高一数学第一章第一节集合的含义与表示 人教版A 必修1

合集下载

人教版,数学,高一,必修一,集合的含义与表示

人教版,数学,高一,必修一,集合的含义与表示

练 习
1. 下面的各组对象能否构成集合? (1)小于2004的数; (2)和2004非常接近的数.
2.再看下列对象: (1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国四大名著; (5)抛物线y=x2上的点.
2、元素与集合的关系
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c,…表示集合中的元素. 如果 a 是集合 A 的元素,就说 a 属于集合 A, 记作 a∈A;如果 a 不是集合 A 的元素,就说 a 不属于集合 A,记作 a A.
作业
活页:提能演练一
第2课时 集合的表示
回顾复习
1.集合与元素的定义; 2.集合元素的特征性质: 确定性,互异性,无序性; 3.元素与集合的关系
4. 数集及有关符号;
集合的表示
“我国的直辖市”组成的集合表示为 {北京,天津,上海,重庆} 把集合中的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
1.1.1 集合的含义与表示
“集合”是日常生活中的一个常用词,现代汉语解释为:
许多的人或物聚在一起。
康托尔(G.Cantor,1845~1918).德 国数学家,集合论创始人,他于1895
年谈到“集合”一词.
在现代数学中,集合是一种简洁、高雅的数学语言, 我们怎样理解数学中的“集合”?
通知 8月27日上午8时,高一年级的学生 在体育馆集合进行军训动员. 校长室
例1:已知A由: 2,(a 1) a
2
, a 3a 3
2
三元素构成且 1 A ,求实数a的值
变.已知集合A含有三个元素1、0、x, 若 x 2 A ,求实数x的值。

人教A版高中数学必修一第一章1.1集合的含义与表示课件

人教A版高中数学必修一第一章1.1集合的含义与表示课件

1.集合的概念
一般地,我们把研究对象统称为元素,把一些元素组成 的总体叫做集合(简称为集).
进一步分析前面的八个例子,你能说出集合中 元素的特征吗?
2.集合的三个性质
确定性:给定一个集合,它的元素必须是确定的.也就 是说,给定一个集合,那么任何一个元素在不在这个集合中 就确定了.
互异性:一个给定集合中的元素是互不相同的.也就是 说,集合中的元素是不重复出现的.
示为
A 2, 2
x (2)设大于10小于20的整数为 ,它满足条件 x Z ,
且10 x 20 ,因此,用描述法表示为
B x Z |10 x 20
大于10小于20的整数有11,12,13,14,15,16,17,18, 19,因此,用列举法表示为
Байду номын сангаасB 11,12,13,14,15,16,17,18,19
集合的含义与表示
看到图片中的鸟群、球鞋、图书和一个班级的学生,给 我们一类事物的感觉,这就是我们今天要研究的集合.
还有在小学和初中,我们接触过自然数的集合、有理数 的集合等等.
那么,集合的含义是什么呢?我们再来看下面 的例子:
(1)1~20以内的所有质数;
(2)我国从1991~2003年的13年内所发射的所有人造卫 星;
(3)金星汽车厂2003年生产的所有汽车;
(4)2004年1月1日之前与我国建立外交关系的所有国家;
(5)所有的正方形;
(6)到直线l的距离等于定长d的所有的点;
(7)方程x2 3x 2 0的所有实数根;
(8)新华中学2004年9月入学的高一学生的全体.
上面的例(3)到例(8)也都能组成集合吗? 它们的元素分别是什么?归纳总结这些例子,你能 说出它们的共同特征吗?

高中数学人教A版必修一.1集合的含义与表示PPT课件

高中数学人教A版必修一.1集合的含义与表示PPT课件
初中接触过的集合,还有印象吗? (1)正分数的集合; (2) x2-4=0的解2,-2构成的集合 ; (3)不等式3x-2<4的解的集合; (4)到定点的距离等于定长的点的集合(即圆); (5)到角的两边距离相等的点的集合(即角的平 分线).
具有某种属性的一些对象的总体
1、集合的含义
那么集合
的含义是什 具有某种属性的一些对象的总体 么呢?
A = {x R 2x2 +1 = 9}.
(4)设菱形为x,则用描述法表示为
A = {x x是菱形}.
(5)设此方程组的解为(x,y),且满足
3x + 2y = 2 2x + 3y = 27 则用描述法表示为
A
=
{(x,
y)
3x 2x
+ +
2y 3y
= =
2 }
27
3.方程组xx
+y = 2 -y = 5
有些集合的元素不能无遗漏地一一列举 出来,或者不便于、不需要一一列举出来, 常用描述法.
集合的表示方法四: 韦恩图:用一条封闭的曲线的内部来表示一 个集合.
集合A
集合B
有些集合的公共属性不明显,难以概括, 不便用描述法表示,只能用列举法.
1.填空:
(1)由实数 x,-x,| x |, x2 ,- 3 x3 所组成的集
课堂小结
集合的概念元集素合
集合的表示列字举母法常元见素数和集集合的关系
集合
描述法 韦恩图
集合的性质无 互确序 异定性 性性 集合相等
集合的分类空无 有集限 限集 集合 合
集合的表示方法二:
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有正约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?

高中数学人教A版必修1课件:1、1、1集合的含义与表示

高中数学人教A版必修1课件:1、1、1集合的含义与表示
重点:集合的含义及表示方法。 难点:1.对新概念、新符号的理解与区分;
2.集合表示方法的恰当选择。
3
自主学习:
根据自学提纲(知识点),自学P2~3页。 1、元素、集合的概念? 2、集合中元素的三大特征? 3、集合与元素间的关系,符号表示? 4、一些常用的数集及其记法?
4
学生展示:
1、集合、元素的概念 元素 ——我们把研究的对象统称为元素;
平面内两直线的 位置关系有几种?
交集的性质:
A
A B
B
1.A∩A= A ; 2.A∩∅=∅∩A= ∅ ; 3. A∩B ⊆ A,A∩B ⊆B; 4. 如果A⊆B,则A∩B= A反之,
如果 A∩B=A,则 A⊆B .
P11 练习1~3
4.A={(x,y)|4x+y=6}, B={(x,y)|3x+2y=7},求A∩B。
即 A∪B= {x | x∈A,或x∈B}
AB
A
A
BB
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B. 提示:利用韦恩图
A
46
58 37
B
解: A∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3},
思考2:集合{1,2}与集合{(1,2)}相同吗?
集合{y | y x2, x R} 与集合 {y x2} 相同吗? 思考3: 集合{(x, y) | y x2, x R} 的几何意义如何?
y y x2
x o
课堂小结
1.元素与集合的概念:一般地,我们把研究对象统称为 元素,把一些元素组成的总体叫做集合(简称为集); 2.集合元素的三大特征:确定性、互异性、无序性; 3.元素与集合之间的关系:属于(∈)或 不属于(∉) ; 4.数集及有关符号:N、N﹡、N₊、Z、Q、R; 5. 集合的分类:有限集、无限集、空集; 6. 集合的表示方法:列举法、描述法、 Venn图。

人教A版必修一 第一章 1.1.1 集合的含义及其表示 (共15张PPT)

人教A版必修一 第一章 1.1.1 集合的含义及其表示 (共15张PPT)

实数集记作__R______;
巩固知识 典型例题
用符号“ ”或“ ”填空:
0 N; 0.6 Z;π R;
1 3

Q; 0
N+ .
元素a是集合A的元素, a∈A,属于
元素a不是集合A的元素,
a A,不属于
例题
例1判断下列各组对象能否组成一个集合
(1)新华中学高一年级全体学生 (2)我国的大河流 (3)不大于3的所有自然数 (4)在平面直角坐标系中,和原点距
下 ,我 已 经 慢 慢从
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子.
那么如何将这些商品放在指定的篮筐里:食品篮筐ຫໍສະໝຸດ .文具篮筐.
集合的含义是什么?
1. 正整数1, 2, 3, ; 2. 中国古代四大发明; 3. 高一9班的全体学生; 4. 我校篮球队的全体队员; 5. 到线段两端距离相等的点.
技 能 的 同 时 ,内心也 经历着 微妙的 成长。 面 对 新 的 环 境,新的 顾客,内 心有点 紧张。 在看似 忙碌而 又紧然 有绪的 工作中 ,我开 始 记 住 了 “ 客户” 这个词 ,因为我 深知客 户是我 们的服 务对象 ,我开始体味“微笑服
务 ” 诠 释 的 真谛。 这 一 次 实 习 主要是 行政。 同时,学 习联行 往来业 务。前 几周主 要是以 看为主 。开始 安 排 我 在 财 务部学 习。我 从整理 发票开 始。虽 然看似 一句话 就能讲 清的流 程,但实 际 操 作 起 来 却并不 是行云 流水般 流畅的 ,这其中 所抱露 的细节 问题也 决不是 可以草 草 了 之 的 。 我从编 码开始 ,慢慢熟 悉整个 操作过 程。但 渐渐的 随着熟 练程度的增加, 错 误 减 少 了 ,从中也 得出了 自己的 心得。 正如我 们主管 说的:“财 务部 工作需 要的不 是 超 凡 的 智 力,而是 一份细 心和耐 心。” 确实如 此,财务 工作是 一项看似简单但精密 度 很 高 的 工 作,它需 要的是 的耐心 和细心 。所以 我一直 都在培 养自己 这方面 的能力 。 刚 开 始 时 ,几乎每 一天每 做一件 事都要 犯错,但 是渐渐 的在各 位同事的帮助和指导

人教A版高中数学必修一集合的含义与表示

人教A版高中数学必修一集合的含义与表示

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作∈a∉A(或a A)(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

人教A版必修一第一章1.1.1集合的含义与表示

人教A版必修一第一章1.1.1集合的含义与表示
数集还是 点集.
• 2.列举法适合表示有限集,当集合中元素个数较少时, 用列举法表示集合比较方便,且使人一目了然.
• 因此,集合是有限集还是无限集,是选择恰当的表示方法 的关键.,
• 〔跟踪练习3〕
• 用列举法表示下列集合:
• (1)不大于10的非负偶数组成的集合;
• [知识点拨] 集合中的元素必须满足如下性质:
• (1)确定性:指的是作为一个集合中的元素,必须是确定的, 即一个集合一旦确定,某一个元素属于或不属于这个集合 是确定的,要么是该集合中的元素,要么不是,二者必居 其一.
• (2)互异性:集合中的元素必须是互异的,就是说,对于一 个给定的集合,它的任何两个元素都是不同的.
• 其中能够组成集合的是________. • [思路分析] 结合集合中元素的特性分析各组对象是否满
足确定性和互异性,进而判断能否组成集合.
• [解析] ①中的“年龄较小”、④中的“近似值”,这些
标准均不明确,即元素不确定,所以①④不能组成集合.
• ②③中的对象都是确定的、互异的,所以②③可以组成集 合.填②③.
• 『规律方法』 1.判断一组对象能否构成集合的关键在于 看是否有明确的判断标准,使给定的对象是“确定无疑” 的还是“模棱两可”的.如果是“确定无疑”的,就可以 构成集合;如果是“模棱两可”的,就不能构成集合.
• 2.判断集合中的元素个数时,要注意相同的对象归入同 一集合时只能算作一个,即集合中的元素满足互异性.,
数学
必修① ·人教A版
第一章
集合与函数概念
• 据央视新闻报道,中国于2016年年中至2017年上半年间, 组织实施载人航天工程空间实验室任务.中国发射了“神 舟”十一号飞船,搭乘2名航天员,与天宫二号对接,在 飞船进入预定轨道的过程中包含了一些可以用函数描述的 变化规律,如上升过程中飞船离地面的距离随时间的变化 而变化,飞船外的温度和气压随飞船与地面的距离的变化 而变化,等等.

高一数学 人教A版必修1 1-1 集合 课件

高一数学 人教A版必修1 1-1 集合 课件

x≠3,
(2)①根据集合中元素的互异性,可知x≠x2-2x, 即 x2-2x≠3,
x≠0 且 x≠3 且 x≠-1. ②因为 x2-2x=(x-1)2-1≥-1,且-2∈A,所以 x=
-2.当 x=-2 时,x2-2x=8,此时三个元素为 3,-2,8, 满足集合的三个特性.
探究3 集合中元素的特性与集合相等 例 3 已知集合 A 有三个元素:a-3,2a-1,a2+1,集 合 B 也有三个元素 0,1,x. (1)若-3∈A,求 a 的值; (2)若 x2∈B,求实数 x 的值; (3)是否存在实数 a,x,使 A=B.
(2)∵6-6 x∈N,x∈N,∴6x≥-6 0x≥,0, 即6x≥-0x>,0, ∴0≤x<6,∴x=0,1,2,3,4,5. 当 x 分别为 0,3,4,5 时,6-6 x相应的值分别为 1,2,3,6, 也是自然数,故填 0,3,4,5.
拓展提升 1.常用数集之间的关系
集实R数有数 Q 理集整分数数集集Z自负然整数数集集N正 {0}整数集N*
无理数集
2.判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判 断该元素在已知集合中是否出现即可,此时应先明确集合是 由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,只要判断 该元素是否满足集合中元素所具有的特征即可.此时应先明 确已知集合的元素具有什么特征,即该集合中元素要满足哪 些条件.
(3)显然 a2+1≠0.由集合元素的无序性,只可能 a-3 =0,或 2a-1=0.
若 a-3=0,则 a=3,A 中三个元素分别为 0,5,10. 若 2a-1=0,则 a=12,A 中三个元素分别为 0,-52, 54.所以 A≠B. 故不存在这样的实数 a,x.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第一章第一节集合的含义与表示第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示【自主整理】1.集合(1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.2.表示(1)字母表示法:用一个大写英文字母表示集合,如A 、B 、C 等. 常见数集的表示:自然数集记为 N ;整数集记为 Z ;正整数集记为 N +或 N *;有理数集记为 Q ;实数集记为 R ;(2)列举法:把集合中的全部元素一一列举出来,并用花括号”{ }”括起来表示集合,这种表示集合的方法叫做列举法.(3)描述法:在花括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 这种用集合所含元素的共同特征表示集合的方法叫做描述法.3.元素与集合(1)关系:仅有两种:属于和不属于.(2)关系表示:如果a 是集合A 中的元素,就说元素a 属于集合A ,记作a ∈A ;如果a 不是集合A 中的元素,就说元素a 不属于集合A ,记作a ∉A .【高手笔记】1.集合的概念是数学中的原始概念,在学习过程中,应结合具体实例搞清它的含义.2.集合元素的性质:给定的集合,它的元素必须是明确的, 即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性;一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性;集合中的元素是没有顺序的,这就是集合的无序性.判断一些对象能否构成一个集合的关键是看是否满足集合元素的确定性.3.∈和∉只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.4.集合的分类:按集合中元素的个数分为有限集和无限集. 有限集是指含有有限个元素的集合;无限集是指含有无限个元素的集合.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示;如果一个集合是有限集且所含元素较多或是无限集时,通常选择描述法表示.5.用描述法表示集合时,在不致混淆的情况下,可以省去竖线及左边部分.如:{直角三角形}等.【名师解惑】1.为什么“爱好唱歌的人”不能构成一个集合?剖析:学习了集合的概念后,很多同学对此产生质疑,总是迷惑不解.其原因是对集合元素的确定性理解不够充分,突破这个疑点的途径是从集合的含义来分析.教材中指出,把研究对象称为元素,把一些元素组成的总体叫做集合,教材只是这样作了简单地描述. 我们可以这样来理解:研究对象就是构成集合的每个对象即元素,一个对象是不是我们研究的对象(元素)呢?其结果只有两种:是或不是.这才符合数学具有严格性的特点,这就是我们所说的集合元素的重要性质――确定性.因此给定一个集合,任意一个元素要么在这个集合中,要么不在这个集合中,二者必居其一. 如果你是班内的文艺委员,让爱好唱歌的同学到音乐教室开会,那么就会出现:你认为爱好唱歌的同学没有去,而你认为不爱好唱歌的同学反而去了,出现这种情况的原因是没有明确的标准来判断是否爱好唱歌.因此说“爱好唱歌的人”不能构成一个集合,这不符合集合元素的确定性.2.如何区分数集和点集?剖析:难点是一些用描述法表示的集合,不容易区分是点集还是数集,是一个易错点.突破的途径是理解描述法的表示形式.如果一个集合中所有元素均是实数,那么这个集合称为数集,如果一个集合中所有元素均是点,那么这个集合称为点集.例如:集合{}12=<<A x x ,集合A 中元素代表符号是x ,满足12x <<,即大于1且小于2的实数组成集合A ,故集合A 是数集. 集合{}(,)21B x y y x ==+,集合B 中元素代表符号是(,)x y ,其中,x y 满足21y x =+,则(,)x y 是一次函数21y x =+图象上的点,故集合 B 是点集.因此,形如{}x x x ∈R 的特征,的集合是数集,形如{}(,),,x y x y x y ∈R 的特征,的集合是点集.【讲练互动】【例题1】(2020浙江省宁波市高三第一次“十校联考” ,理科1)在数集},2{2x x x -中,则实数x 的取值范围是 .【解析】本题主要考查集合元素的互异性.实数x 的取值满足集合元素的互异性,则22x x x ≠-,解得03x x ≠≠且,∴实数x 的取值范围是{}03x x x ≠≠且. 答案:{}03x x x ≠≠且【绿色通道】在解决参数问题和判断集合元素的个数问题时,要灵活应用集合元素的确定性、互异性、无序性,这也是处理集合有关问题的一个隐含条件. 【黑色陷阱】本题的答案易错写成{}03x x x ≠≠或,其原因是对数学中“且”与“或”的含义混淆不清.在数学中,“且”表示同时成立的含义,而“或”表示至少一个成立的含义.03x x ≠≠且表示全体实数中除去1和3剩下的实数,而03x x ≠≠或表示全体实数.防止出现此类错误的方法是明确“且”与“或”的含义.【变式训练】1.已知集合{}22,6,A x x =-,则实数x 的取值范围是 .【解析】利用集合元素的互异性列出不等式,解得实数x 的取值范围.由题意得222,6.x x x x ⎧-≠⎪⎨-≠⎪⎩解得123x x x x ≠≠≠≠-2且-且且,即实数x 的取值范围是{}123x x x x x ≠≠≠≠-2且-且且. 答案:{}123x x x x x ≠≠≠≠-2且-且且2.(2020届广东省韶关市高三摸底,理科1)下列各组两个集合P 和Q ,表示同一集合的是( ) A .P ={}π,3,1,Q ={}3,1,-π B .P ={}π,Q ={}14159.3 C .P ={}3,2,Q ={})32(,D .P ={}11,N x x x -<≤∈,Q ={}1 【解析】只要两个集合的元素完全相同,这两个集合就表示同一集合.{}3,1,-π= {{}ππ=,所以A 正确;由于 3.14159π≠,所以B 错误;集合{}3,2中的元素是实数, 而集合{})32(,中的元素是点,所以C 错误;集合{}11,N x x x -<≤∈={}0,1,所以D 错误,故选A .答案:A【例题2】判断下列集合是有限集还是无限集,并用适当的方法表示:(1) 被3除余1的自然数组成的集合;(2) 由所有小于20的既是奇数又是质数的正整数组成的集合;(3) 二次函数2210y x x =+-图象上的所有点组成的集合;(4) 设,a b 是非零实数,求a b ab y a b ab=++的所有值组成的集合. 【思路分析】本题主要考查集合的表示法和集合的分类. 用列举法与描述法表示集合时,一要明确集合中的元素,二要明确元素满足的条件,三是根据集合中元素的个数来选择适当的方法表示集合.解:(1)由于被3除余1的自然数有无数个,所以此集合是无限集,则选择描述法表示,又这些自然数常表示为31(N)n n +∈.即表示用为:{}31,N x x n n =+∈;(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19.则此集合中的元素有7个,所以此集合是有限集,则用列举法表示为:{}3,5,7,11,13,17,19;(3)由于二次函数2210y x x =+-图象上的点无数个,所以此集合是无限集,则用描述法表示.通常用有序数对(,)x y 表示点,那么满足条件的点组成的集合表示为:{}2(,)210x y y x x =+-;(4)当0ab <时,1a b ab y a b ab=++=-; 当0ab >时,则0,0a b >>或0,0a b <<.若0,0a b >>,则有3a b ab y a b ab =++=,若0a <,0b <,则有1a b ab y a b ab=++=-. ∴a b ab y a b ab=++的所有值组成的集合共有两个元素-1和3,此集合是有限集,则用列举法表示为:{}1,3-.答案:(1)无限集,{}31,N x x n n =+∈;(2)有限集,{}3,5,7,11,13,17,19;(3)无限集,{}2(,)210x y y x x =+-;(4)有限集,{}1,3-. 【绿色通道】一般情况下,常根据集合中所含元素的个数来选择表示集合的方法,对所含元素较少的有限集宜采用列举法,如(2)(4);对无限集或元素较多的有限集宜采用描述法,如(1)(3).【变式训练】1.集合{}32+N x x ∈-<的另一种表示法是 ( )A.{}0,1,2,3,4B. {}1,2,3,4C. {}0,1,2,3,4,5D. {}1,2,3,4,5 【解析】{}32x x ∈-<+N ={}5+N x x ∈<={}1,2,3,4,故选B.答案:B2. 用适当的形式表示下列集合(1)绝对值不大于3的整数组成的集合 ;(2)方程2(35)(2)(3)0x x x -++=的实数解组成的集合 ;(3) 一次函数6y x =+图象上所有点组成的集合 .【解析】元素较少的有限集宜采用列举法;对无限集或元素较多的有限集宜采用描述法.(1) 绝对值不大于3的整数表示为3x ≤,是有限集,用列举法表示为{-3,-2,-1,0,1,,2,3};(2) 方程 2(35)(2)(3)0x x x -++=的实数解仅有两个是5,23-,用列举法表示为5,23⎧⎫-⎨⎬⎩⎭;(3) 一次函数6y x =+图象上有无数个点 ,用描述法表示为{}(,)6x y y x =+.【例题3】(2020年山东省滨城区月考,文科17)已知集合{}2210,R A x ax x x =--=∈,若集合A 中至多有一个元素,求实数a 的取值范围.【思路分析】本题主要考查元素与集合之间的关系,以及集合的表示法.由描述法可知集合A 是关于x 的方程2210ax x --=的实数解集,首先考虑方程是不是一元二次方程. 解:当0a =时,方程只有一个根12-,则0a =符合题意; 当0a ≠时,则关于x 的方程2210ax x --=是一元二次方程,由于集合A 中至多有一个元素,则一元二次方程2210ax x --=有两个相等的实数根或没有实数根,所以△=440a +≤,解得1a ≤-.综上所得,实数a 的取值范围是{}01a a a =≤-或. 答案:{}01a a a =≤-或【绿色通道】将集合语言具体化为自然语言,将它们描述的语言形象化、直观化,是解决集合问题的常用技巧.本题转化为关于x 的方程2210ax x --=的实数根的个数问题,这样就容易解决.【变式训练】1.已知集合{}0x ax =是无限集,则实数a = . 解析:集合{}0x ax =是关于x 的方程0ax =的解集.当0a =时,方程0ax =有无数解,则0a =符合题意;当0a ≠时,则关于x 的方程0ax =是一元一次方程,得0x =,即此时集合{}0x ax =仅有一个元素,则0a ≠不合题意.故0a =,填0.答案:0 2.设集合1,3n A x x n ⎧⎫==∈⎨⎬⎩⎭N ,若12,x A x A ∈∈,则必有 ( ) A. 12x x A +∈ B. 12x x A ∈ C. 12x x A -∈ D. 12x A x ∈ 【解析】如果元素具有1(3n n ∈N)的形式,你们这个元素属于集合A .∵12,x A x A ∈∈,∴有 11(3m x m =∈N),21(3k x k =∈N),又11111333m k m k x x +==g ,m k +∈N ,∴12x x A ∈,故B 正确;当113x =,213x =时,1221332x x A +==∉,故A 错误;按同样方法可以验证选项C 、D 也是错误的;故选B .答案:B【教材链接】1.教材第2页思考:上面的例(3)到例(8)也能组成集合吗?它们的元素分别是什么?归纳总结这些例子,你能说出它们的共同特征吗?答:例(3)到例(8)也能组成集合.例(3)的元素是:金星汽车厂2020年生产的每一辆汽车;例(4)的元素是:2020年1月1日之前与我国建立外交关系的每一个国家;例(5)的元素是:每个正方形;例(6)的元素是:到直线l 的距离等于定长d 的每一个点;例(7)的元素是:方程2320x x +-=的每个实数根即1、2;例(8)的元素是:新华中学2020年9月入学的每个高一学生.这些例子的共同特征是:每一个研究对象是元素,这些元素组成的总体构成了集合.2. 教材第3页思考:判断以下元素的全体是否构成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流答:(1)大于3小于11的偶数组成集合,这个集合的元素是4,6,8,10.(2)我国的小河流不能组成集合,因为小河流没有明确的标准,不符合集合元素的确定性,所以不能组成集合.3. 教材第4页思考:(1)你能用自然语言描述集合{}2,4,6,8吗?(2)你能用列举法表示不等式73x -<的解集吗?答:(1)自然语言:小于10的所有正偶数组成的集合.或大于1且小于9的所有偶数组成的集合.(答案不唯一)(2)不能用列举法表示.因为不等式73x -<的解是10x <,小于10的实数有无数个,并且这些数是连续的,所以不能用列举法表示.列举法适用于表示元素个数是有限个且较少的集合.4.教材第6页思考:(1)结合上述实例,试比较用自然语言、列举法、描述法表示集合时,各自的特点和适用的对象.(2)自己举出几个集合的例子,并分别用自然语言、列举法、描述法表示表示出来.答:(1)自然语言的特点是富有表现力,是最基本的语言形式,但是具有多义性,有时难于表达,适用的范围非常广泛;列举法的特点是直观、明白,但有局限性,适用于元素个数较少的有限集;描述法具有抽象概括、普遍性的特点,适用于所含元素较多的有限集或无限集.(2)例如,自然语言:联合国常任理事国;列举法:{中国,美国,英国,法国,俄罗斯};描述法:{x ∣x 是联合国常任理事国}.【教研中心】[教学指导]一、课标要求1. 通过实例了解集合的含义,体会元素与集合的属于关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识;2.知道常用数集及其专用符号,了解集合元素的确定性、互异性、无序性,并能够用其解决有关问题,提高学生分析、解决问题的能力,培养应用意识.二、教学建议集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其它内容有着密切的联系,是学习、掌握和使用数学语言的基础.教材从学生熟悉的集合(自然数的集合、有理数的集合、不等式的解等)出发,结合实例给出元素、集合的含义,教材注重体现逻辑思考的方法,如抽象、概括等.本节的重点是集合的含义与表示,其突破方法是结合学生的已有知识经验,通过大量的实例来学习;本节的难点是表示具体的集合时,如何从列举法和描述法中做出恰当的选择,其突破方法是对同一个集合用不同的方法来表示,具体体会它们的各自特点,归纳、总结各自的适用范围.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读教材,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的,在于培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.在安排训练时,建议把握好分寸,不宜搞偏题、怪题.本节教学时间约需1课时.【资源参考】【走近大师】 为科学而疯的人——康托康托(Contor,Georg)(1845-1918),俄罗斯——德国数学家,集合论的创立人.康托自幼对数学有浓厚兴趣.23岁获博士学位,以后一直从事数学教学与研究.他所创立的集合论已被公认为全部数学的基础.1874年,康托的有关无穷的概念震撼了数学界.康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质的新思想模式,建立了处理数学中无限的基本技巧,从而极大地推动了分析与逻辑的发展.他发现了惊人的结果:有理数是可列的,而全体实数是不可列的.由于在研究无穷时往往推出一些合乎逻辑的但又很荒谬的结果 (称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度.在1874—1876年期间,30岁的康托向神秘的无穷宣战.他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应.这样看起来,1厘米长线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论.康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂.有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学权威们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神分裂症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩.1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个时代所能夸耀的最巨大的工作.”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦.1918年1月6日,康托病世.【同步测控】我夯基 我达标1. 下列各组对象中不能构成集合的是A.北京尼赏文化传播有限公司的全体员工B.2020年全国经济百强县C.2020年全国五一劳动奖章获得者D.美国NBA 的篮球明星解析:根据集合元素的确定性来判断是否构成集合.因为A 、B 、C 中所给对象都是确定的,从而可以构成集合;而D 中所给对象不确定,原因是没有具体的标准衡量一位美国NBA 球员是篮球明星,故不能构成集合.故选D.答案:D2.下列关系中正确的是 ( )A.{}0(0,1)∈B. {}1(0,1)∈C.0N ∈D. 0+N ∈解析:首先明确各个集合中的元素.{}(0,1)中的元素是点,不是数,∴A 、B 错误;0是自然数,不是正整数,∴D 错误,C 正确,故选C .答案:C3. 以下集合M 与N 中,是不同集合的是 ( )A.{}1,2,3M =,{}3,2,1N =B. {}1,2,3,4M =,{}4N n n =∈≤ZC. {}1,2M =,{}2320N x x x =-+= D .{}1,1M =-,{}(1)n N x x ==- 解析:根据相同集合的定义来判断.由集合元素的无序性知A 中M N =;C 中 {}{}23201,2N x x x M =-+===;D 中{}{}(1)1,1n N x x M ==-=-=;B 中{}4N n n =∈≤Z ={},2,1,0,1,2,3,4M =--≠L L ,故选B .答案:B4.有以下四个命题:①“所有相当小的正数”组成一个集合;②由1,2,3,1,9组成的集合用列举法表示为{}1,2,3,1,9;③{1,3,5,7}与{7,5,3,1}表示同一个集合;④{}y x =-表示函数y x =-图象上的所有点组成的集合.其中正确的是 ( )A.①③B.①②③C.③D.③④解析:依据集合元素的性质和描述法及列举法的表示含义来判断.①中“相当小的正数”的标准不明确,不能构成集合;②中元素1重复,不符合元素的互异性,构成的集合应是{}1,2,3,9;④的表示方法不对,由于集合的代表元素是点,而点用有序实数对(x ,y )来表示,即正确的答案应表示为{}(,)x y y x =-;③中依据集合元素的无序性知表示同一个集合,故选C .答案:C5.对于集合{}2,4,6A =,若a A ∈,则6a A -∈,那么实数a 的值是 .解析:需对a 的值分类讨论.当2a =时, 64a A -=∈,则2a =符合题意;当4a =时, 62a A -=∈,则4a =符合题意; 当6a =时, 60a -=∈A ,则6a =不合题意,所以2,4a =.答案: 2,46.集合{}2(,)1,2,x y y x x x =-≤∈Z 可用列举法表示为 .解析:首先依据题意确定x 的值,则对x 分类讨论.由2,x x ≤∈Z ,得2,1,0,1,2x =--,则有2,3.x y =-⎧⎨=⎩,1,0.x y =-⎧⎨=⎩,0,1.x y =⎧⎨=-⎩,1,0.x y =⎧⎨=⎩,2,3.x y =⎧⎨=⎩.故用列举法表示为{}(2,3),(1,0),(0,1),(1,0),(2,3)---. 答案:{}(2,3),(1,0),(0,1),(1,0),(2,3)---7.用适当方法表示下列集合,并指出它们是有限集还是无限集.(1)不超过10的非负偶数的集合;(2)大于10的所有自然数的集合.思路分析:根据集合中元素的个数选择列举法还是描述法.解:(1)不超过10的非负偶数有0,2,4,6,8,10,共6个元素,故用列举法表示为{}0,2,4,6,8,10,这个集合是有限集; (2)大于10的所有自然数的集合有无限个,故用描述法表示为{}10,x x x >∈N ,这个集合是无限集.答案(1)用列举法为{}0,2,4,6,8,10,是有限集;(2)用描述法表示为{}10,x x x >∈N ,是无限集.8.设集合A ={}2,,x x xy ,集合B ={}1,,x y ,且集合A 与集合B 相等,求实数,x y 的值.思路分析:由集合A 与集合B 中的元素完全相同列出关于,x y 的方程组,解方程组得实数,x y 的值,要注意依据集合元素的互异性验根. 解:由题意得21,.x xy y ⎧=⎨=⎩………①或2,1.x y xy ⎧=⎨=⎩………②.解①得1,.x y =⎧⎨∈⎩R 或1,0.x y =-⎧⎨=⎩,经检验1,.x y =⎧⎨∈⎩R 不合题意舍去,则1,0.x y =-⎧⎨=⎩; 解②得1,1.x y =⎧⎨=⎩,经检验1,1.x y =⎧⎨=⎩不合题意舍去.综上所得1,0.x y =-⎧⎨=⎩. 答案:1,0.x y =-⎧⎨=⎩我综合 我发展9.(2020 山东高考卷,理科1文科1)定义集合运算:{}(),,A B z z xy x y x A y B ==+∈∈e ,设 集合A={0,1},B={2,3},则集合A B e 的所有元素之和为 ( )A.0B.6C.12D.18解析:由于A={0,1},B={2,3},,x A y B ∈∈,故对,x y 的取值分类讨论.当x =0,y B ∈时,z =0;当x =1,y =2时,z =6;当x =1,y =3时,z =12,故所有元素之和为061218++=.故选D .答案:D10.集合392781243,,,,23456⎧⎫⎨⎬⎩⎭可用描述法表示为 . 解析:观察集合中元素的规律即元素的共同特征,再用描述法表示.1233393273,,211321431===+++, 458132433,541651==++,则元素的共同特征是3(,6)1+N nn n n ∈<+,则用描述法表示为 3,,61+N nx x n n n ⎧⎫=∈<⎨⎬+⎩⎭. 答案:3,,61+N nx x n n n ⎧⎫=∈<⎨⎬+⎩⎭11.由,,x x x -思路分析:讨论这几个数的大小关系,根据集合元素的互异性来确定.解:设由,,x x x -M ,x x -=,∴由集合元素的互异性知集合M 是由,,x x x -组成的.又∵,0,,0.x x x x x ≥⎧=⎨-<⎩知x 必与,x x -中的一个相等,∴集合M 是由,x x -组成的集合.当x x ≠-,即0x ≠时,集合M 中元素的个数最多有两个,x x -.因此由,,x x x -组成的集合元素的个数最多为2个.答案:2个12.集合{}21y y x =+、{}21x y x =+、{}2(,)1x y y x =+三者之间有什么关系?思路分析:依据描述法的特点,明确集合中的元素是点还是实数,其元素具有什么特征.解:集合{}21y y x =+中的元素是y ,满足21y x =+,即集合{}21y y x =+是数集,是函数21y x =+的函数值组成的集合;集合{}21x y x =+中的元素是x ,满足21y x =+,即集合{}21x y x =+是数集,是函数21y x =+的自变量的取值组成的集合;集合{}2(,)1x y y x =+中的元素是(,)x y 为有序数对,满足21y x =+,即集合{}2(,)1x y y x =+是点集,是函数21y x =+的图象上所有点组成的集合. 答案:集合{}21y y x =+和{}21x y x =+均是数集,而集合{}2(,)1x y y x =+是点集.集合 {}21y y x =+是函数21y x =+函数值组成的集合,而集合{}21x y x =+是函数21y x =+的自变量 的取值组成的集合,集合{}2(,)1x y y x =+是函数21y x =+的图象上所有点组成的集合. 我创新 我超越13.定义{},A B x x A x B -=∈∉,若{}1,2,3,4,5M =,{}2,3,6N =,试用列举法表示集合N M -. 思路分析:由已知得集合A B -{},x x A x B =∈∉,即集合A 中不属于集合B 的元素组成的集合,也 就是.集合A 中除去集合A 和集合B 的公共元素组成的集合. 解:由题意得N M -是集合N 中除去集合M 和集合N 的公共元素组成的集合.观察集合M 、N ,它们的 公共元素是2,3.集合N 中除去元素2,3还剩下元素6,则{}6N M -=.答案: {}6。

相关文档
最新文档