移动通信课程设计——帧同步提取
实验十一 帧同步信号提取实验

实验十一帧同步信号提取实验一、实验目的1、掌握用集中插入法提取帧同步信号的原理与实现方法。
2、了解帧同步系统的性能分析。
二、实验内容1、提取复用模块时分复用数据的帧同步信号。
2、提取信号源模块NRZ码的帧同步信号。
三、实验仪器1、信号源模块一块2、基带同步提取模块一块3、频带同步提取模块一块4、复用模块一块5、20M双踪示波器一台四、实验原理基带同步提取模块和频带同步提取模块均采用集中插入法提取帧同步信号。
接收端收到NRZ码数据后,已知同步码组,从接收NRZ码中检测到这个特定的同步码组后,产生一个窄脉冲输出。
基带同步提取模块提取时分复用数据的帧同步信号,时分复用数据32位一帧,每帧的24位信息码元之前,集中插入8位的同步码组“01110010”(巴克码1110010前面补一位0),提取出的帧同步信号为窄帧,对应同步码组的第一位“0”。
频带同步提取模块提取NRZ码的帧同步信号,NRZ码要求24位一帧,每帧的16位信息码元之前,集中插入8位的同步码组“11100100”(巴克码1110010后面补一位0),提取出的帧同步信号为窄帧,对应同步码组后的第一位数据。
五、实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的电源开关,对应的发光二极管灯亮,四个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、实验连线如下:信号源模块复用模块2048K——————————2048K64K——————————位同步(时分复用输入)8K ——————————帧同步(时分复用输入)复用模块基带同步提取模块数据(时分复用输出)————NRZ输入(帧同步提取)位同步(时分复用输出)————BS输入(帧同步提取)4、时分复用数据帧同步提取(1)复用模块“第三路复用数据码型拨码设置”拨码开关任意设置。
移动实验四 位同步提取实验

实验四位同步提取实验一、实验目的1、掌握用数字环提取位同步信号的原理及对信息代码的要求。
2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。
二、实验器材1、移动通信原理实验箱一台2、20M双踪示波器一台三、实验记录1、安装好发射天线和接收天线。
2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。
3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。
此时系统的信码速率为1Kbit/s,扩频码速率为100Kbit/s。
将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。
将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。
4、根据实验二中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。
8、顺时针将“捕获”电位器旋到底,“捕获指示”灯亮。
用示波器双踪分别观察“G1-BS”和“G3-BS”处的波形,调节“跟踪”电位器,使两者波形相对移动尽可能缓慢或静止。
9、逆时针将“捕获”电位器旋到底,再顺时针缓慢旋转,直到“捕获指示”灯刚好变亮,按下“接收机复位”键时“捕获指示”灯灭,松开“接收机复位”键时“捕获指示”灯亮,则“捕获”电位器调节正确。
10、用示波器双踪分别观察“G1-BS”和“G3-BS”处的波形,调节“跟踪”旋钮,直到二个波形完全一致,没有相差为止。
此时表明接收机的Gold序列和发射机的Gold序列在相位与码速率上都一致。
11、用示波器双踪分别观察GOLD1和GD-TX处的波形,二者的波形应完全一致。
5、根据实验四中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。
实验十五 帧同步信号提取实验

实验十五 帧同步信号提取实验一、实验目的1. 掌握巴克码识别原理。
2. 掌握同步保护原理。
3. 掌握假同步、漏同步、捕捉态、维持态的概念。
二、实验内容1. 观察帧同步码无错误时帧同步器的维持态。
2. 观察帧同步器的假同步现象、漏识别现象和同步保护现象。
三、实验器材1. 信号源模块2. 同步信号提取模块3. 20M 双踪示波器一台 4. 频率计(选用) 一台四、实验原理由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信体统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现。
适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻。
由于这些特殊码组123{,,,,}n x x x x 是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j =0的情况下,序列中的全部元素都参加相关运算外;在j ≠0的情况下,序列中只有部分元素参加相关运算,其表示式为∑-=+=jn i j i i x x j R 1)( (15-1)通常把这种非周期序列的自相关函数称为局部自相关函数。
对同步码组的另一个要求是识别器应该尽量简单。
目前,一种常用的帧同步码组是巴克码。
巴克码是一种非周期序列。
一个n 位的巴克码组为{x 1,x 2,x 3,…,x n },其中x i 取值为+1或-1,它的局部自相关函数为⎪⎩⎪⎨⎧≥<<±===∑-=+nj n j j n x x j R j n i j i i 00100)(1或 (15-2) 目前已找到的所有巴克码组如表15-1所列。
5G通信系统的帧同步技术研究

5G通信系统的帧同步技术研究随着移动通信技术的快速发展,5G通信系统已成为近年来的热门话题。
作为下一代移动通信网络,5G通信系统不仅具备高速率、低时延等优势,还能为各行各业提供更多创新和发展机会。
而其中的帧同步技术则成为5G 通信系统关键的技术之一。
本文将就5G通信系统的帧同步技术进行研究,从技术原理、应用领域以及挑战和前景等方面进行详细探讨。
首先,我们将介绍帧同步技术的技术原理。
帧同步技术是指通过在传输信号中的帧边界位置上进行同步,确保接收方能够准确解析并恢复发送方传输的信息。
在5G通信系统中,帧同步技术应用于对时延要求严苛的场景,如虚拟现实、物联网和无人驾驶等技术领域。
为了保证帧同步的准确性,5G 通信系统采用了多个同步信号和控制信号,如Primary Sync Signal (PSS) 和Secondary Sync Signal (SSS) 等。
通过这些同步信号,接收方能够与发送方进行同步,并在正确的时间位置接收到传输的数据。
其次,我们将探讨帧同步技术的应用领域。
随着5G通信系统的发展,帧同步技术将在各个领域得到广泛应用。
在虚拟现实方面,帧同步技术可以提供低时延和高精度的同步,确保用户能够流畅地体验虚拟环境。
在物联网应用方面,帧同步技术可以保证传感器和设备之间的同步,提供高效和可靠的数据传输。
在无人驾驶领域,帧同步技术的应用可以实现车辆与环境的高精度同步,为智能交通系统的安全和稳定提供保障。
除此之外,帧同步技术还可以应用于医疗、工业自动化、智能城市等众多领域。
然而,帧同步技术的研究也面临着一些挑战。
首先,由于5G通信系统的高频和大带宽特性,噪声和多径效应会对信号传输造成干扰,这会导致帧同步的准确性下降。
其次,5G通信系统需要支持大规模的容量和密集的连接,这对帧同步技术的实时性和可靠性提出了更高的要求。
此外,不同的应用场景对帧同步技术的精度和容忍度也有不同的需求,在设计和实现时需要考虑这些因素。
实验十三 帧同步信号提取实验

实验十三 帧同步信号提取实验一、实验目的1、掌握巴克码识别原理。
2、掌握同步保护原理。
3、掌握假同步、漏同步、捕捉态、维持态的概念。
二、实验内容1、观察帧同步码无错误时帧同步器的维持态。
2、观察帧同步器的假同步现象、漏识别现象和同步保护现象。
三、实验仪器1、信号源模块2、同步信号提取模块3、20M 双踪示波器 一台4、频率计(选用) 一台5、连接线 若干四、实验原理由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差。
此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致。
在数字通信中,称节拍一致为“位同步”,称编组一致为“帧同步”。
在时分复用通信系统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入。
集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现。
适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻。
由于这些特殊码组123{,,,...,}n x x x x 是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j =0的情况下,序列中的全部元素都参加相关运算外,在j ≠0的情况下,序列中只有部分元素参加相关运算,其表示式为∑-=+=jn i j i i x x j R 1)( (13-1)通常把这种非周期序列的自相关函数称为局部自相关函数。
对同步码组的另一个要求是识别器应该尽量简单。
目前,一种常用的帧同步码组是巴克码。
巴克码是一种非周期序列。
一个n 位的巴克码组为{x 1,x 2,x 3,…,x n },其中x i 取值为+1或-1,它的局部自相关函数为⎪⎩⎪⎨⎧≥<<±===∑-=+nj n j j n x x j R j n i ji i 00100)(1或 (13-2) 目前已找到的所有巴克码组如表13-1所列。
帧同步 ppt

第六小组
BJTU SCHOOL OF SCIENCE
小组分工情况
BJTU SCHOOL OF SCIENCE
目 录 / contents
3
BJTU SCHOOL OF SCIENCE
01 02 03 04
帧同步的定义
帧同步系统的要求 帧同步的方法 帧同步系统的性能
1 帧同步的定义
4
BJTU SCHOOL OF SCIENCE
15
BJTU SCHOOL OF SCIENCE
这是PCM30/32基群的帧结构分配图。在两个相邻抽 样值间隔中,分成32个时隙,其中30个时隙用来传送30路 电话,一个时隙即TS0用来传送帧同步码,另一个时隙即 TS16用来传送标志性号码。
PCM30/32路帧同步系统
16
BJTU SCHOOL OF SCIENCE
巴克码
9
BJTU SCHOOL OF SCIENCE
巴克码是一种具有特殊规律的二进制码组,它是一个非周 期序列,每个码元可能取值+1或者-1。它的局部自相关函 数为:
c j xi xi j i 1
l i
l 0或 1 0
j0 0 jl j l
3.2 集中插入同步法
8
BJTU SCHOOL OF SCIENCE
帧同步码
信息码 帧
集中插入方式
要求: 定义:将帧同步码以集中的的形式插入到信息码流中, ①在接受端进行同步传输时出现伪同步的可能性 通常集中插入在一帧的开始。在接收端只要检测出同步 尽量小; 码的位置,就可以识别出帧的开头。从而确定各路信息 ②码组具有尖锐的自相关函数; 码组的位置。这种方法的优点是能较迅速的建立帧同步。 ③识别器要尽量简单。
通信原理实验报告-实验十_载波同步提取实验_实验十一_位同步提取实验_实验十二_帧同步提取实验

图 10-1 128K 同步正弦波
图 10-2 PSK 调制信号(CH1 是 32 kb/s PN 基带信 号,CH2 是 PSK 调制信号)
5、观察提取过程。 观察并记录“PN” (信号源)与“TH5” (PSK 调制信号和 π/2 相载波相乘滤波后的波形) 的波形。 用示波器 CH1 接信号源“PN” ,CH2 接 模块 7“TH5” 。调节电位器 W1,使“TH5” 点输出清楚稳定的波形。如果示波器两路信 号反向,按复位开关 S1 使其同相。
原
创
分析 2:COSTAS 环提取“0”相载波的实现过程。
5 / 15
实验十一 位同步提取实验
一、 实验目的
1、掌握用滤波法提取位同步信号的原理及其对信息代码的要求。 2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。
二、实验内容
1、观察滤波法提取位同步信号各观测点波形。
三、实验器材
目的端口
模块 3:PSK-NRZ 模块 3:PSK 载波 模块 7:PSKIN
创
器输出信号的相位, 最后使稳定相位误差减小到很小的数值。 这样压控振荡器的输出就是所
连线说明
S4 拨为“1010” ,PN 是 32K 伪随机码 提供 PSK 调制载波,幅度为 4V 提供载波同步提取输入 3 / 15
4、打开电源, 观察 PSK 调制源状态。
继续按表中顺序观察解调过程, “载波输出”点输出的信号就是从输入的 PSK 调制信号 中提取出来的 0 相载波,率为 128KHz。
图 10-4 0 相鉴相输出波形(CH1 是 32 kb/s PN 基 带信号, CH2 是 PSK 调制信号和 0 相载波相乘滤波后 的波形)
原
位同步提取设计课程设计

位同步提取设计课程设计一、课程目标知识目标:1. 学生能理解位同步的概念,掌握位同步提取的基本原理;2. 学生能够运用所学知识,分析并设计简单的位同步提取电路;3. 学生了解位同步提取在实际通信系统中的应用及其重要性。
技能目标:1. 学生通过实验和仿真,能够实际操作位同步提取过程,提升实践技能;2. 学生能够运用数学工具和分析方法,解决位同步提取中的问题;3. 学生能够小组合作,进行有效沟通,共同完成位同步提取设计方案。
情感态度价值观目标:1. 学生培养对通信原理的兴趣,激发探索精神和创新意识;2. 学生通过学习,认识到科技发展对社会进步的重要性,增强社会责任感;3. 学生在小组合作中,学会尊重他人意见,培养团队协作精神。
课程性质:本课程为通信原理的实践应用课程,结合理论知识和实际操作,提高学生的综合能力。
学生特点:学生为高二年级,已具备一定的电子线路基础和数学分析能力,对通信原理有一定了解。
教学要求:结合学生特点,注重理论与实践相结合,鼓励学生动手实践,培养解决实际问题的能力。
在教学过程中,注重引导学生主动探究,激发学生的学习兴趣和创新能力。
通过小组合作,培养学生团队协作精神和社会责任感。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
二、教学内容本章节教学内容以《通信原理》教材中“位同步提取”章节为基础,结合以下内容展开:1. 位同步提取基本原理:介绍位同步的概念,同步提取的原理和方法,包括插入导频法、自相关法和锁相环法等;- 教材章节:第三章第五节“位同步提取技术”2. 位同步提取电路设计:分析并设计简单的位同步提取电路,包括电路原理、参数计算和应用实例;- 教材章节:第三章第六节“位同步提取电路的设计与应用”3. 位同步提取在实际通信系统中的应用:介绍位同步提取在数字通信、光纤通信等领域的应用;- 教材章节:第三章第七节“位同步提取在实际通信系统中的应用”4. 实践操作与仿真:安排学生进行位同步提取实验,利用相关软件进行仿真,加深对位同步提取原理和电路设计的理解;- 教材章节:第三章实验“位同步提取实验”教学进度安排:第一课时:位同步提取基本原理第二课时:位同步提取电路设计第三课时:位同步提取在实际通信系统中的应用第四课时:实践操作与仿真教学内容科学系统,注重理论与实践相结合,旨在帮助学生掌握位同步提取技术,提高通信原理应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告课题名称帧同步提取学院专业班级学号姓名指导教师定稿日期: 2014 年 06月13 日目录摘要 (1)一、前言 (2)1.1 CDMA帧同步背景 (2)二、帧同步提取基本原理 (3)2.1 CDMA含义 (3)2.2基本原理 (3)2.2.1发端用户数据成帧 (3)2.2.2 收端帧同步提取 (3)三、帧同步提取设计 (6)3.1课程设计分析 (6)3.2帧同步提取测试设计步骤 (7)3.2.1实验箱设置 (7)3.2.2“发端数据成帧”测量步骤 (7)3.3单片机程序流程图如下 (9)四、帧同步提取测试结果 (10)4.1课程设计实物链接图 (10)4.2“发端数据成帧”实验过程 (10)4.3实测收端帧同步误码: (11)五、课设总结 (12)参考文献 (13)附录(源程序) (14)摘要在当今这个信息高速发展的时代,移动通信已经成为生活中不可或缺的一部分。
在移动环境下点对点的传输问题已经得到解决,那么对于给定资源应该采用什么多址技术使得有限的资源能传输更大容量的信息?移动通信系统的发展经历了第一代模拟移动通信系统、第二代数字移动通信系统和第三代移动通信系统(IMT-2000)。
第一代移动通信系统包括AMPS、TACS和NMT等体制。
第二代数字移动通信系统包括GSM、IS-136(DAMPS)、PDC、IS-95等体制。
一个典型的数字蜂窝移动通信系统包括:移动台(MS)、基站分系统(BSS)、移动交换中心(MSC)、原籍(归属)位置寄存器(HLR)、访问位置寄存器(VLR)、设备标识寄存器(EIR)、认证中心(AUC)和操作维护中心(OMC)。
而这其中,多址技术便主要解决众多用户如何高效共享给定频谱资源的问题。
常规的多址方式有三种:频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)。
数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输,因此群同步信号的频率很容易由位同步信号经分频而得出,但是每群的开头和末尾时刻却无法由分频器的输出决定。
群同步的任务就是要给出这个“开头”和“末尾”的时刻。
群同步有时也称为帧同步。
本次课程设计主要研究帧同步的提取及实现方法。
关键词:CDMA 帧同步移动通信一、前言1.1 CDMA帧同步背景码分多址(Code Division Multiplexing Access,CDMA)为第三代移动通信技术的核心,它作为一种扩频技术,将信息比特扩展到比基带信号宽得多的频谱上传输,使信号传输带宽大于相关带宽,避免了在深度衰落情况下整个信号几乎完全损失的情况,但应用于高速数据传输时码间串扰变得十分严重。
多载波传输的正交频分复用( Orthogonal Frequency Division Multiplexing,O FDM)是可以直接利用离散里叶变换( DFT) 实现的一种多载波调制并行传输技术,它将高速数据分解调制到多个相互交叠又相互正交的并行子信道中传输,使每个子信道上的码元宽度大于扩展延时,若在码元间增加一定的保护间隔,则多径传输引起的码间串扰基本上消除。
因此随着OFDM和CDMA技术向高速率发展,人们提出了把OFDM 与CDMA结合起来的方案。
多载波CDMA(MC-CDMA)可以充分利用CDMA技术和OFDM技术各有的利弊,取长补短,以求达到更好的通信传输效果。
MC-CDMA系统由于利用多个载波传输数据,相邻载波的间隔非常小,它对系统的频率偏移和定时偏移非常敏感,这会引起码元间干扰、子载波间干扰和多用户间干扰。
因此如何准确地实现载波、采样时钟和定时同步是MC-CDMA系统中的一个极为关键的技术问题。
由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差.此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致.在数字通信中,称节拍一致为"位同步",称编组一致为"帧同步".在时分复用通信体统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,目前,一种常用的帧同步码组是巴克码。
本次课程设计的目的是了解数字移动通信系统,包括CDMA移动通信系统收端帧同步提取原理及实现方法,设计、开发帧同步提取CPU2(89S52)单片机程序,增强研究问题解决问题的动手能力。
在CDMA移动通信实验箱上开发收端帧同步提取CPU2(89S52)单片机程序,或用C语言编程实现单片机的应有功能。
本次课程设计的要求如下:1. 发端由信源开始顺着信号处理的流向用示波器观测各电路模块输入/输出数据,了解成帧过程及原理。
2. 观测收端有关信号,了解帧同步提取过程及原理。
3. 通过完成课程设计,给出所开发的CPU2帧同步提取单片机程序及其实测运行效果和性能指标。
总结单片机程序设计及调试的体会。
由课程设计的实验结果,详述帧同步提取原理。
说明帧同步为什么不能象信码一样釆用信道编码来抗干扰?实际釆用了另外哪些抗干扰措施?二、帧同步提取基本原理2.1 CDMA含义CDMA(码分多址)是指一种扩频多址数字式通信技术,通过独特的代码序列建立信道,可用于二代和三代无线通信中的任何一种协议,它是以扩频信号为基础的,利用不同码型实现不同用户的信息传输。
扩频信号是一种经过伪随机序列调制的宽带信号,其带宽信号通常比原始信号带宽高出几个量级。
常用的扩频信号有两类:跳频信号和直接序列扩频信号(简称直扩信号),因而对应的多址方式为跳频码分多址(FH-CDMA)和直扩码分多址(DS-CDMA)。
CDMA是CDMA无线接入台一种多路方式,多路信号只占用一条信道,极大提高带宽使用率,应用于800MHz和1.9GHz的超高频(UHF)移动电话系统。
CDMA使用带扩频技术的模-数转换输入音频首先数字化为二进制元,传输信号频率按指定类型编码,由于有无数种频率顺序编码,因此很难出现重复,增强了保密性。
CDMA通道宽度名义上1.23MHz,网络中使用软切换方案,尽量减少手机通话中信号中断。
数字和扩频技术的结合应用使得单位带宽信号数量比模拟方式下成倍增加,CDMA与其他蜂窝技术兼容,实现全国漫游。
最初的CMDAOne标准只提供单通道14.4Kbps和八通道115Kbps的传输速度。
现CDMA2000和宽带CDMA速度已经成倍提高。
2.2基本原理2.2.1发端用户数据成帧以BS1的用户1数据为例将有关部分画出,如图2-1所示。
1.425kb/s2.85kb/s 2.85kb/s图2-1 BS1发端用户1数据成帧BS1用户1数据(信码)D1用7位并行拨码开关人工设置(D2、D3、D4还可选用内部电路产生的随机并行数据)。
7位并行数据首先由“并/串变换”电路变成串行数据,然后在最后加入1位为0的尾比特,共8位形成一帧数据D1,码速率为1.425kb/s。
尾比特的加入是为了完成其后一帧数据独立的卷积编码,使相邻帧数据之间无约束关系。
D1送入(2,1,2)卷积编码器进行卷积纠错编码,输出D l er,每帧数据加倍成为2×8=16位,码速率也由1.425kb/s加倍成为2.85kb/s。
每帧16位有效数据送入“成帧”电路,在前面预留的时隙中插入8位帧同步(帧同步码由7位巴克码前面加上1位0而组成,为01110010),形成完整一帧数据D l fr共24位,完成用户数据的成帧处理。
2.2.2 收端帧同步提取收端帧同步提取及纠错解码由单片机CPU2实现,现将有关部分画出,如图2-2所示。
在提取帧同步前,收端已完成PN码同步及解扩(去扰)、载波解调及Walsh码相关检测,输出信码Drxs及同步时钟CP b。
以接收BS1的用户1数椐为例,在无误码时,Drxs=D l xs;在无误码并且无分组交织/去交织时,Drxs=Drfr=D l fr。
图2-2 收端帧同步提取及相关电路 帧同步提取电路在同步时钟CP b 驱动下,逐位输入信码,存入串行移位寄存器,以适当的判决门限识别帧同步码,并经过帧同步保护以最低的漏同步概率及假同步概率达到帧同步状态,输出帧同步信号FSr ,控制分组去交织及卷积解码器正确地按帧时序处理输入信码流,恢复原始用户数据Dr ,并且送LED 电路显示。
帧同步提取模块由帧同步码识别及帧同步保护二部分组成,如图2-3所示。
帧同步码识别器原理框图见图2-4。
输入信码在同步时钟驱动下逐位进入8位移位寄存器。
每当进入1位信码后,将移位寄存器中的8位信码与帧同步码01110010逐位比较是否相同,然后求相同的总位数与判定门限7比较。
相同位数大于等于7位,则判定为是帧同步码;否则不是帧同步吗。
这里选择的判决门限,允许输入帧同步码有1位误码,以减小漏同步概率。
帧识别器实际上是个自相关检测器。
图2-3 帧同步提取原理方框图 帧同步提取工作状态分为捕捉态(帧失步状态)及维持态(帧同步状态)。
在捕捉状态下,必须在连续α帧的相同时隙都识别到帧同步码,才确认达到了帧同步状态,以防止用户信码中可能出现的帧同步码型造成的假同步。
这称之为后方保护,α称为后方保护次数(本实验箱取α=3)。
在帧同步状态下,在每帧数据的帧同步码时隙可能因误码造成漏识别,只有连续β帧检测不到帧同步码才确认已帧失步,再重新开始捕捉。
这称之为前方保护,β称为前方保护次数(本实验箱取β=4)。
由以上工作原理,由单片机实现的帧同步提取模块状态流图见图2-5。
单片机程序框图可由图2-4及图2-5画出。
Drxs bb图2-4 帧同步码识别器原理框图图2-5 帧同步提取状态流图Drxs三、帧同步提取设计3.1课程设计分析在本实验中,由于数字通信系统传输的是一个接一个按节拍传送的数字信号单元,即码元,因而在接收端必须按与发送端相同的节拍进行接收,否则,会因收发节拍不一致而导致接收性能变差.此外,为了表述消息的内容,基带信号都是按消息内容进行编组的,因此,编组的规律在收发之间也必须一致.在数字通信中,称节拍一致为"位同步",称编组一致为"帧同步".在时分复用通信体统中,为了正确地传输信息,必须在信息码流中插入一定数量的帧同步码,它可以是一组特定的码组,也可以是特定宽度的脉冲,可以集中插入,也可以分散插入.集中式插入法也称为连贯式插入法,即在每帧数据开头集中插入特定码型的帧同步码组,这种帧同步法只适用于同步通信系统,需要位同步信号才能实现.适合做帧同步码的特殊码组很多,对帧同步码组的要求是它们的自相关函数尽可能尖锐,便于从随机数字信息序列中识别出这些帧同步码组,从而准确定位一帧数据的起始时刻.由于这些特殊码组是一个非周期序列或有限序列,在求它的自相关函数时,除了在时延j=0的情况下,序列中的全部元素都参加相关运算外,在j≠0的情况下,序列中只有部分元素参加相关运算。