中科院固体表面物理化学期末考试总结

合集下载

固体物理考试总结

固体物理考试总结

固体物理考试总结一、晶体结构1.单晶,准晶和非晶结构上的差别:单晶:排列长程有序,具有周期性准晶:排列短程有序,长程具有取向序,即准周期性非晶:排列短程有序,长程无序。

2.晶格:晶体中原子排列的具体形式。

原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格,如Cu和Ag;Ge和Si等等3.晶格周期性的描述:原胞和基矢晶格共同特点:周期性,可以用原胞和基矢来描述。

原胞:一个晶格中最小重复单元,每个元胞中只能包含一个格点基矢:原胞的边矢量4.单胞:为了反映晶格的对称性,常取最小重复单元的几倍作为重复单元。

单胞的边在晶轴方向,边长等于该方向上的一个周期代表单胞三个边的矢量称为单胞的基矢 5.可以用l?11。

?l2?2?l3?3表示一个空间格子(点阵)6.晶格周期性的描述:布拉伐格子实际晶格可以看成为在上述空间格子的每个格点上放有一组原子,它们的相对位移为r?。

这个空间格子表征了晶格的周期性,称为布拉伐格子。

7. 根据原胞基矢定义三个新的矢量:倒格子基矢量(注意写成矢量形式)b1?2??2??3?3??1?1??2b2?2?b3?2??1[?2??3]?1[?2??3]?1[?2??3]?n1b1?n2b2?n3b3倒格子每个格点的位置:G称为倒格子矢量。

2?,i?j性质:?ibi?2??ij{??0,i?j,nnn2n3(i,j?1,2,3),正格子原胞体积反比于倒格子原胞体积。

8.?1??布里渊区边界条件(k?G)G?02满足此边界条件的k的取值范围是在倒格矢-G的垂直平分面上. 9.晶格的对称性七大晶系的关系:立方晶系,四方晶系,正交晶系,正交晶系,单斜晶系,三斜晶系;立方晶系,三角晶系;六角晶系,三角晶系、正交晶系。

各晶系的布拉伐格子:立方晶系:简单立方、体心立方、面心立方四方晶系:简四方、体心四方正交晶系:简单正交、体心正交、面心正交、底心正交单斜晶系:简单单斜、底心单斜三斜晶系:简单三斜六角晶系:六角三角晶系:三角。

固体物理考试要点及部分答案

固体物理考试要点及部分答案

名词解释1、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。

复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。

5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。

答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。

24、引入玻恩卡门条件的理由是什么?答:(1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。

2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题 1、 倒格子是怎样定义的?为什么要引入倒格子这一概念? 2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein 模型和Debye 模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、 叙述晶格周期性的两种表述方式。

固体物理期末总结

固体物理期末总结

三、晶列及晶面
1.晶列及晶列指数 通过晶格中任意两个格点连一条直线称为晶列,晶列的取 向称为晶向,描写晶向的一组数称为晶向指数(或晶列指数)。
l1l2l3 若遇负数,则在该数上方加一横线 l1l2l3 。
2.晶面及晶面指数 在晶格中,通过任意三个不在同一直线上的格点作一平面, 称为晶面,描写晶面方位的一组数称为晶面指数。
2.宏观特征 自限性、晶面角守恒、解理性、均匀性、
晶体的各向异性、对称性、固定的熔点。
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
晶体结构及其描述
一、晶体结构
一个理想的晶体是由完全相同的结构单元在空间周期性 重复排列而成的。所有晶体结构可以用晶格来描述,这种晶格 的每个格点上附有一群原子,这样的一个原子群称为基元,基 元在空间周期性重复排列就形成晶体结构。
h1h2h3 若遇负数,则在该数上方加一横线h1h2h3 。
以布拉维原胞基矢 a,b,c 为坐标轴来表示的晶面指数称为 密勒指数,用(hkl)表示。
晶面指数(h1h2h3 )表示的意义是: (1)基矢 a1,a2 ,a3 被平行的晶面等间距的分割成h1、h2、h3 等份;
(2)以 a1 , a2 ,a3为各轴的长度单位所求得的晶面在坐标轴
第一章 晶体结构和X-射线衍射
总结
晶体的特征 晶体结构及其描述 晶体的对称性 倒格 晶体X射线衍射
晶体的特征
1.微观特征
单晶体
晶体: 长程有序 多晶体 固体分类 准晶体:有长程取向性,而没有长程的平移对称性。
(按结构) 非晶体: 不具有长程序的特点,短程有序。
长程有序:至少在微米量级范围内原子排列具有周期性。

高校物理专业固体物理学期末考试答案详解

高校物理专业固体物理学期末考试答案详解

高校物理专业固体物理学期末考试答案详解物理专业固体物理学期末考试答案详解题一:多晶体和单晶体的区别和联系是什么?答:多晶体和单晶体是固体物质的两种不同形态。

多晶体是由许多晶粒组成的,晶粒之间存在取向差异,呈现出无规则的排列和晶格结构。

而单晶体则具有完美的晶格结构,晶粒排列有序。

多晶体和单晶体在结构和性质上存在一些区别和联系。

首先,在结构上,多晶体由许多晶粒组成,晶粒之间存在取向差异,形成无规则的排列和晶格结构;而单晶体由一个晶粒组成,晶粒之间排列有序且具有完美的晶格结构。

同时,在性质上,多晶体的物理性质通常是各晶粒性质的平均值,具有各向同性;而单晶体的物理性质在晶格各个方向上存在明显差异,具有各向异性。

此外,多晶体与单晶体在制备和应用中也存在差异。

多晶体比较容易制备,其制备成本低,适用于大规模生产;而单晶体的制备比较困难,制备成本高,适用于对晶体结构和性质要求较高的领域,如光电子器件和半导体材料等。

总结起来,多晶体和单晶体在结构、性质以及应用方面存在明显的区别。

多晶体具有无规则排列的结构,各向同性的性质,适用于大规模生产;而单晶体具有有序排列的结构,各向异性的性质,适用于对晶体结构和性质要求较高的领域。

题二:介绍一下福克斯效应和拉曼散射现象。

答:福克斯效应(Focke effect)是固体物理中的一种重要现象,描述了光在晶体中传播时的色散性质。

当光波传播到晶体中时,由于晶体中原子的周期性排列,光波的传播速度因晶体的折射率而发生变化,导致光波的传播方向发生偏折的现象。

福克斯效应的具体表现是,在晶体的X射线或电子束射线入射时,会出现衍射条纹,这些衍射条纹的位置和形状与晶体的结构相关。

通过对这些衍射条纹进行分析和测量,可以确定晶体的晶格常数和晶体结构。

另一方面,拉曼散射现象(Raman scattering)是指光波在与物质相互作用时发生频率或波长的变化。

当光波与物质相互作用时,由于光与物质分子之间的相互作用,光波的能量会改变,从而引起光波的频率或波长发生变化。

表面物理化学总结

表面物理化学总结

第一章1.将分散相粒子的粒径在1~100 nm之间的系统称为胶体。

(1)分散相粒子的半径在1~100nm之间的系统,(2)胶体一般目测是均匀的,但实际是多相不均匀体系。

(3)不少教材认为胶体的范围是1~1000nm 之间。

总之,胶体不是胶,是一个混合物,胶体这个名称是被沿用下来的。

胶体是一个具有巨大相界面的分散体系2.影响胶体性质的重要因素:(1)质点大小(2)质点形状和柔顺性(3)表面性质(包括电学性质)(4)质点-质点之间的相互作用(5)质点-溶剂之间的相互作用。

3.胶体体系分类:(1)溶胶(胶体分散体系)表面自由能很高,在热力学上是不稳定的,也是不可逆的,其组成相一旦发生分离,就不易再恢复原状。

(2)高分子溶液(高分子物质的真溶液-天然的或合成的)在热力学上是稳定的和可逆的,溶质从溶剂中分离后容易恢复原状。

(3)缔合胶体有时称为胶体电解质,在热力学上是稳定的4.分散体系:一种或多种物质以一定的分散度分散在另一种物质中所形成的体系。

分散相(disperse phase):被分散的物质,以颗粒分散状态存在的不连续相,相当于溶液中的溶质;分散介质(disperse medium):有分散相在其中的均匀介质,或称连续相,相当于溶液中的溶剂。

当体系中的质点足够大(1nm~100nm),它与分散介质之间有明确的界面存在时,称为胶体分散体系5,分散体系通常有三种分类方法:按分散相粒子的大小分类:分子分散体系胶体分散体系粗分散体系按分散相和介质的聚集状态分类:液溶胶固溶胶气溶胶按胶体溶液的稳定性分类:憎液溶胶亲液溶胶液溶胶(sol):分散介质为液体,如介质为水则称为水溶胶固溶胶(solid sol):分散介质为固体气溶胶(aerosol):分散介质为气体憎液溶胶: 半径在1 nm~100 nm之间的难溶物固体粒子分散在液体介质中,有很大的相界面,易聚沉,是热力学上的不稳定体系。

一旦将介质蒸发掉,再加入介质就无法再形成溶胶,是一个不可逆体系,如氢氧化铁溶胶、碘化银溶胶等。

固体物理期末反思报告总结

固体物理期末反思报告总结

固体物理期末反思报告总结一、引言在本学期的固体物理课程中,我通过学习和实践的方式,对固体物理学的基本概念、原理和应用有了更深入的了解。

通过课堂学习、实验操作和小组讨论,我进一步巩固了基础知识,并提高了实际运用的能力。

在本篇报告中,我将对这一学期的学习进行总结,并反思自己的不足之处,以期在今后的学习中能够更加全面和有效地提高自己。

二、学习收获在本学期的固体物理学习中,我收获了许多知识和技能。

首先,通过课堂学习,我对固体物理学的基本原理有了更深入的理解。

老师通过生动的讲解和实例分析,使我能够更好地理解固体的结构和性质,并了解到固体物理学在科学研究和工程应用中的重要性。

其次,实验操作也是我学习的重要环节。

通过实验,我亲自动手进行了一系列的固体物理实验,例如测量金属的热导率、弹簧的弹性系数等。

通过实验操作,我不仅能够更直观地了解实验原理和步骤,还能够培养自己的动手能力和实际问题解决能力。

此外,小组讨论也是我学习中不可或缺的一环。

在小组讨论中,我能够与同学们共同探讨和解决一些难题,互相帮助和启发。

通过与同学们的交流和对问题的深入思考,我不仅能够从他人的经验和观点中吸取新的知识和思路,还能够提高自己的表达和沟通能力。

三、不足反思尽管本学期我在固体物理学习中有所收获,但我也意识到了自己的不足之处。

首先,我在课堂听讲和记录方面还有待提高。

有时候,我会平时听讲不够仔细,导致课后复习时遗漏了一些重要的概念和公式。

另外,我在课堂笔记书写上也有些拖延,导致整理和回顾的时候效果不佳。

因此,我需要更加专注于课堂学习,培养良好的记录习惯。

其次,我在实验操作和数据处理方面也有一些不足。

在进行实验时,我有时候会因为一些小的失误而导致实验结果不准确,例如读数错误、操作不规范等。

而在数据处理方面,我有时候会因为对统计和计算方法不熟悉而无法正确地分析实验结果。

为了改善这些问题,我需要在实验前仔细阅读实验指导和方法,提高操作的规范性。

同时,我还需要加强对数据处理方法的学习和实践,提高自己的分析能力。

固体物理小结

固体物理小结

1.简单立方(sc)配位数6,惯用元胞包含格点数1惯用元胞包含格原子数1,2面心立方(fcc)配位数12,惯用元胞包含格点数4,用元胞包含格原子数4,3.体心立方(bcc)配位数8,惯用元胞包含格点数2,用元胞包含格原子数2,4金刚石结构惯用元胞包含格点数4,元内原子数2(种元素)惯用元胞包含原子数8,配位数=4,5闪锌矿结构(立方硫化锌结构)B格子是fcc,惯用元胞包含格点数4惯用元胞包含原子数8 配位数=4,6. 氯化铯(CsCl)结构B格子是sc,惯用元胞包含格点数1用元胞包含原子数2配位数8,7 NaCl结构B格子是fcc,惯用元胞包含格点数4惯用元胞包含原子数8配位数6,8 六方密排结构(hcp) 基元内原子数2,惯用元胞体积2*3,配位数12。

晶体的电阻来源于广义缺陷与Bloch电子的作用,即声子、杂质、缺陷、边界对载流子的散射,非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导。

从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴在金属能带中,价带与导带迭合,价带中存在空能级或者价带全满但导带中有电子,故电子易迁移进入较高能量状态的空能级中,金属具有优异的导电性⑵在绝缘体的能带中,其价带全部填满,而导带全部为空能级,在价带与导带之间存在很宽的禁带(>3.0eV),因而电子难以由价带跃迁到导带中,绝缘体的导电性很差⑶半导体的能带结构与绝缘体相似,但其禁带较窄(<3.0eV),因而在外电场激发下(如热激发),电子可由价带跃进导带中而导电,如果在禁带中靠近导带(或价带)的位置引入附加能级(施主或受主)将显著提高半导体的导电性.经典的自由电子理论的要点,用其解释金属的电性能答:要点:金属晶体就是靠自由价电子和金属离子所形成的点阵间的相互作用而结合在一起的,这种相互作用称为金属键.⑴金属中存在大量可自由运动的电子,其行为类似理想气体⑵电子气体除与离子实碰撞瞬间外,其他时间可认为是自由的⑶电子←→电子之间的相互碰撞(作用)忽略不计⑷电子气体通过与离子实的碰撞而达到热平衡,电子运动速度分布服从M—B经典分布.在金属中的自由价电子的数目是较多的且基本上不随温度而变,所以当温度升高的时候,金属电导率的变化主要取决去电子运动的速度.因为晶格中的原子和离子不是静止的,它们在晶格的格点上作一定的振动,且随温度升高这种振动会加剧,证实这种振动对电子的流动起着阻碍作用,温度升高,阻碍作用加大,电子迁移率下降,电导率自然也下降了长光学支格波与长声学支格波本质上有何差异? 答:长光学支格波的特征是每个元胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式,长声学支格波的特征是元胞内的不同原子没有相对位移,元胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数,任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波从导电率的角度简述绝缘体,半导体,导体的导电或绝缘机制答:⑴从电导率角度讲,由于金属的可自由移动电子较多,所以电导率很大,并且电导率随着温度的升高而降低.⑵从电导率角度讲,由于绝缘体的可自由移动电子很少,所以电导率很小,并且电导率随着温度的升高而升高.简述离子晶体中缺陷对电导率有何影响? 答:由于离子晶体是正负离子在库仑力的作用下结合而成的,因而使离子晶体中点缺陷带有一定的电荷,这就引起离子晶体的点缺陷具有一般点缺陷没有的特性,理想的离子晶体是典型的绝缘体,满价带与空带之间有很宽的禁带,热激发几乎不可能把电子由满价带激发到空带上去,但实际上离子晶体都有一定的导电性,其电阻明显地依赖于温度和晶体的纯度.因为温度升高和掺杂都可能在晶体中产生缺陷,所以可以断定离子晶体的导电性与缺陷有关.从能带理论可以这样理解离子晶体的导电性:离子晶体中带点的点缺陷可以是束缚电子或空穴,形成一种不同于布洛赫的局域态.这种局域态的能级处于满带和空带的能隙中,且离空带的带地或者满带的带顶较近,从而可能通过热激发向空带提供电子或接受满带电子,使离子晶体表现出类似于半导体的导电特性.为什么组成晶体的粒子(分子,原子或离子)间的互作用力除吸引力还要排斥力?排斥力的来源是什么?答:电子云重叠——泡利不相容原理排斥力的来源:相邻的原子靠的很近,以至于它们内层闭合壳层的电子云发生重叠时,相邻的原子间使产生巨大排斥力,也就是说,原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠。

《固体物理期末总结》课件

《固体物理期末总结》课件
《固体物理期末总结》 PPT课件
感谢大家参加《固体物理期末总结》课程。本课程将向您介绍热力学、量子 物理、电磁学、材料结构与晶体缺陷、凝聚态物理基础、物性测量技术等内 容,让您深入了解固体物理的世界。
课程介绍
这节课主要介绍固体物理的基本概念和研究领域,包括晶体结构、晶格振动、晶体缺陷等。
热力学基础
介绍能带理论和禁带结构,了解导体、
绝缘体和半导体的差异。
3
电子输运
讲解电子在晶体中的输运行为,包括电 阻、电导和极化等。
物性测量技术
这节课将介绍常见的物性测量技术,如X射线衍射、电子显微镜、扫描隧道显微镜等。
总结与展望
感谢大家参与本课程的学习,希望通过本课程的学习,您对固体物理有了更深入的了解,并能够应用于实际研 究与应用中。
讲解光的波粒二象性以及薛定谔方程。
2
量子力学原理
介绍量子力学的基本原理,如叠加原理、测量原理等。
3
波函数与测量
了解波函数的ห้องสมุดไป่ตู้理意义以及测量对波函数的坍缩。
电磁学基础
静电学
探索静电场和电荷运动,了解库 仑定律和电场的本质。
磁学
电磁波
讲解磁场和磁性物质的基本性质, 以及洛伦兹力和电磁感应等。
深入了解电磁波的特性和波动方 程,以及光的电磁波性质。
1 热力学定律
介绍热力学基本定律,如热平衡、热力学第 一定律、热力学第二定律等。
2 态函数与过程函数
讲解态函数和过程函数的概念及其应用,如 内能、焓、熵等。
3 热力学循环
介绍几种常见的热力学循环,如卡诺循环、 斯特林循环等。
4 相变与相图
探索物质的相变规律,并讲解相图的应用。
量子物理基础
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表界面的分类:气-液;气-固;液-液;液-固;固-固✧表面浓度✧分散度✧表面形貌非均匀性原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。

✧位错密度✧表面粗糙度:✧原矢✧米勒指数(miller index)✧晶面间距d hkl✧表面原子最近邻数100110111 Fcc879 Bcc464 Sc543✧✧表面自由能✧减小表面能的方法✧表面原子重排机理1:表面弛豫作用2:表面相转变3:吸附对纯净底物表面结构的影响层间距的变化;重组的表面结构的变化;吸附原子可以诱导表面重组✧内外表面内表面:多孔或多层材料,孔内或层间的表面比表面积:单位质量材料的表面积;用BET方法测量1.固体表面性质简介固体表面的性质结构特征:不同的位置有不同的性质表面运动:气体分子表面撞击速度R=P/2蟺mkT1/2;表面扩散系数(爱因斯坦方程):D=x2/2t外延生长原子的运动流程:a沉积/吸附在平台上-deposition;b沉积在原子岛上;c平台上扩散-diffusion;d脱附-desorption;e成核-nucleation;f交互扩散-interdifusion;g 粘附在平台上-attachment;h从平台上脱离-detachment;i:粘附在台阶上化学性质:表面浓度依赖于气体分子撞击速度R相界面(Gibbs界面)表面热力学函数其他类推:S,G,G s比表面自由能及温度的关系; ;Van der Waals and Guggenheim Equation:Where: T c为临界温度;为0Kし的表面张力;固体表面能的理论估算金属表面张力估算;偏析作用来自晶体或固溶体中的杂质或溶质在界面聚集的现象表面偏析公式:正规溶液参数扩散扩散:由热运动引起杂质原子、基质原子或缺陷输运的过程原因:原子或离子分布不均匀,存在浓度梯度,产生定向扩散扩散机理:间隙扩散,空位扩散,环形扩散表面扩散靠吸附原子或平台空位的运动实现。

一维随机行走理论:表面原子通过扩散进行迁移,原子运动方向移动,每次跳跃距离等长d,将原子加以标记,温度T下,净距离为x,有Einstein方程x2=2Dt吸附的基本过程1:反应物扩散到活性表面;2一个或者多个反应物吸附在表面上;3表面反应;4产品从表面脱附;5产品从表面扩散出去吸附动力学R ads=k'p x; 其中x为动力学级数;p为分压R ads=Aexp(-E a)*P x; E a活化能RTR ads=S*F; ; S=f(胃)exp(-E a);RTS粘着几率;F入射分子流;f(胃)表面覆盖率函数吸附方式物理吸附:Van der Waals Force;电荷密度轻度分布化学吸附:化学键,电子密度重排,完全离子键,完全共价键几种元素的化学吸附氢气(H2):没有及基地原子相互作用的电子;分子-氢过渡金属复合物氢原子(H):氢原子及基地原子独立相互作用卤素(F2, Cl2, Br2, etc):以离解的方式给出卤素原子的吸附;及金属形成强的离子键氧气(O2):在金属表面以分子形式吸附,氧分子作为给体,金属作为受体氧原子(O):占据最高有效配体位置;强的相互作用导致表面的扭曲或者重组!离解氧吸附是不可逆过程;加热可以导致化合物的扩散或者形成氮气(N2):低强度M-N键,ゆ很难破坏的NN三键一氧化碳(CO):①活化表面:解离,分别形成氧化物へ碳氧化合物;②d区金属:弱的M-CO分子键,加热脱附;③过渡金属:对温度へ表面结构敏感氨气(NH3):不饱和碳氢化合物:化学吸附气体的排列规则1:紧密堆积:尽可能形成最小单胞2:转动对称性ゆ基地相同3:类似体相单胞矢量:单层(基地);多层(本体)化学吸附层表面结构分类:1:在顶上化学吸附:停留在表面,不扩散到体相内部2:共吸附表面结构:吸附强度相近的两种气体同时吸附3:重组的表面结构:表面原子重排,し体相的化学反应の前驱4:无定形表面结构:有序结构の形成扩散过程5:三维结构:扩散到体相内部の表面吸附脱附过程1:气相产物或者其他表面物质的分解;2:表面化合物の反应后者扩散;3:脱附到气相中脱附动力学R des=kN x; 其中x为动力学级数(单分子或者原子脱附x=1;联合分子脱附x=2);N为吸附物种表面浓度;k脱附速率常数k des=Aexp(-E a des); E a des活化能RT;表面滞留时间平均时间:;表面态表面局部的电子能级表面上附着电荷表明表面上存在着し电子局限于表面的量子态。

表面态有两种:一是固有的,二是外来物类或表面缺陷引起的固有表面态量子力学证明一个固体,即使是纯净的へ完整的晶体,在其表面上仅仅因为体相周期性被破坏,就将导致表面局部能级的出现。

分为Shockley态へTamm态表面空间电荷效应双电层:正负电荷分开平行板电容器簡単さ定律:;Q净表面正电荷密度;:介电常数;真空绝对介电常数空间电荷双电层:Schottky模型(假定靠近表面的空间电荷し不动的,并且在整个空间电荷区ゆ距离无关)强氧化还原物类吸附引起的空间电荷效应积累层:强还原剂吸附在n型半导体上或者强氧化剂吸附在p型半导体上,基体内主要载流子由吸附剂注入使之在表面空间电荷层内累积反型层:强氧化剂吸附在n型半导体上或者强还原剂吸附在p型半导体上,基体内主要载流子注入吸附剂中,在表面空间电荷层出现ゆ基体相反的导电性。

能带弯曲2.现代表面分析技术概况及应用➢表面检测几何结构的检测:原子重排,吸附位置,键角,键长化学成份的检测:元素及其深度理化性能的检测:氧化态,化学、电子及机械性能➢测量技术要求1:区分表面和体相,表面灵敏的;2:灵敏度非常高;3测量无污染表面,超真空;4必须有信号载体;5:样品表面可控➢信号载体的探针包括:电子,离子,光子,中性粒子,热,电场,磁场➢电子ゆ固体表面的相互作用➢电子平均自由程()电子ゆ晶体中的原子核产生两次连续碰撞之间所走过的平均路程。

计算式:对于纯元素:; a单原子层厚度,Eい费米能级为零点的电子能量对于无机化合物:对于有机化合物:;mg/m2➢电子作为探束的表面分析方法低能电子衍射(LEED);反射式高能电子衍射(RHEED);俄歇电子能谱(AES);电子能量损失谱(EELS);投射电子显微镜(TEM);扫描电子显微镜(SEM)➢离子ゆ固体表面的相互作用的作用过程:散射,注入,溅射,再释,表面损伤,光发射,电子发射,电离及中和,表面化学反应,表面热效应➢从真空端观察到的各种粒子的发射现象1:散射的初级离子:能量分布和角分布反应表面原子的成分じ排列—离子散射谱2:中性原子、原子团、分子じ正/负离子:进行质谱、能谱分析得到表面成分分析-次级离子质谱3:电子:クィ能量分布给出有关离子轰击、中和、次级离子发射过程じ表面原子电子态信息-离子激发表面电子谱;4:X射线じ光发射:表面化学成分じ化学态信息-离子诱导光谱➢从靶上观察到的变化1:表面じ进表层的原子、原子团分子い中性粒子或离子的形式溢出:发射区(10A),溢出深度2:初级离子注入じ表层原子的反弹注入;注入区,注入深度(离子入射角),沟道效应3:晶格结构扰动,晶格扰动波及区,产生缺陷ゆ位错4:表面化学反应➢离子作为探束的表面分析方法离子散射谱(ISS);次级离子质谱(SIMS);卢瑟福背散射谱(RBS);离子激发X射线谱(IEXS);离子中和谱(INS)➢特点:离子重,动量大:可出于不同的激发态;静电场じ接触电位差位能作用;可以表面发生化学反应;可得到最表层信息,很高检测灵敏度,丰富的表面信息缺点:表面受到损伤,破坏性分析,表面态不断发生变化,定量难,作用过程复杂,识谱难,基体效应(一种成分存在影响另一成分的刺激离子产额)➢光电效应:当光子能量全部交个一个电子,使其脱离原子而运动➢康普顿效应:光子ゆ电子产生碰撞,将一部分能量交给电子而散射,碰撞射出的电子成为康普顿电子。

➢光子ゆ表面作用有:光发射/散射,光吸收,光衍射,光激发产生光电子,光诱导表面分子脱附へ反应➢光子作为探束的表面分析方法光助场发射;阈值光电子谱;能带结构じ价电子能谱;紫外光子电子谱(UPS);X射线光电子谱(XPS)➢同步辐射光源的特点1:从红外到硬X射线的连续光谱,可用单色器分光;2:光源稳定而强大:试验时间缩短,信噪比提高;3:主要し偏振光:光跃迁选律じ角分辨光电子能谱;4:高度准直性➢中心粒子:中心粒子碰撞诱导辐射(SCANIIR);分子束散射(MBS)➢肖特基效应:外加电场可以减低能垒,有助于电子发射➢场致电子发射:在强电场(107-108V/cm)作用下,因存在量子力学的隧道效应,在固体不加热的情况下也能出现显著的电子冷发射。

➢热场致发射:在温度不为零的情况下产生的场致发射电子。

➢电场作为探束的表面分析方法:场电子显微镜(FEM);场离子显微镜(FIM);原子探针场离子显微镜(APFIM);扫描隧道显微镜(STM)➢电场探束分析特点:1:为获得强场样品做成针尖形;2点投射显微镜,具有105-107倍方法效应;3结构简单;4分辨率高:FEM25A,FIM原子级。

缺点:样品制备复杂,强场存在,表面强场存在➢分类按探测粒子或发射粒子分类:电子ぷ,光谱,粒子ぷ,光电子ぷ按用途分类:组分分析,结构分析,电子态分析,原子态分析3.俄歇电子能谱●俄歇过程俄歇电子在低原子(Z<15)的无辐射内部重排发射出来,其步骤为:1:入射电子撞击原子离子化,发射出内部电子离开芯能级;2:高能电子掉入芯能级;3:第二步中产生的能量激发了另一个电子,一般来自于同一壳层●俄歇电子标记●K系列俄歇跃迁:同一空穴可以产生不同俄歇跃迁,当初始空穴在K能级时,就出现K系列跃迁,如KLL,KLM,KMN●俄歇群:同一主壳层标记的次壳层不同的俄歇跃迁,如KL1L1,KL1L2,KL1L3,KL2L3●C-K(Coster-Kronig)跃迁:初始空穴和填充电子处于同一主壳层的不同次壳层,如LLM,MMN,特点:跃迁速度非常快●超C-K跃迁:三个能级处于同一主壳层;如:LLL,MMM●一般:Z<15: KLL; Z: 16~41, LMM; Z>42, MNN●能量分析器:用来测量从样品中发射出来的电子的能量分布,分辨率=柱偏转分析器(127°-CDA);半球形分析器(CHA/SDA);平面镜分析器(PMA);铜镜分析器(CMA)●检测器:通道式电子倍增管;打拿极式倍增管●能量分布涉及4个电子:原始入射电子(P),激发的二次电子(s),跃迁电子(t),俄歇电子●背景分析●Auger电子的特征能量计算能量守恒原理:E ZXY=E Z(Z)-E X(Z)-E Y(Z)经验公式:实际计算公式:●电离截面是指原子被入射粒子电离产生空穴的几率。

相关文档
最新文档