常微分方程作业欧拉法与改进欧拉法
欧拉法改进欧拉法斐波那契法原理及流程图

欧拉法改进欧拉法斐波那契法原理及流程图The following text is amended on 12 November 2020.1欧拉法求微分方程方法说明(Euler)法是解常微分方程初值问题最简单的数值方法,其具体做法是,将区间[a,b]进行N等分:,步长.并将式写成等价的积分形式()再对式右端积分用矩形公式计算,则有,在式右端取,舍去余项。
则得,作为的近似值。
在式右端取,舍去余项,则得y1)y2=y1+yy(y1,作为的近似值.一般地,在式右端取舍去余项,则得作为的近似值.式为法计算公式.我们知道微分方程的解是平面上的一族积分曲线,这族曲线中过点的积分曲线就是初值问题式的解.欧拉法的几何意义是,过点引斜率为的积分曲线的切线,此切线与直线的交点为,再过点引以为斜率的切线与直线的交点为,依此类推,从出发,作以为斜率的切线,此切线与直线交点为.于是便得到过点的一条折线,见图.过的积分曲线则用此折线来代替.因此,这种方法亦称折线法.图例:用欧拉法求微分方程[]2',(0)1,0.1,0,1xy y y h y 区间为=-==欧拉法流程图如下:欧拉法程序如下: clear;clc;x1=0;x2=1;h=;x0=0;y0=1;N=(x2-x1)/h;%要计算的次数x(1)=x0;y(1)=y0;for n=1:Nx(n+1)=x(n)+h;y(n+1)=y(n)+h*(y(n)-2*x(n)/y(n)); endX=xY=y2 改进欧拉法求微分方程方法说明由于欧拉法采用矩形公式计算积分产生较大截断误差.改进法(又称改进折线法)是采取梯形公式来计算式右端积分,则有()在式右端取,舍去余项,则得将作为的近似值.在式右端再取,舍去余项,则得将作为的近似值.一般地,在式右端取,舍去余项.则得将作为的近似值.式为改进法计算公式.流程图如下:例:用改进欧拉法求微分方程[]2',(0)1,0.1,0,1xy y y h y区间为=-== 改进欧拉法程序如下: clear;clc;x1=0; x2=1; h=; x0=0; y0=1; p(1)=0; N=(x2-x1)/h; x(1)=x0; y(1)=y0;for n=1:Nx(n+1)=x(n)+h;y(n+1)=y(n)+h*(y(n)-2*x(n)/y(n));p(n+1)=y(n)+h*(y(n+1)-2*x(n)/y(n+1));y(n+1)=(y(n+1)+p(n+1))/2;endX=xY=y3斐波那契法求极值方法说明斐波那契法原理类似于黄金分割法,只是搜索区间的缩短率不再采用黄金分割数。
微分方程的数值解法

微分方程的数值解法微分方程是自然科学和现代技术领域中一种最基本的数学描述工具,它可以描述物理世界中的各种现象。
微分方程的解析解往往很难求出,因此数值解法成为解决微分方程问题的主要手段之一。
本文将介绍几种常见的微分方程的数值解法。
一、欧拉法欧拉法是微分方程初值问题的最简单的数值方法之一,它是由欧拉提出的。
考虑一阶常微分方程:$y'=f(t,y),y(t_0)=y_0$其中,$f(t,y)$表示$y$对$t$的导数,则$y(t_{i+1})=y(t_i)+hf(t_i,y_i)$其中,$h$为步长,$t_i=t_0+ih$,$y_i$是$y(t_i)$的近似值。
欧拉法的精度较低,误差随着步长的增加而增大,因此不适用于求解精度要求较高的问题。
二、改进欧拉法改进欧拉法又称为Heun方法,它是由Heun提出的。
改进欧拉法是在欧拉法的基础上进行的改进,它在每个步长内提高求解精度。
改进欧拉法的步骤如下:1. 根据当前$t_i$和$y_i$估算$y_{i+1}$:$y^*=y_i+hf(t_i,y_i),t^*=t_i+h$2. 利用$y^*$和$t^*$估算$f(t^*,y^*)$:$f^*=f(t^*,y^*)$3. 利用$y_i$、$f(t_i,y_i)$和$f^*$估算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{2}(f(t_i,y_i)+f^*)$改进欧拉法具有比欧拉法更高的精度,但是相较于其他更高精度的数值方法,它的精度仍然较低。
三、龙格-库塔法龙格-库塔法是一种广泛使用的高精度数值方法,它不仅能够求解一阶和二阶常微分方程,还能够求解高阶常微分方程和偏微分方程。
其中,经典的四阶龙格-库塔法是最常用的数值方法之一。
四阶龙格-库塔法的步骤如下:1. 根据当前$t_i$和$y_i$估算$k_1$:$k_1=f(t_i,y_i)$2. 根据$k_1$和$y_i$估算$k_2$:$k_2=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_1)$3. 根据$k_2$和$y_i$估算$k_3$:$k_3=f(t_i+\frac{h}{2},y_i+\frac{h}{2}k_2)$4. 根据$k_3$和$y_i$估算$k_4$:$k_4=f(t_i+h,y_i+hk_3)$5. 根据$k_1$、$k_2$、$k_3$和$k_4$计算$y_{i+1}$:$y_{i+1}=y_i+\frac{h}{6}(k_1+2k_2+2k_3+k_4)$龙格-库塔法的精度较高,在求解一些对精度要求较高的问题时,龙格-库塔法是一个比较好的选择。
常微分方程数值解法-欧拉法、改进欧拉法与四阶龙格库塔法常微分方程数值解法

y( xn1)
y( xn
Байду номын сангаас
h)
y(xn )
hy'( xn )
h2 2!
y''( )
进一步: 令
h2 y( xn ) hy'( xn ) 2! y''( xn )
常微分方 yn1 y( xn1 ) , yn y( xn )
程数值解
法-欧拉法 yn1 yn hf ( xn , yn ) h2
、改进欧 y( xn1 ) yn1
2
max y''( x)
a xb
拉法和四
三、Euler方法
已 知 初 值 问 题 的 一 般 形式 为:
dy
dx
f (x, y)
a xb
(1)
y( x0 ) y0
常微分方 用差商近似导数 程数值解 问题转化为
yn1 yn dy
h
dx
法-欧拉法 yn1 yn hf ( xn , yn )
法-欧 y(拉0) 法1
、改进欧
拉法和四
四、几何意义
由 x0 , y0 出发取解曲线 y yx 的切线(存在!),则斜率
dy
f x0, y0
dx x y
,
0
0
常微分方 由于 f x0, y0 及 x0, y0 已知,必有切线方程。
由点斜式写出切程线方数程:值解
法、-改欧进拉欧法 ddxy y y0 x x0
常微分方 程数值解 能用解析方法求出精确解的微分方程为数不多,
而且有的方程即使有解析解,也可能由于解的表达
法-欧拉法 式非常复杂而不易计算,因此有必要研究微分方程
分别利用欧拉法和改进欧拉法求解微分方程组的数值解

分别利用欧拉法和改进欧拉法求解微分方程组的数值解欧拉法(Euler’s Method)和改进欧拉法(Improved Euler’s Method),是求解常微分方程数值解的两种常用方法。
它们都属于一阶精度的显式迭代算法。
首先,我们来介绍一下欧拉法。
欧拉法是一种简单的数值求解算法,它基于微分方程的定义,将微分方程转化为差分方程。
考虑一个一阶常微分方程 dy/dx = f(x, y),并给定初始条件 y(x0)= y0,我们希望求解在给定区间 [x0, xn] 上方程的数值解。
首先,我们将区间 [x0, xn] 平均分成 N 个小区间,每个小区间的长度为 h = (xn - x0) / N。
然后,我们可以使用以下的欧拉迭代公式计算数值解:y[i+1] = y[i] + h * f(x[i], y[i])其中,x[i] = x0 + i * h,y[i] 是在点 x[i] 处的数值解。
通过不断迭代上述公式,我们可以获得[x0, xn] 上微分方程的数值解。
欧拉法的优点在于简单易懂,计算速度较快。
然而,欧拉法的缺点是精度较低,误差随着步长h 的增大而增大。
为了提高精度,我们可以使用改进欧拉法。
改进欧拉法,也称为龙格–库塔算法(Runge-Kutta Method)或四阶龙格–库塔方法,是一种基于欧拉法的改进算法。
改进欧拉法使用了更多的近似取值,以减小误差。
与欧拉法类似,我们将区间 [x0, xn] 平均分成 N 个小区间,每个小区间的长度为 h = (xn - x0) / N。
然后,我们可以使用以下的公式计算数值解:k1 = h * f(x[i], y[i])k2 = h * f(x[i] + h/2, y[i] + k1/2)y[i+1] = y[i] + k2其中,k1 和 k2 是计算过程中的辅助变量。
通过不断迭代上述公式,我们可以获得 [x0, xn] 上微分方程的数值解。
改进欧拉法相对于欧拉法而言,计算精度更高。
第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法 2

第8章 常微分方程数值解法本章主要内容:1.欧拉法、改进欧拉法. 2.龙格-库塔法。
3.单步法的收敛性与稳定性。
重点、难点一、微分方程的数值解法在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。
对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。
本章我们主要讨论常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy的数值解法。
数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。
二、欧拉法与改进欧拉法欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。
将常微分方程),(y x f y ='变为()*+=⎰++11))(,()()(n xn x n n dtt y t f x y x y1.欧拉法(欧拉折线法)欧拉法是求解常微分方程初值问题的一种最简单的数值解法。
欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:Nab h N n y x hf y y n n n n -=-=+=+)1,...,1,0(),(1 欧拉法局部截断误差11121)(2++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。
我们在计算时应注意欧拉法是一阶方法,计算误差较大。
欧拉法的几何意义:过点A 0(x 0,y 0),A 1(x 1,y 1),…,A n (x n ,y n ),斜率分别为f (x 0,y 0),f (x 1,y 1),…,f (x n ,y n )所连接的一条折线,所以欧拉法亦称为欧拉折线法。
求常微分方程的数值解

求常微分方程的数值解一、背景介绍常微分方程(Ordinary Differential Equation,ODE)是描述自然界中变化的数学模型。
常微分方程的解析解往往难以求得,因此需要寻找数值解来近似地描述其行为。
求解常微分方程的数值方法主要有欧拉法、改进欧拉法、龙格-库塔法等。
二、数值方法1. 欧拉法欧拉法是最简单的求解常微分方程的数值方法之一。
它基于导数的定义,将微分方程转化为差分方程,通过迭代计算得到近似解。
欧拉法的公式如下:$$y_{n+1}=y_n+f(t_n,y_n)\Delta t$$其中,$y_n$表示第$n$个时间步长处的函数值,$f(t_n,y_n)$表示在$(t_n,y_n)$处的导数,$\Delta t$表示时间步长。
欧拉法具有易于实现和理解的优点,但精度较低。
2. 改进欧拉法(Heun方法)改进欧拉法又称Heun方法或两步龙格-库塔方法,是对欧拉法进行了精度上提升后得到的一种方法。
它利用两个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
改进欧拉法的公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\Delta t,y_n+k_1\Delta t)$$$$y_{n+1}=y_n+\frac{1}{2}(k_1+k_2)\Delta t$$改进欧拉法比欧拉法精度更高,但计算量也更大。
3. 龙格-库塔法(RK4方法)龙格-库塔法是求解常微分方程中最常用的数值方法之一。
它通过计算多个斜率来近似函数值,并通过加权平均来计算下一个时间步长处的函数值。
RK4方法是龙格-库塔法中最常用的一种方法,其公式如下:$$k_1=f(t_n,y_n)$$$$k_2=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_1\Delta t}{2})$$ $$k_3=f(t_n+\frac{\Delta t}{2},y_n+\frac{k_2\Delta t}{2})$$ $$k_4=f(t_n+\Delta t,y_n+k_3\Delta t)$$$$y_{n+1}=y_n+\frac{1}{6}(k_1+2k_2+2k_3+k_4)\Delta t$$三、数值求解步骤对于给定的常微分方程,可以通过以下步骤求解其数值解:1. 确定初值条件:确定$t=0$时刻的函数值$y(0)$。
常微分方程中的数值方法

常微分方程中的数值方法常微分方程是数学中的一个重要分支。
它主要研究的对象是随时间变化的函数。
在实际应用中,我们需要求解这些函数的解析解,但通常情况下,解析解并不容易得到,甚至是不可能得到。
因此,我们需要使用数值方法来求解这些函数的数值近似解。
在本文中,我们将介绍常微分方程中的数值方法。
一、欧拉法欧拉法是常微分方程数值解法中最基本的一种方法。
它是根据欧拉公式推导而来的。
具体地,我们可以将一阶常微分方程dy/dt=f(t,y)写成如下形式:y(t+h)=y(t)+hf(t,y(t))其中,h是步长,f(t,y)是t时刻y的导数。
欧拉法就是通过上面的公式进行逐步逼近,然后得到最终的数值解。
欧拉法的计算过程非常简单,但所得到的解可能会出现误差。
这是因为欧拉法忽略了f(t+h,y(t+h))和f(t,y(t))之间的变化。
因此,我们需要使用更为精确的数值方法来解决这个问题。
二、改进欧拉法为了解决欧拉法中的误差问题,我们可以使用改进欧拉法。
改进欧拉法又称作四阶龙格-库塔法。
它的基本思想是对欧拉法公式进行改进,以提高计算精度。
具体地,根据龙格-库塔公式,可将改进欧拉法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)改进欧拉法的计算过程比欧拉法要复杂些,但所得到的数值解比欧拉法更精确。
这种方法适用于一些特殊的问题,但在求解一些更为复杂的问题时,还需要使用其他的数值方法。
三、龙格-库塔法龙格-库塔法是求解常微分方程中数值解的常用方法之一。
它最常用的是四阶龙格-库塔法。
这种方法的基本思想是使用四个不同的斜率来计算数值解。
具体地,我们可以将四阶龙格-库塔法表示为:y(t+h)=y(t)+1/6(k1+2k2+2k3+k4)其中,k1=h*f(t,y)k2=h*f(t+h/2,y+k1/2)k3=h*f(t+h/2,y+k2/2)k4=h*f(t+h,y+k3)与改进欧拉法相比,龙格-库塔法的计算复杂度更高,但所得到的数值解更为精确。
向前欧拉法,向后欧拉法与改进欧拉法求解微分方程

向前欧拉法,向后欧拉法与改进欧拉法求解微分方程
向前欧拉法、向后欧拉法和改进欧拉法是求解微分方程的常用数值方法。
这些方法都是基于欧拉公式,即将微分方程中的导数用差分代替,从而将微分方程转化为差分方程,进而用数值方法求解。
向前欧拉法是一种简单的数值方法,它利用当前时刻的导数来估计下一时刻的解。
具体来说,假设微分方程为dy/dt=f(y,t),则向前欧拉法的迭代公式为:y_n+1=y_n+hf(y_n,t_n),其中h为时间步长。
这个公式可以看作是在当前时刻上做一个切线,然后用这个切线的斜率来估计下一时刻的解。
向后欧拉法是一种更加精确的数值方法,它利用下一时刻的导数来估计当前时刻的解。
具体来说,向后欧拉法的迭代公式为:
y_n+1=y_n+hf(y_n+1,t_n+1),其中h为时间步长。
这个公式可以看作是在下一时刻上做一个切线,然后用这个切线的斜率来估计当前时刻的解。
由于向后欧拉法需要解一个非线性方程,因此比向前欧拉法更加复杂。
改进欧拉法是向前欧拉法和向后欧拉法的结合,它利用当前时刻和下一时刻的导数来估计当前时刻的解。
具体来说,改进欧拉法的迭代公式为:y_n+1=y_n+(h/2)(f(y_n,t_n)+f(y_n+1,t_n+1)),其中h 为时间步长。
这个公式可以看作是在当前时刻和下一时刻上各做一个切线,然后将这两个切线的斜率取平均值来估计当前时刻的解。
改进欧拉法相对于向前欧拉法和向后欧拉法更加精确。
总的来说,向前欧拉法、向后欧拉法和改进欧拉法都是求解微分
方程的有力工具,使用时需要根据具体问题选择合适的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy
+
=t
=
t
y
y
≤
≤
,2
;5.0
0,3
)0(
)1(=
,1
∆
dt
代码:
%改进欧拉法
function Euler(t0,y0,inv,h)
n=round(inv(2)-inv(1))/h;
t(1)=t0;
y(1)=y0;
for i=1:n
y1(i+1)=y(i)+h*fun(t(i),y(i));
t(i+1)=t(i)+h;
y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1)))
end
plot(t,y,'*r')
function y=fun(t,y);
y=y+1;
调用:Euler(0,3,[0,2],0.5)
得到解析解:hold on;
y=dsolve('Dy=y+1','(y(0)=3)','t');
ezplot(y,[0,2])
图像:
dy y
=t
-
t
y
,2
t
=
;2.0
≤
0,5.0
,4
)0(
)2(2=
≤
∆
dt
代码:
function Euler1(t0,y0,inv,h)
n=round(inv(2)-inv(1))/h;
t(1)=t0;
y(1)=y0;
for i=1:n
y1(i+1)=y(i)+h*fun(t(i),y(i));
t(i+1)=t(i)+h;
y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end
plot(t,y,'*r')
function y=fun(t,y);
y=y^2-4*t;
调用:
Euler1(0,0.5,[0,2],0.2)
图像:
dt
代码:
function Euler2(t0,y0,inv,h)
n=round(inv(2)-inv(1))/h;
t(1)=t0;
y(1)=y0;
for i=1:n
y1(i+1)=y(i)+h*fun(t(i),y(i));
t(i+1)=t(i)+h;
y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end
plot(t,y,'*r')
function y=fun(t,y);
y=(3-y)*(y+1);
调用:
Euler2(0,4,[0,5],1)
得到解析解:
hold on;
y=dsolve('Dy=(3-y)*(y+1)','y(0)=4','t');
ezplot(y)
图像:
dt
代码:
function Euler2(t0,y0,inv,h)
n=round(inv(2)-inv(1))/h;
t(1)=t0;
y(1)=y0;
for i=1:n
y1(i+1)=y(i)+h*fun(t(i),y(i));
t(i+1)=t(i)+h;
y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end
plot(t,y,'*r')
function y=fun(t,y);
y=(3-y)*(y+1);
调用:
Euler2(0,4,[0,5],0.5)
得到解析解:
hold on;
y=dsolve('Dy=(3-y)*(y+1)','y(0)=4','t');
ezplot(y)
图像:
14.考虑满足初始条件(x(0),y(0))=(1,1)的下列方程组:
⎪⎪⎩⎪⎪⎨⎧+-+-=+=⎪⎪⎩⎪⎪⎨⎧--==;2.12.0,)2(;32,)1(22y xy y x dt
dy y y dt dx y x dt dy y dt dx 选定时间步长∆t=0.25,n=5.用改进欧拉方法求两个方程组的近似解;
(1) 代码:
function Euler4(t0,int,n,h)
t=t0;
x(1)=int(1);
y(1)=int(2);
for i=1:n
x1(i+1)=x(i)+h*xfun(t(i),x(i),y(i));
y1(i+1)=y(i)+h*yfun(t(i),x(i),y(i));
t(i+1)=t(i)+h;
x(i+1)=x(i)+1/2*h*(xfun(t(i),x(i),y(i))+xfun(t(i+1),x1(i+1),y1(i+1))); y(i+1)=y(i)+1/2*h*(yfun(t(i),x(i),y(i))+yfun(t(i+1),x1(i+1),y1(i+1))); end
plot(t,x,'o-r')
hold on
plot(t,y,'*-g')
hold on
plot(x,y)
function x=xfun(t,x,y);
x=y;
function y=yfun(t,x,y);
y=-2*x-3*y;
调用函数:Euler4(0,[1,1],5,0.25)
图像:
(2)代码:function Euler5(t0,int,n,h)
t=t0;
x(1)=int(1);
y(1)=int(2);
for i=1:n
x1(i+1)=x(i)+h*xfun(t(i),x(i),y(i));
y1(i+1)=y(i)+h*yfun(t(i),x(i),y(i));
t(i+1)=t(i)+h;
x(i+1)=x(i)+1/2*h*(xfun(t(i),x(i),y(i))+xfun(t(i+1),x1(i+1),y1(i+1))); y(i+1)=y(i)+1/2*h*(yfun(t(i),x(i),y(i))+yfun(t(i+1),x1(i+1),y1(i+1))); end
plot(t,x,'o-r')
hold on
plot(t,y,'*-g')
hold on
plot(x,y)
function x=xfun(t,x,y);
x=y+y^2;
function y=yfun(t,x,y);
y=-x+0.2*y-x*y+1.2*y^2;
调用函数:Euler5(0,[1,1],5,0.25)
图像:。