根、重根三种情况下用部分分式及分解定理求待定系数法,运算电路图的画法。
教学重点:具有单根、复根时求待定系数法,熟练掌握反变换的求法,熟练掌握运算电路图的画法。
74-学习手册-单元二知识点二拉氏变换和知识点三传递函数

例题分析:用复阻抗法求 RLC 串联电路的传递函数
解:将 RLC 串联电路中的电压和电流各量用对应的象函数表示,根据电工基础所学 知识,有:
课堂讨论
已知某系统在0初条件下的阶跃响应为:
c(t)
=
1-
2 3
e-t
-
1 3
e-4t
试求:系统的传递函数。
解:
C(s)
=
1 s
-
2 3
�s 1+1
-
1 3
�s +1
t
s0
知识点三 传递函数
学习重点:
1、理解传递函数的定义
2、控制系统传递函数的求取方法
3、直接求取法和复阻抗法能够传递函数
学习内容:
一、传递函数的定义
当初始条件为零时,输出量 c(t)的拉氏变换式 C(s)与输入量 r(t)的拉氏变换式 R(s)的 之比。
零初始条件有两方面含义:
一是指输入量在 t≥0 时才作用于系统,因此,在 t≤0 时,输入量及其各阶导数均为
s( s 2
+
1 a1s +
a2 )
(3)L-1变换
y t = L-1 Y (s)
(四)小结
1 拉氏变换的定义
ᆬ F (s) = ᆬ f (t) ᆬe-tsdt 0
2 常见函数L变换
f (t)
(1)单位脉冲
(t)
(2)单位阶跃
1(t )
(3)单位斜坡
t
(4)单位加速度
t2 2
e -at
(5)指数函数
L f t = s F s - f 0
L
f tdt
=
1 s
F
拉氏(laplace)逆变换的几种适用解法

拉氏(laplace)逆变换的几种适用解
法
拉氏(laplace)逆变换是一种常用的数学工具,用于求解常微分方程的解析解。
它可以将一个复杂的微分方程转换为一个简单的拉氏变换,从而解决复杂的微分方程。
拉氏逆变换的解法有很多,其中最常用的有四种:
1. 分部积分法:这种方法是将拉氏变换分解为多个部分,然后分别对每个部
分进行积分,最后将结果组合起来,得到最终的解。
2. 分部级数法:这种方法是将拉氏变换分解为多个部分,然后分别对每个部
分进行级数展开,最后将结果组合起来,得到最终的解。
3. 分部函数法:这种方法是将拉氏变换分解为多个部分,然后分别对每个部
分进行函数求解,最后将结果组合起来,得到最终的解。
4. 分部积分变换法:这种方法是将拉氏变换分解为多个部分,然后分别对每
个部分进行积分变换,最后将结果组合起来,得到最终的解。
以上就是拉氏逆变换的几种适用解法,它们都可以有效地解决复杂的微分方程,但是每种方法都有其优缺点,因此在实际应用中,应根据具体情况选择最合适的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x (n1) 0
a1[s n1 X
(s)
sn2 x0
s n3 x0
x (n2) 0
]
an1[sX (s) x0 ] an X (s) F (s)
(sn a1sn1 an1s an ) X (s) F (s) B(s)
X (s) F(s) B(s) A(s)
x(t) L1[ X (s)] L1[ F (s) B(s)] A(s)
拉普拉斯变换法.. /Laplace Transform /
1
拉普拉斯变换 ..
含义:..
简称拉氏变换 .. 从实变量函数到复变量函数间的一种函数变换
用途与优点
对一个实变量函数作拉氏变换, 并在复数域中进行运算, 再将运算结果作拉普拉斯反变换 来求得实数域中的相应结 果,往往比直接在实数域计算容易得多。
s2
s 1
19
例 7 求 x 3x 3x x 1 满足初始条件
0
L[x(t)] sX (s) x0
L[x(n) (t)]
sn
X
(s)
sn1x0
s n2 x0
sx0(n2)
x (n1) 0
17
x(n) a1x(n1) an1x an x f (t)
给(4.32)两端施行Laplace Transform
sn
X
(s)
s n1 x0
sn2 x0
sx0(n2)
应用:
求解线性微分方程 在经典控制理论中,对控制系统的分析和综合…
2
拉普拉斯变换法用于求解常微分方程的基本思路: ..
对常微分方程进行拉氏变换法, 得代数方程,求解 再反变换获取原方程的解 ..
问题: 1. 什么是拉氏变换 2. 拉氏变换的基本性质 3. 什么是拉氏逆变换 4. 如何用拉氏变换求解微分方程….
3
1拉普拉斯变换定义(简称拉氏变换) ..
对于在 [0, ) 上有定义的函数 f (t)
T
若
est f(t)dt lim est f(t)dt T
0
0
对于已给的S(一般为复数)存在,则称 ..
F(s) e st f(t)dt Re s
为函数 f (t) 的拉普拉斯变换,记为 L[ f (t)] F(s)
14
例4 求 F (s) s 2 5s s 的Laplace 反变换 (s 1)(s 2)2
解 F (s) 1 1 s 1 (s 2)2
f
(t)
L1[
s
1
] 1
L1[
(s
1 2)2
]
et te2t (t 0)
15
4 拉普拉斯变换法(求非齐次线性方程的特解 )
步骤:
原函数
10
3 象函数的微分性质
F(s) L[ f (t)]
F (s) test f (t)dt
0
F (n) (s) (1)n t nest f (t)dt
0
F (n) (s) (1)n L[tn f (t)]
11
§3 拉普拉斯逆变换 已知象函数,求原函数
L1[F (s)] f (t)
也具有线性性质
f1(t) fn (t)
13
拉普拉斯逆变换实例
例3 求
F (s)
s2
s3 3s
的Laplace
2
反变换
解
F (s)
s2
s3 3s
2
(s
s3 1)(s
2)
2 1 s 1 s 2
f (t) L1[F (s)] L1[ 2 ] L1[ 1 ]
s 1
s2
2et e2t t 0
18
用拉氏变换求微分方程实例
例5 求 dx x e2t 满足初始条件 x(0) 0的特解
dt
解 令 L[x(t)] X (s) L( dx) L[x] L[e2t ] dt
sX (s) x(0) X (s) 1 s2
X (s)
1
1 1
(s 1)(s 2) s 2 s 1
x(t) L1[ X (s)] L1[ 1 ] L1[ 1 ] e2t et
f (t)称为Laplace Transform 的原函数,F(s)称为f (t)的象
函数.
4
拉普拉斯变换法存在性 …
假若函数 f (t) 在 t 0 的每一个有限区间上 是分段连续的, 并且 常数 M 0 0
使对于所有的 t 0 都有 f (t) Me t 成立
则当 Re s 时, f (t) 的Laplace Transform
是存在的。
5
拉普拉斯变换实例
例1 f (t) 1 (t 0)
est 1dt
lim [ 1 est T ]
T s
0
0
lim [ 1 esT 1] 1
T s
ss
当 Re s 0
即 L[1] 1 (Re s 0) s
6
例2 f (t) ezt ( z是给定的实数或复数 )
L[ezt ] est ezt dt
0
e(sz)tdt
1
(Re(s z) 0)
sz
0
L[ezt ] 1 sz
(Res Re z)
7
常用函数拉氏变换表 利用拉氏变换进行计算时,可直接查变换表得
结果
8
§2 拉普拉斯变换的基本性质 1 线性性质
如果 f (t), g(t) 是原函数, 和
是任意两个常数(可以是复数),则有
L1[c1F1(s) c2F2 (s)] c1L1[F1(s)] c2L1[F2 (s)]
12
由线性性质可得
如果 f (t) 的拉普拉斯变换 F(s) 可分解为
F (s) F1 (s) Fn (s)
并假定 Fi (s) 的拉普拉斯变换容易求得,即
Fi (s) L[ fi (t)] 则 L1[F (s)] L1[F1(s)] L1[Fn (s)]
微分方程的解
取拉氏逆变换
象函数
解代数方程
微分方程
取拉氏变换
象函数的代 数方程
16
4 拉普拉斯变换法(求非齐次线性方程的特解 )
x(n) a1x(n1) an1x an x f (t)
x(0)
x0
,
x(0)
x0
,
x(0)
x0,,
x(n1)
(0)
x (n1) 0
a i 为常数
令 X (s) L[x(t)] est x(t)dt
L[f (t) g(t)] L[ f (t)] L[g(t)]
9
2 原函数的微分性质
如果 f (t), f (t),, f (n) (t) 都是原函数,则有
L[ f (t)] sL[ f (t)] f (0)
或
L[ f (n) (t)] sn L[ f (t)] sn1 f (0)
sn2 f (0) f (n1) (0)