初二数学提高题[附答案]

合集下载

初二上数学提高练习题及参考答案1

初二上数学提高练习题及参考答案1

l提高练习1说明:此题均取自上届初二第一学期期末考试题。

认真思考,好好做一做。

26. (2019通州区)已知:过点A 的射线l ⊥AB ,在射线l 上截取线段AC =AB ,过 A 的直线m 不与直线l 及直线AB 重合,过点B 作BD ⊥m 于点D,过点C 作CE ⊥m 于点E . (1)依题意补全图形; (2)求证:△AEC ≌△BDA.26.(1)如图. …………………………………..(2分)(2)证明:∵直线l ⊥AB ∴∠CAB =90°∴∠CAE+∠DAB =90°…………………………………..(3分) ∵BD ⊥m ∴∠ADB =90°∴∠DAB+∠B =90°…………………………………..(4分) ∴∠CAE=∠B …………………………………..(5分) ∵BD ⊥m 于点D, CE ⊥m 于点E . ∴∠CEA =∠DAB =90°在△AEC 和△BDA 中CAE B CEA DAB AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△BDA . ………………………….(6分)27.(2019通州区)已知:线段AB .(1)尺规作图:作线段AB 的垂直平分线l ,与线段AB 交于点D ;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C 为l 上一个动点(点C 不与点D 重合),连接CB ,过点A 作AE ⊥BC ,垂足为点E .①当垂足E 在线段BC 上时,直接写出∠ABC 度数的取值范围. ②若∠B =60º,求证:12BD BC =.27.(1)按要求作图…………………………………..(1分)(2)①45°≤∠ABC <90° …………………………………..(3分)② 连接AC∵CD 是AB 的垂直平分线∴12BD AB =CA =CB …………………………………..(5分)又∵∠B =60º∴△ABC 是等边三角形…………………………………..(6分) ∴BC =AB ∴12BD BC =…………………………………..(7分)AB28.(2019通州区)在等边ABC ∆中,(1)如图1,P ,Q 是BC 边上两点,AP=AQ ,20BAP ∠=︒,求AQB ∠的度数; (2)点,P Q 是BC 边上的两个动点(不与,B C 重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接,.AM PM ①依题意将图2补全; ②求证:.PA PM =28. (1)解:∵ △ABC 为等边三角形∴∠B =60°∴∠APC =∠BAP +∠B=80° ∵AP=AQ∴∠AQB=∠APC =80°……………………………..(2分)(2)① 补全图形如图所示②证法不唯一证明:过点A 作AH ⊥BC 于点H ,如图. 由△ABC 为等边三角形,AP=AQ ,可得∠PAB =∠QAC . …………………………………..(5分)∵点Q ,M 关于直线AC 对称, ∴∠QAC =∠MAC ,AQ =AM ∴∠PAB =∠MAC ,AQ =AM∴∠PAM =∠BAC =60°…………………………………..(6分) ∴△APM 为等边三角形∴PA =PM . …………………………………..(7分)CB CB MBMBQPF EDCBA27.(2019东城区)(本小题6分)(1)老师在课上给出了这样一道题目:如图(1),等边△ABC 边长为2,过AB 边上一点P 作PE ⊥AC 于E ,Q 为BC 延长线上一点,且AP=CQ ,连接PQ 交AC 于D ,求DE 的长.小明同学经过认真思考后认为,可以通过过点P 作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE 的长. (2)【类比探究】老师引导同学继续研究:1.等边△ABC 边长为2,当P 为BA 的延长线上一点时,作PE ⊥CA 的延长线于点E ,Q 为边BC 上一点,且AP=CQ ,连接PQ 交AC 于D .请你在图(2)中补全图形并求DE 的长.2. 已知等边△ABC ,当P 为AB 的延长线上一点时,作PE ⊥射线AC 于点E , Q 为(○1BC 边上;○2BC 的延长线上;○3CB 的延长线上)一点,且AP =CQ ,连接PQ 交直线AC 于点D ,能使得DE 的长度保持不变.(将答案的编号填在横线上)图(1) 图(2) (备用图)27. 解:(1)DE=1. ………………………1分(2) 1. 正确补全图形. ……………2分 过点P 作PF ∥BC 交CA 的延长线与点F . ∴ ∠PF A =∠C .∵ △ABC 是等边三角形, ∴ 可证 △APF 为等边三角形.C B A C B A∴AP=PF.又∵PE⊥CA的延长线于点E ,∴AE=FE=12AF. ……………3分∵AP=CQ,∴PF=QC.∵∠FDP=∠CDQ,∴△FDP≌△CDQ.∴FD=CD=12CF. ……………4分∵DE=DF-EF=1111222CF AF AC-==. ……………5分2. ○2. ……………6分。

初二试题大全数学及答案

初二试题大全数学及答案

初二试题大全数学及答案初二数学试题一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 一个数的平方根是它本身,这个数是:A. 1B. 0C. -1D. 2答案:B3. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 2答案:B4. 圆的面积公式是:A. πr^2B. 2πrC. πrD. πd答案:A5. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A6. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 以上都是答案:A7. 根据勾股定理,如果一个三角形的两边长分别为5和12,那么第三边的长度可能是:A. 13B. 14C. 15D. 16答案:A8. 一个数的相反数是它本身,这个数是:A. 1B. -1C. 0D. 2答案:C9. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 2答案:A10. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数可能是________。

答案:±412. 一个数的立方是-27,这个数是________。

答案:-313. 圆的周长公式是________。

答案:2πr 或πd14. 一个直角三角形的两条直角边分别是6和8,斜边的长度是________。

答案:1015. 一个数的绝对值是5,这个数可能是________。

答案:±516. 一个数的相反数是-5,这个数是________。

答案:517. 一个数的倒数是1/2,这个数是________。

答案:218. 如果一个角是另一个角的余角,那么这两个角的和是________。

答案:90°19. 如果一个角是另一个角的补角,那么这两个角的和是________。

初二数学练习题和答案

初二数学练习题和答案

初二数学练习题和答案一、选择题1. 已知一边长为3cm的正方形,那么它的面积是多少?A. 6cm²B. 3cm²C. 9cm²D. 12cm²2. 将一个正方形的边长增加了一倍,那么原来正方形的面积相比新正方形的面积增加了几倍?A. 1倍B. 2倍C. 3倍D. 4倍3. 如果一个长方形的长为5cm,宽为3cm,那么它的周长是多少?A. 11cmB. 13cmC. 15cmD. 16cm4. 一辆汽车以每小时60公里的速度行驶1小时,那么它行驶的总距离是多少?A. 30公里B. 60公里C. 80公里D. 90公里5. 在一个等腰三角形中,两个底角的度数是多少?A. 45°B. 60°C. 90°D. 120°二、填空题1. 一个多边形的内角和是 _____ 度。

2. 一个半径为5cm的圆的面积是 _____ 平方厘米。

3. 一个长方体的体积是 __________ 立方厘米。

4. 在一个直角三角形中,a² + b² = ________ 。

5. 一张纸的尺寸是24cm × 18cm,将其对折两次后,新的尺寸是________ 。

三、解答题1. 请用恰当的公式计算一个边长为9cm的正方形的面积。

解:正方形的面积公式为:面积 = 边长 ×边长。

将边长带入公式:面积 = 9cm × 9cm = 81cm²。

2. 一张长方形的纸的长是2倍于宽,纸的周长是20cm,请求纸的长和宽各是多少?解:设纸的宽为x,所以纸的长为2x。

根据周长的计算公式:周长 = 2 × (长 + 宽)。

将已知数据带入公式:20cm = 2 × (2x + x)20cm = 6xx = 20cm ÷ 6 = 3.33cm所以纸的宽为3.33cm,长为2 × 3.33cm = 6.66cm。

初二数学好的试题及答案

初二数学好的试题及答案

初二数学好的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. √2B. 2√3C. √6D. √(-1)2. 一个数的立方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -13. 一个数的相反数是它自己,这个数是?A. 0B. 1C. 2D. -14. 一个数的绝对值是它自己,这个数是?A. 任何数B. 非负数C. 非正数D. 05. 一个数的倒数是它自己,这个数是?A. 0B. 1C. -1D. 1和-16. 一个数的平方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 17. 一个数的平方根是它自己,这个数是?A. 0B. 1C. -1D. 0和18. 一个数的立方根是它自己,这个数是?A. 0B. 1C. -1D. 0, 1, -19. 一个数的四次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -110. 一个数的五次方等于它本身,这个数是?A. 0B. 1C. -1D. 0, 1, -1二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。

2. 一个数的立方是-27,这个数是______。

3. 一个数的绝对值是5,这个数是______。

4. 一个数的倒数是1/2,这个数是______。

5. 一个数的平方根是4,这个数是______。

三、解答题(每题10分,共50分)1. 计算:(√3 + √2)(√3 - √2)。

2. 计算:(2x - 3)(2x + 3)。

3. 计算:(3x + 2)(3x - 2)。

4. 计算:(2x + 5)(2x - 5)。

5. 已知一个数的平方是25,求这个数。

答案:一、选择题1. A2. D3. A4. B5. D6. D7. D8. D9. D 10. D二、填空题1. ±62. -33. ±54. 25. 16三、解答题1. 3 - 2 = 12. 4x² - 93. 9x² - 44. 4x² - 255. ±5。

初二数学二次根式提高题与常考题与培优题(含解析)

初二数学二次根式提高题与常考题与培优题(含解析)

二次根式提升题与常考题型压轴题(含解读)一.选择题(共13 小题)1.二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠02.计算:﹣,正确的选项是()A.4B.C.2D.3.如图,在长方形ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 24.若 1<x< 2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 25.以下计算正确的选项是()A.=2B.=C.=x D.=x6.以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+7.以下二次根式中,与是同类二次根式的是()A.B.C.D.8.化简+﹣的结果为()A.0 B.2C.﹣ 2D.29.已知, ab>0,化简二次根式 a的正确结果是()A.B.C.﹣D.﹣10. a的小数部分,b的小数部分.的()A.+ 1 B.+1 C.1D.++111.把中根号外面的因式移到根号内的果是()A.B.C.D.12.假如=2a 1,那么()A.a B.a≤C.a D.a≥13.已知: a=,b=,a与b的关系是()A.ab=1B.a+b=0 C.a b=0 D.a2=b2二.填空(共17 小)14.假如代数式存心,那么x的取范.15.在数上表示数 a 的点如所示,化+| a 2| 的果.16.算:=.17.察以下等式:第 1个等式: a1=,=1第 2个等式: a2=,=第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:(1)写出第 n 个等式: a n=;(2) a1+a2+a3+⋯+a n=.18.算 2的果是.19.算(+)()的果等于.20.化简:(0<a<1)=.21.假如最简二次根式与能够归并,那么使存心义的x 的取值范围是.22.已知 a,b 是正整数,且知足是整数,则这样的有序数对( a,b)共有对.23.对正实数 a,b 作定义 a*b=﹣a,若 2*x=6,则 x=..已知x+y=, x﹣y=4﹣y4.24,则 x=25.已知=﹣(x,y 为有理数),则 x﹣ y=.26.已知是正整数,则实数 n 的最大值为.27.三角形的三边长分别为3、m、 5,化简﹣=.28.若实数 m 知足=m+1,且 0<m<,则m的值为.29.计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=.30.察看以下各式:=11+3×1+1,=22+3×2+1,=32+3× 3+1,猜想:=.三.解答题(共10 小题)31.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.32.若 1< a<2,求+的值.33.已知 x, y 都是有理数,而且知足,求的值.34.先化简,再求值:,此中x=﹣3﹣(π﹣3)0.35.( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且(+)=3(+5).求的值.36.察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.37.先化简,再求值:(+)÷,此中a=+1.38.求不等式组的整数解.39.阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.(1)若一个三角形的三边长分别是 5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.40.已知: y=++ ,求﹣的值.二次根式提升题与常考题型压轴题(含解读 )参照答案与试卷解读一.选择题(共13 小题)1.(2017 春?启东市月考)二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠0【剖析】依据二次根式存心义的条件和分式存心义的条件得出3﹣x≥0 且 x≠ 0,求出即可.【解答】解:要使存心义,一定3﹣x≥0且x≠ 0,解得: x≤3 且 x≠ 0,应选 B.【评论】本题考察了二次根式存心义的条件和分式存心义的条件等知识点,能根据题意得出 3﹣x≥0 且 x≠ 0 是解本题的重点.2.(2017 春?萧山区校级月考)计算:﹣,正确的选项是()A.4B.C.2D.【剖析】直接化简二次根式从而归并求出答案.【解答】解:﹣=2﹣=.应选: D.【评论】本题主要考察了二次根式的加减运算,正确化简二次根式是解题重点.3.( 2017 春?嵊州市月考)如图,在长方形 ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 2【剖析】依据正方形的面积求出两个正方形的边长,从而求出AB、BC,再依据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和 12cm2,∴它们的边长分别为=4cm,=2 cm,∴AB=4cm,BC=( 2 +4) cm,∴空白部分的面积 =( 2 +4)× 4﹣12﹣ 16,=8 +16﹣ 12﹣16,2=(﹣ 12+8)cm.【评论】本题考察了二次根式的应用,算术平方根的定义,解题的重点在于依据正方形的面积求出两个正方形的边长.4.(2016?呼伦贝尔)若 1<x<2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 2【剖析】已知 1<x<2,可判断 x﹣3<0,x﹣1>0,依据绝对值,二次根式的性质解答.【解答】解:∵ 1<x<2,∴x﹣3<0,x﹣1>0,原式 =| x﹣3|+=| x﹣3|+| x﹣1|=3﹣x+x﹣1=2.【评论】解答本题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0 时,表示 a 的算术平方根;当 a=0 时, =0;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=| a| .5.(2016?南充)以下计算正确的选项是()A.=2B.=C.=x D.=x【剖析】直接利用二次根式的性质分别化简求出答案.【解答】解: A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=| x| ,故此选项错误;应选: A.【评论】本题主要考察了二次根式的化简,正确掌握二次根式的性质是解题重点.6.(2016?杭州)以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+【剖析】直接利用二次根式的性质以及同底数幂的乘法运算法例和分式的混淆运算法例分别化简求出答案.【解答】解: A、x2?x3=x5,故此选项错误;B、=| x| ,正确;C、(x2﹣)÷ x=x﹣,故此选项错误;D、x2﹣ x+1=( x﹣)2+,故此选项错误;【评论】本题主要考察了二次根式的性质以及同底数幂的乘法运算和分式的混淆运算等知识,正确掌握有关运算法例是解题重点.7.(2016?巴中)以下二次根式中,与是同类二次根式的是()A.B.C.D.【剖析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解: A、 =3 ,与不是同类二次根式,故此选项错误;B、 = ,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;应选: B.【评论】本题主要考察了同类二次根式,正确化简二次根式是解题重点.8.(2016?营口)化简+﹣的结果为()A.0B.2C.﹣ 2D.2【剖析】依据根式的开方,可化简二次根式,依据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,应选: D.【评论】本题考察了二次根式的加减,先化简,再加减运算.9.(2016?安徽校级自主招生)已知, ab> 0,化简二次根式a的正确结果是()A.B.C.﹣D.﹣【剖析】直接利用二次根式的性质从而化简得出答案.【解答】解:∵ ab>0,∴ a=a×=﹣.【评论】本题主要考察了二次根式的性质与化简,正确应用二次根式的性质是解题重点.10.(2016?邯郸校级自主招生)设 a 为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1 C.﹣﹣1D.++1【剖析】第一分别化简所给的两个二次根式,分别求出a、b 对应的小数部分,而后辈、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣=== ,∴ a 的小数部分 =﹣1;∵﹣===,∴ b 的小数部分 =﹣ 2,∴﹣====.应选 B.【评论】该题主要考察了二次根式的化简与求值问题;解题的重点是灵巧运用二次根式的运算法例来剖析、判断、解答.11.( 2016?柘城县校级一模)把中根号外面的因式移到根号内的结果是()A.B.C.D.【剖析】先依据被开方数大于等于 0 判断出 a 是负数,而后平方后移到根号内约分即可得解.【解答】解:依据被开方数非负数得,﹣>0,解得 a<0,﹣ a==.应选 A.【评论】本题考察了二次根式的性质与化简,先依据被开方数大于等于0 求出 a 的取值范围是解题的重点,也是本题最简单犯错的地方.12.( 2016?杨浦区三模)假如=2a﹣1,那么()A.a B.a≤C.a D.a≥【剖析】由二次根式的化简公式获得1﹣ 2a 为非正数,即可求出 a 的范围.【解答】解:∵=| 1﹣ 2a| =2a﹣ 1,∴1﹣ 2a≤0,解得: a≥ .应选 D【评论】本题考察了二次根式的性质与化简,娴熟掌握二次根式的化简公式是解本题的重点.13.(2016?临朐县一模)已知: a=,b=,则a与b的关系是()A.ab=1B.a+b=0C.a﹣b=0 D.a2=b2【剖析】先分母有理化求出a、b,再分别代入求出ab、a+b、 a﹣ b、 a2、b2,求出每个式子的值,即可得出选项.【解答】解: a===2+,b===2﹣,A、ab=( 2+)×(2﹣)=4﹣3=1,故本选项正确;B、a+b=(2+)+(2﹣)=4,故本选项错误;C、a﹣b=(2+)﹣(2﹣)=2,故本选项错误;D、∵ a2=( 2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故本选项错误;应选 A.【评论】本题考察了分母有理化的应用,能求出每个式子的值是解本题的重点.二.填空题(共17 小题)14.(2017?静安区一模)假如代数式存心义,那么x的取值范围为x>﹣2.【剖析】依据二次根式存心义的条件、分式存心义的条件列出不等式,解不等式即可.【解答】解:由题意得, x+2>0,解得, x>﹣ 2,故答案为: x>﹣ 2.【评论】本题考察的是二次根式存心义的条件,掌握二次根式中的被开方数一定是非负数是解题的重点.15.( 2016?乐山)在数轴上表示实数 a 的点如下图,化简+| a﹣2| 的结果为3.【剖析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a﹣5<0,a﹣2> 0,则+| a﹣2|=5﹣a+a﹣2=3.故答案: 3.【点】此主要考了二次根式的性以及的性,正确掌握掌握有关性是解关.16.( 2016?聊城)算:=12.【剖析】直接利用二次根式乘除运算法化求出答案.【解答】解:=3×÷=3=12.故答案: 12.【点】此主要考了二次根式的乘除运算,正确化二次根式是解关.17.( 2016?黄石)察以下等式:第 1个等式: a1=,=1第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;;=( 2) a1+a2+a3+⋯+a n1.=【剖析】(1)依据意可知, a12=3==1,a =, a ==2,a4==2,⋯由此得出第 n 个等式: a n==;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a1==1,第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,∴第 n 个等式: a n==;( 2) a1+a2+a3+⋯+a n=(1)+()+(2)+(2)+⋯+()=1.故答案=;1.【点】此考数字的化律以及分母有理化,要修业生第一剖析意,找到律,并行推得出答案.18.( 2016?哈)算 2的果是2.【剖析】先将各个二次根式化成最二次根式,再把同二次根式行归并求解即可.【解答】解:原式 =2×3= 3= 2 ,故答案: 2 .【点】本考了二次根式的加减法,解答本的关在于掌握二次根式的化与同二次根式归并.19.( 2016?天津)算(+)()的果等于 2 .【剖析】先套用平方差公式,再依据二次根式的性算可得.【解答】解:原式 =()2()2=5 3=2,故答案为: 2.【评论】本题考察了二次根式的混淆运算的应用,娴熟掌握平方差公式与二次根式的性质是重点.20.( 2016?博野县校级自主招生)化简:(0<a<1)=﹣a.【剖析】联合二次根式的性质进行化简求解即可.【解答】解:==| a﹣| .∵0< a<1,∴ a2﹣1<0,∴ a﹣ =<0,∴原式 =| a﹣| =﹣( a﹣)=﹣a.故答案为:﹣a.【评论】本题考察了二次根式的性质与化简,解答本题的重点在于娴熟掌握二次根式的性质及二次根式的化简.21.(2016?绵阳校级自主招生)假如最简二次根式与能够归并,那么使存心义的 x 的取值范围是x≤ 10.【剖析】依据二次根式可归并,可得同类二次根式,依据同类二次根式,可得 a 的值,依据被开方数是非负数,可得答案.【解答】解:由最简二次根式与能够归并,得3a﹣8=17﹣2a.解得 a=5.由存心义,得20﹣2x≥0,解得 x≤10,故答案为: x≤ 10.【评论】本题考察了同类二次根式,利用同类二次根式得出对于 a 的方程是解题重点.22.( 2016?温州校级自主招生)已知a,b 是正整数,且知足是整数,则这样的有序数对( a, b)共有7对.【剖析】 A, B 只好是 15n2,而后分别议论及的取值,最后可确立有序数对的个数.【解答】解: 15 只好约分红3, 5那么 A,B 只好是 15n2先考虑 A 这边:①,那么 B 能够这边能够是 1 或许,此时有:(15,60),( 15,15),(60,15),②,只好 B 这边也是,此时有:(60,60),③,那么 B 这边也只好是,∴2×( + )=1,此时有:(240, 240)④的话,那么 B 这边只好是,那么 2( + ) =1,此时有:(135, 540),(540,135).综上可得共有 7 对.故答案为: 7.【评论】本题考察二次根式的化简求值,难度较大,重点是依据题意分别议论及的取值.23.( 2016?福州自主招生)对正实数a,b 作定义 a*b=﹣a,若2*x=6,则x= 32.【剖析】依据定义把 2*x=6 化为一般方程,求解即可.【解答】解:∵a*b=﹣a,∴2*x=﹣2,∴方程 2*x=6 可化为﹣2=6,解得x=32,故答案为: 32【评论】本题主要考察二次根式的化简,利用新定义把方程化为一般方程是解题的重点.24(.2016?黄冈校级自主招生)已知 x+y=,x﹣y=,则 x4﹣y4=.【剖析】把所给式子两边平方再相加可先求得x2+y2,再求得 x2﹣y2,可求得答案.【解答】解:∵ x+y=,x﹣y=,∴( x+y)22+2xy+y2()2+,(﹣y)2 2﹣2xy+y2=x==x=x=()2=﹣,∴ x2+y2=,又 x2﹣ y2= ( x+y )( x ﹣ y ) = ()() ==1,∴ x4﹣y4(2+y2)( x2﹣y2)=,=x故答案为:.【评论】本题主要考察二次根式的化简,利用乘法公式分别求得x2+y2和 x2﹣ y2的值是解题的重点.25.( 2016?黄冈校级自主招生)已知=﹣(x,y为有理数),x y= 1 .【剖析】把已知条件两平方,整理可获得 x+y 2,合x、y均有理数,可求得 x、y 的,可求得答案.【解答】解:∵=,∴()2=()2,即23= x+ y 2,∴ x+y 2=2= +2,∵ x,y 有理数,∴x+y= + ,xy= ×,由条件可知 x>y,∴x= ,y= ,∴x y=1,故答案: 1.【点】本主要考二次根式的化,由条件求得 x、 y 的是解的关.26.( 2016 春?固始期末)已知是正整数,数n 的最大11.【剖析】依据二次根式的意可知 12 n≥0,解得 n≤12,且 12 n 开方后是正整数,切合条件的 12 n 的有 1、4、9⋯,此中 1 最小,此 n 的最大.【解答】解:由意可知 12 n是一个完整平方数,且不 0,最小 1,所以 n 的最大 12 1=11.【点】主要考了二次根式存心的条件,二次根式的被开方数是非数.27.(2016?山西模)三角形的三分3、m、5,化=2m 10 .【剖析】先利用三角形的三关系求出m 的取范,再化求解即可.【解答】解:∵三角形的三分3、m、5,∴2< m<8,∴﹣=m﹣2﹣( 8﹣m) =2m﹣10.故答案为: 2m﹣10.【评论】本题主要考察了二次根式的性质与化简及三角形三边关系,解题的重点是熟记三角形的三边关系.28.( 2016?武侯区模拟)若实数m知足=m+1,且 0<m<,则m的值为.【剖析】直接利用二次根式的性质化简从而得出对于m 的等式即可得出答案.【解答】解:∵=m+1,且 0< m<,∴ 2﹣ m=m+1,解得: m=.故答案为:.【评论】本题主要考察了二次根式的性质与化简,正确开平方是解题重点.29.( 2016?龙岩模拟)计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=102016.【剖析】直接利用已知数据计算得出结果的变化规律从而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102016.故答案为: 102016.【评论】本题主要考察了二次根式的性质与化简,正确得出结果变化规律是解题重点.30.(2016?丹东模拟)察看以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜想:= 20112+3×2011+1.【剖析】依据题意得出数字变换规律从而得出答案.【解答】解:由题意可得:=20112+3× 2011+1.故答案为: 20112+3× 2011+1.【评论】本题主要考察了二次根式的化简,正确得出数字变化规律是解题重点.三.解答题(共10 小题)31.( 2017 春?临沭县校级月考)计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.【剖析】(1)先进行二次根式的除法运算,而后化简后归并即可;(2)利用完整平方公式和平方差公式计算.【解答】解:(1)原式 =3 ﹣ 2 +=3 ﹣2 +2=3;( 2)原式 =1﹣5+1+2+5=2+2.【评论】本题考察了二次根式的混淆运算:先把各二次根式化简为最简二次根式,而后进行二次根式的乘除运算,再归并即可.32.( 2017 春?沂源县校级月考)若 1< a< 2,求+的值.【剖析】依据 a 的范围即可确立a﹣ 2 和 a﹣1 的符号,而后依据算术平根的意义进行化简求值.【解答】解:∵ 1<a<2,∴a﹣ 2<0, a﹣1>0.则原式=+=+=﹣1+1=0.【评论】本题考察了二次根式的化简求值,正确理解算术平方根的意义,理解=| a| 是重点.33(.2017 春?启东市月考)已知 x,y 都是有理数,而且知足,求的值.【分析】观察式子,需求出x , y的值,所以,将已知等式变形:,x,y 都是有理数,可得,求解并使原式存心义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴ x2+2y﹣ 17 与 y+4 也是有理数,∴解得∵存心义的条件是x≥y,∴取 x=5,y=﹣4,∴.【评论】此类问题求解,或是变换式子,求出各个未知数的值,而后辈入求解.或是将所求式子转变为已知值的式子,而后整体代入求解.34.( 2016?锦州)先化简,再求值:,此中x=﹣3﹣(π﹣ 3)0.【剖析】先依据分式混淆运算的法例把原式进行化简,再把化简后 x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4 ﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入获得:==.即=.【评论】本题考察的是分式的化简求值,在解答此类题目时要注意通分及约分的灵巧应用.35.( 2016?湖北校级自主招生)( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且( + )=3 ( +5).求的值.【剖析】( 1)由二次根式存心义的条件可知 x≥2013,而后化简得=2012,由算术平方根的定义可知:x﹣2013=20122,最后联合平方差公式可求得答案.( 2)依据单项式乘多项式的法例把( +)=3(+5)进行整理,得出 a﹣2﹣ 15b=0,再进行因式分解得出(﹣5)(+3)=0,而后依据 a>0,b>0,得出﹣5 =0,求出 a=25b,最后辈入要求的式子约分即可得出答案.【解答】解:(1)∵ x﹣2013≥0,∴x≥2013.∴ x﹣2012+=x.∴=2012.∴x﹣2013=20122.∴x=20122+2013.∴x﹣20132=20122﹣20132+2013 =﹣(2012+2013)+2013 =﹣2012.( 2)∵(+ )=3(+5 ),∴ a+=3+15b,∴a﹣ 2﹣15b=0,∴(﹣5)(+3)=0,∵a> 0,b> 0,∴ ﹣5 =0,∴ a=25b,∴原式 ===2.【评论】本题主要考察的是二次根式的混淆运算,用到的知识点是二次根式存心义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第(1)题求得 x﹣2013=20122,第( 2)求出 a=25b 是解题的重点.36.( 2016?山西模拟)察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.【剖析】依据察看,可得规律,依据规律,可得答案.【解答】解:(1)5=考证: 5====;( 2) n=,证明: n====.【评论】本题考察了二次根式的性质与化简,运用n=的规律是解题重点.37.( 2016?仙游县校级模拟)先化简,再求值:(+)÷,此中a=+1.【剖析】利用通分、平方差公式等将原式化简为,代入 a 的值即可得出结论.【解答】解:原式 =(+)÷,=?,=?,=.当 a= +1 时,原式 ==.【评论】本题考察了分式的化简求值,解题的重点是将原式化简成.本题属于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是重点.38.( 2016?高邮市一模)求不等式组的整数解.【剖析】第一解不等式组,注意系数化“1时”,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣ 1,0.【评论】本题考察了一元一次不等式组的解法.要注意系数化“1时”,系数是正仍是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,依据题意解题.39.( 2016?太原一模)阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.( 2)若一个三角形的三边长分别是,求这个三角形的面积.【剖析】(1)把 a、 b、 c 的长代入求出 S2,再开方计算即可得解;2( 2)把 a、b、c 的长代入求出 S ,再开方计算即可得解.【解答】解:(1)p===9,S===6.答:这个三角形的面积等于6.(2) S=====.答:这个三角形的面积是.故答案为: 6.【评论】本题考察了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.( 2016 春?饶平县期末)已知: y=++,求﹣的值.【剖析】第一依据二次根式中的被开方数一定是非负数,求出x 的值是多少,进而求出 y 的值是多少;而后把求出的x、y 的值代入化简后的算式即可.【解答】解:∵+存心义,∴,解得 x=8,∴ y=++=++=0+0+=∴﹣=﹣=﹣=﹣=﹣=【评论】本题主要考察了二次根式存心义的条件,要娴熟掌握,解答本题的重点是要明确:二次根式中的被开方数一定是非负数,不然二次根式无心义.。

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)一.选择题(共15小题)1.下列各图能表示y是x的函数是()A. B.C.D.2.在下列各图象中,y不是x函数的是()A.B.C.D.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.4.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x 的函数的是()A.(1)B.(2)C.(3)D.(4)5.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1006.下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.57.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积8.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣1210.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)11.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个12.如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+513.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm14.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积15.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量二.填空题(共9小题)16.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.17.已知方程x﹣3y=12,用含x的代数式表示y是.18.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.19.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.20.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.21.小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.22.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.23.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是.24.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q 以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x 的值或取值范围是.三.解答题(共16小题)25.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?26.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.27.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?28.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.29.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?30.陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?31.端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里吃饭骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车吧小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发后分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离?(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.32.如图,△ABC底边BC上的高是6厘米,当三角形的定点C沿底边所在直线向点B运动时,三角形的面积发生了变化.1.在这个变化过程中,自变量是,因变量是.2.如果三角形的底边长为x(厘米),三角形的面积y(厘米2)可以表示为.3.当底边长从12厘米变到3厘米时,三角形的面积从厘米2到厘米2;当点C运动到什么位置时,三角形的面积缩小为原来的一半?33.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?34.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.35.圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?36.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.37.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?38.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?39.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?40.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是米,a=.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2015春•唐山期末)下列各图能表示y是x的函数是()A. B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.(2015春•荔城区期末)在下列各图象中,y不是x函数的是()A.B.C.D.【分析】答题时知道函数的意义,然后作答.【解答】解:函数的一个变量不能对应两个函数值,故选C.【点评】本题主要考查函数的概念,基本知识要掌握,不是很难.3.(2016春•天津期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.(2015春•宜春期末)下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数.【解答】解:根据对于x的每一个取值,y都有唯一确定的值与之对应,(1)y=x,(2)y=x2,(3)y=x3满足函数的定义,y是x的函数,(4)|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数,故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.(2015春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.【解答】解:y=100×0.05x,即y=5x.故选:B.【点评】本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.6.(2014秋•阳谷县期末)下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.5【分析】直接利用函数的定义进而分析得出即可.【解答】解:①y=l,y不是x的函数;②y=x2,y是x的函数;③y2=x,y不是x的函数;④y=|x|,y是x的函数;⑤y=,y是x的函数;⑥y=2x,y是x的函数.故选:C.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.7.(2015春•烟台期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A【点评】本题主要考查的是对函数的定义,关键是根据函数的定义对自变量和因变量的认识和理解.8.(2015春•重庆校级期末)如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x【分析】首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.【解答】解:25÷10=所以购买钢笔的总钱数y(元)与支数x之间的关系式为:y=x.故选:D.【点评】此题主要考查了函数关系式的求法,以及单价、数量、总价的关系,要熟练掌握;解答此题的关键是根据单价=总价÷数量,求出每支钢笔的价格是多少.9.(2016春•乐亭县期末)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣12【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣x+12(0<x<24).故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10.(2014秋•章丘市校级期末)若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)【分析】根据底边长+两腰长=周长,建立等量关系,变形即可,再根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.【解答】解:依题意得x+2y=60,即y=(60﹣x)(0<x<30).故选D.【点评】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y与x的函数关系式是解题关键.11.(2013春•涟水县校级期末)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.12.(2015春•泰山区期末)如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+5【分析】观察各选项可知y与x是一次函数关系,设函数关系式为y=kx+b,然后选择两组数据代入,利用待定系数法求一次函数解析式解答即可.【解答】解:根据题意,设函数关系式为y=kx+b,则解得:,则y=2x﹣10.故选:A.【点评】本题考查了函数关系式的求解,根据各选项判断出y与x是一次函数关系是解题的关键,熟练掌握待定系数法求一次函数解析式也很重要.13.(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.14.(2014春•招远市期末)当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积【分析】根据函数的关系,可得答案.【解答】解;雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D.【点评】本题考查了常量与变量,函数与自变量的关系是解题关键.15.(2015秋•高密市期末)下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.【解答】解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二.填空题(共9小题)16.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.17.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x ﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.18.(2015秋•巴南区校级期末)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是③.【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【解答】解:①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故答案为:③.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.(2016春•酒泉期末)某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为y=0.11x﹣0.03.【分析】话费=三分钟以内的基本话费0.3+超过3分钟的时间×0.11,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.11×(x﹣3),通话时间超过3分钟,。

初二数学强化练习及答案10题

初二数学强化练习及答案10题

初二数学强化练习及答案10题题目一:已知集合A = {1, 2, 3, 4, 5},集合B = {2, 4, 6, 8, 10},求A ∩ B。

解答:集合A与集合B的交集,即A ∩ B,是指同时包含在集合A和集合B中的元素。

根据给定的集合A和集合B,它们的交集为{2, 4}。

题目二:若a:b = 3:5,且a + b = 40,求a和b的值。

解答:根据题目中的比例关系和等式,可以设a = 3x,b = 5x,其中x为比例因子。

则根据等式a + b = 40,得到3x + 5x = 40,合并同类项得到8x = 40,解得x = 5。

代入a = 3x和b = 5x,得到a = 3*5 = 15,b = 5*5 = 25,因此a的值为15,b的值为25。

题目三:已知三角形ABC中,∠C = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。

解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

在三角形ABC中,∠C = 90°,AB = 5 cm,AC = 12 cm。

根据勾股定理可得BC的长度为√(AC^2 - AB^2) = √(12^2 - 5^2) =√(144 - 25) = √119 cm。

题目四:某地1月份的平均气温为5°C,7月份的平均气温为28°C,求该地12个月份的平均气温。

解答:为了求得12个月份的平均气温,首先需要计算出从1月到7月的总气温。

根据已知每个月的平均气温,计算1月到7月的总气温为5 + 28 = 33°C。

然后,将该总气温除以7个月份,得到每个月的平均气温为33 / 7 = 4.71°C。

因此,该地12个月份的平均气温为4.71°C。

题目五:某专卖店为了促销,将原价为100元的商品打八折出售,求打折后的价格。

解答:打八折意味着将原价的80%作为售价,因此打折后的价格为100 * 80% = 80元。

八年级初二数学提高题专题复习勾股定理练习题及答案

八年级初二数学提高题专题复习勾股定理练习题及答案

八年级初二数学提高题专题复习勾股定理练习题及答案一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500mC.400m D.300m2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.63.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D 的边长为( )A.3cm B.14cm C.5cm D.4cm4.如图,小红想用一条彩带缠绕易拉罐,正好从A点绕到正上方B点共四圈,已知易拉罐底面周长是12 cm,高是20 cm,那么所需彩带最短的是()A.13 cm B.4cm C.4cm D.52 cm5.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1 B.2 C.3 D.46.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1227.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么ab的值为()A.49B.25C.12D.108.如图,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分线AD交BC于点D,则点D到AB的距离是()A.3 B.4 C.7(21)D.7(21)9.下列命题中,是假命题的是( )A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形10.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.14.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.18.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.19.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =DB ,DA .(1)直接写出BC=__________,AC=__________;(2)求证:ABD∆是等边三角形;(3)如图,连接CD,作BF CD⊥,垂足为点F,直接写出BF的长;(4)P是直线AC上的一点,且13CP AC=,连接PE,直接写出PE的长.25.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.26.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .27.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.28.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC=22=500m,AB BC∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选B.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.2.D解析:D【解析】【分析】先利用勾股定理计算BC的长度,然后阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积.【详解】解:在中∵,,∴,∴BC=3,∴阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积=6.故选D.【点睛】 本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.B解析:B【解析】【分析】先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长.【详解】解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2,又∵1010A B C D S S S S +++=⨯ ,∴36+25+25+S D =100,∴S D =14,∴正方形D 的边长为14cm.故选:B.【点睛】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.4.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A 处绕易拉罐4圈后到达顶端的B 处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm ,∵∵易拉罐底面周长是12cm ,高是20cm ,∴x 2=(12×4)2+202∴x 2=(12×4)2+202,所以彩带最短是52cm.故选D.【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,5.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本结论正确.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.∴BD⊥CE.本结论正确.③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°.本结论正确.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE为等腰直角三角形,∴DE=2AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本结论错误.综上所述,正确的个数为3个.故选C.6.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2222'++ (cm)=1216A D BD故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF 的对称点A ′是解题的关键.7.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6, 又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 8.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =2x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB 22AC +BC =72在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD , 即:()()222277-x x +=, 解得: 21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.9.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC 中,若∠B=∠C -∠A ,则∠C =∠A+∠B ,则△ABC 是直角三角形,本选项正确;B. △ABC 中,若a 2=(b+c)(b -c),则a 2=b 2-c 2,b 2= a 2+c 2,则△ABC 是直角三角形,本选项正确;C. △ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则∠,故本选项错误; D. △ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形. 10.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=22∴=+=AC51213AB AC∴==13故ABC是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.二、填空题11.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,12.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴10;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.13.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴-=.在Rt DEC ∆中,30E ∠=︒,43CD =283CE CD ∴==2212DE CE CD ∴=-, ∴1443832ABE S ∆=⨯⨯= 143122432CDE S ∆=⨯= 24383=163CDE ABE ABDC S S S ∆∆∴=-=四边形. 故答案为:3【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.14.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222=-=-=,CD AC AD13125∵∠D=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222-=-=,CD AC AD13125∵∠ADB=90°,AB=15,AD=12,∴2222=-=-,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键. 15.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题16.4【分析】根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴即同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.17【分析】作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B关于AD的对称点B′,由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,由轴对称性质,BM=B′M,∴BM+MN=B′M+MN=B′N,由轴对称的性质,AD垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴B′N=2×323即BM+MN3.3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M、N的位置是解题的关键,作出图形更形象直观.18.48 5【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC边上的高为8,然后根据三角形的面积法可得111012822BD⨯⨯=⨯⨯,解得BD=485.19.7 8【解析】试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4-x,AE=4-x,然后在Rt△ABE中利用勾股定理可计算出BE的长即可.试题解析:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x ,则EC=4﹣x ,AE=4﹣x ,在Rt△ABE 中,∵AB 2+BE 2=AE 2,∴32+x 2=(4﹣x )2,解得x=78, 即BE 的长为78. 20.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中, ∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG ()222211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)132)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.作图见解析,325【分析】作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++ ∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC ,AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =, ①若点P 在线段AC 上,则23=333PQ CQ CP =--=, ∴2223=PE PQ EQ =+; ②若点P 在线段AC 的延长线上, 则253=333PQ CQ CP =++=, ∴22221=3PE PQ EQ =+; 综上,PE 的长为23或221. 【点睛】 本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF 的长,二是对点P 的位置要分情况进行讨论.25.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab +b 2=a 2+b 2,∴ab =a 2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG ⊥AB 于G ,∴∠CDB =∠ACD +∠A =2∠A ,∵∠B =2∠A ,∴∠CDB =∠B ,∴CD =CB =a ,∵∠ACD =∠A ,∴AD =CD =a ,∴DB =AB ﹣AD =c ﹣a ,∵CG ⊥AB ,∴DG =BG =12(c ﹣a ), ∴AG =AD +DG =a +12(c ﹣a )=12(a +c ), 在Rt △ACG 中,CG 2=AC 2﹣AG 2=b 2﹣[12(c +a )]2, 在Rt △BCG 中,CG 2=BC 2﹣BG 2=a 2﹣[12(c ﹣a )]2, ∴b 2﹣[12(a +c )]2=a 2﹣[12(c ﹣a )]2, ∴b 2=ac +a 2,∴△ABC 是“类勾股三角形”.【点睛】 此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.26.(1131710,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB 22AE BE +2232+13BC 22BD CD +2214+17AC 22AF CF +2213+10,S△ABC=S矩形DEFC﹣S△AEB﹣S△AFC﹣S△BDC=12﹣3﹣32﹣2=112,故答案为13,17,10,112.(2)△PMN如图所示.S△PMN=4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(1),CM ME CM EM=⊥;(2)见解析;(3)25CM=【解析】【分析】(1)证明ΔFME≌ΔAMH,得到HM=EM,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A、E、C在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC,EM,由(1)(2)可知,△CME是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM=ME,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,EFM MBHFM BMFME BMH∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME≌△BMH(ASA),∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接BD,∵四边形ABCD 和四边形EDGF 是正方形,∴45,45FDE CBD ︒︒∠=∠=∴点B E D 、、在同一条直线上,∵90,90BCF BEF ︒︒∠=∠=,M 为BF 的中点, ∴12CM BF =,12EM BF =,∴CM ME =, ∵45EFD ∠=︒,∴135EFC ∠=︒,∵CM FM ME ==,∴,MCF MFC MFE MEF ∠=∠∠=∠∴135MCF MEF ∠+∠=︒,∴36013513590CME ∠=︒-︒-︒=︒,∴CM ME ⊥.(3)如图3中,连接EC ,EM .由(1)(2)可知,△CME 是等腰直角三角形,∵22EC 26210+=∴CM =EM =25【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)2221k k k +++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE的周长,△ABC的周长即可;【详解】(1)证明:如图1中,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,∵AE=CD,∴△BAE≌△ACD,∴∠ABE=∠CAD.(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,∴四边形AGBE是平行四边形,ⅱ)如图2中,作AH⊥BC于H.∵BH=CH=1 (1) 2k+∴1113 1(1),31) 222DH k k AH BH k =-+=-==+∴222AH DH k k1AD=+=++∴四边形BGAE的周长=22k k1k+++,△ABC的周长=3(k+1),∴四边形AGBE与△ABC的周长比=2221 k k k+++【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.29.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245AO BO+=(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,∵点C,O关于直线AB对称,∴∠CAB=∠CBA=45°,AO=AC=OB=BC=4,∴∠CAO=∠CBO=90°,∵DF⊥AO,∠BAO=45°,∴∠DAF=∠ADF=45°,∴AF=DF,设OF=EF=x,AE=4﹣2x,∴AF=DF=4﹣x,在Rt △DEF 中,DE =()2222242816EF DF x x x x +=+-=-+ 在Rt △ACE 中,CE =()()2222164222816AC AE x x x +=+-=-+ ∴CE =2DE , (3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,∵m =3,∴OB =3∴tan ∠ABO =3343AO BO ==, ∴∠ABO =30°∵点C ,O 关于直线AB 对称,∴AC =AO =4,BO =BC =3,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°, ∴∠CAF =120°,∠CBO =60°∵BM ⊥OB ,∠ABO =30°,∴∠ABM =120°,∴∠CAF =∠ABM ,且DB =AF ,BM =AO =AC =4,∴△ACF ≌△BMD (SAS )∴CF =DM ,∵CF +CD =CD +DM ,∴当点D 在CM 上时,CF +CD 的值最小,即CF +CD 的最小值为CM 的长,∵∠CBO =60°,BM ⊥OB ,∴∠CBN =30°,且BM ⊥OB ,BC =3∴CN =3BN 3CN =6,∴MN =BM +BN =4+6=10,在Rt △CMN 中,CM 2247CN MN +=,∴CD +CF 的最小值为7.【点睛】本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学提高题[附答案]综合题1.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=2,∠BCO= 60°。

(1)求证:OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为1/秒。

设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之间的函数关系式,并求出t 的取值范围;(3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。

3∆图(1)60︒B C A o 图(2)60︒M P QH B A(备用图)H 60︒B CA33333333解:1)根据勾股定理,AB=2,OA=2,则BO=4=2AB ,所以△ABO 是一个30°60°90°的三角形。

∵AB//CO ,∠A=90°∴∠AOC=180°-90°=90°∵∠AOB=30°,∴∠BOC=90°-30°=60°=∠C∴△OBC 为等边三角形2)∵点P 运动的时间为t 秒,∴OQ=PH=t∵OH ⊥BC ,∴∠CHO=90°,∴∠COH=30°,OH=( /2)BC=2∴∠QOP=60°,OP=2 -t ∴S=1/2t(2 -t)× /2=3/2t- /4t ²,且(0<t<2 )3)∵OM=PM ,∴∠MOP=∠MPO=30°∵∠QOP=60°,∴∠PQO=90°,∴OP=2OQ得到方程:2 -t=2t ,解得t=(2/3)332. 如图,正比例函数图像直线l经过点A(3,5),点B 在x轴的正半轴上,且∠ABO=45°。

AH⊥OB,垂足为点H。

 (1)求直线l所对应的正比例函数解析式; (2)求线段AH和OB的长度; (3)如果点P是线段OB上一点,设OP=x,△APB的面积为S,写出S与x的函数关系式,并指出自变量x的取值范围。

解:1)设y=kx为正比例解析式,当x=3,y=5时,3k=5,k=5/3 2)AH即A的纵坐标,∴AH=5∵AH⊥BH,∠ABH=45°,∴∠HAB=∠ABH=45°,∴AH=BH=5 OH即A的横坐标,∴OH=3∵OB=OH+BH,∴OB=5+3=83)∵OB=8,OP=x,∴BP=8-xADEF F E DA ∴S △ABP=1/2BP×AH=1/2(8-x)×5=20-(5/2)xx 的取值范围是0≤x <83.(本题满分12分,第1题4分,第2题6分,第3题2分)已知在△ABC 中,∠ACB =90°,AC =BC ,点D 是AB 上一点,AE ⊥AB ,且AE =BD ,DE 与AC 相交于点F 。

 (1)若点D 是AB 的中点(如图1),那么△CDE 是 等腰直角三角形 三角形,并证明你的结论; (2)若点D 不是AB 的中点(如图2),那么(1)中的结论是否仍然成立,如果一定成立,请加以说明,如果不一定成立,请说明理由; (3)若AD =AC ,那么△AEF 是等腰三角形。

(不需证明)解:1)△CDE是等腰直角三角形2)成立,在△ABC中,∵∠ACB=90°,AC=BC,∴∠CAB=∠B=45°∵AE⊥AB,∴∠EAB=90°,∴∠EAC=90°-45°=45°=∠B 在△ACE与△BCD中,∵AE=BD,∠EAC=∠B,AC=BC,∴△ACE≌△BCD∴CE=CD,∠ACE=∠BCD∵∠ACD+∠BCD=90°,∴∠ACD+∠ACE=90°,即∠DCE=90°∴△CDE是等腰直角三角形4.如图,直线经过原点和点,点B 坐标为(1)求直线l 所对应的函数解析式;(2)若P 为射线OA 上的一点,①设P 点横坐标为,△OPB 的面积为,写出关于的函数解析式,指出自变量x 的取值范围.②当△POB 是直角三角形时,求P 点坐标.解:1)设y=kx 为直线l 的解析式当x=3,y=6时,6=3k ,k=2,∴y=2x 是直线l 的解析式2)①P 在射线OA 上,设P 横坐标为x ,纵坐标为2xS=1/2×OB×2x=4x ,∴S=4x 是解析式,x 的取值范围x >0 ②在Rt △P ₁OB 中,P 的坐标(4,8)在Rt △P ₂OB 中,P 的坐标(4/5,8/5)l (3,6)A (4,0)x S S x5、如图,在等腰Rt△ABC的斜边AB上取两点M、N,使∠MCN=45°,设AM=m,MN=x,BN=n那么:(1)以x、m、n为边长的三角形是什么三角形?(请证明)(2)如果该三角形中有一个内角为60°,求AM:AB。

解:1)以x、m、n为边长的三角形是直角三角形作△ACM≌△BCD,∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°在△MNC与△DNC中∵CM=CD,∠MCN=∠DCN,CN=CN,∴△MNC≌△DNC∴MN=DN=n,AM=BD=m∵∠A=∠CBA=∠CBD=45°,∴∠DBN=45°+45°=90°∴△DBN(以x、m、n为边长的三角形)是个直角三角形Q R P CB A6.已知:如图,在Rt △ABC 中,∠A=90°,AB =AC =1,P 是AB 边上不与A 点、B 点重合的任意一个动点,PQ⊥BC 于点Q ,QR ⊥AC 于点R 。

(1)求证:PQ =BQ ;(2)设BP =x ,CR =y ,求y 关于x 的函数解析式,并写出定义域;(3)当x 为何值时,PR//BC 。

解:1)∵∠A =90°,AB =AC ,∴∠B=∠C=45°∵PQ ⊥BC ,∴∠PQB=90°,∴∠B=∠BPQ=45°,∴BQ=PQ2)∵BP=x ,BQ=PQ ,PQ ⊥BQ ,∴勾股定理BQ=PQ=(1/2) x ∵∠A =90°,AB =AC =1,∴勾股定理CB= ,∴CQ= -(1/2) x∵QR ⊥AC ,∴勾股定理得y=1-0.5x ,且x 的取值范围0<x<13)∵PR//BC,∠A=90°,AB=AC,∴AP=AR∵AR=x/2,AP=AB-BP=1-x∴得到方程x/2=1-x,解得,x=2/3∴当x为2/3的时候,PR//BC7.在直角三角形ABC中,∠C=90○,已知AC=6cm,BC=8cm 。

(1)求AB边上中线CM的长;(2)点P是线段CM上一动点(点P与点C、点M不重合),求出△APB的面积y(平方厘米)与CP的长x(厘米)之间的函数关系式并求出函数的定义域(3)是否存在这样的点P,使得△ABP的面积是凹四边2形ACBP面积的,如果存在请求出CP的长,如果不存在,3请说明理由。

解:1)∵∠C=90○,AC=6cm,BC=8cm,∴AB=10cm,∴CM=1/2AB=5cm2)作CD⊥AB,PE⊥AB∵S△ABC=(1/2)AB×CD,S△ABP=(1/2)AB×PE,∴S△ABC/S△ABP=CD/PE∵S△ABC=1/2×6×8=24,AB=10,∴CD=48/5∵PM=5-x,∴S△PMB/S△ABC=PD/CE=(5-x)/5,∴y/24=(5-x)/5,y=(24/5)(5-x)是解析式,其中x的定义域0<x<53)存在,根据题意,S四边形ACBP=2 S△ABP,∴24-y=2y,y=8当y=8时,8=(24/5)(5-x),解得,x=5/2∴当x=5/2时△ABP的面积是凹四边形ACBP面积的2/3。

8、如图,在长方形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ。

设AP=x,BE=y (1)线段PQ的垂直平分线与BC边相交,设交点为E求y 与x的函数关系式及x取值范围;(2)在(1)的条件是否存在x的值,使△PQE为直角三角形?若存在,请求出x的值,若不存在请说明理由。

解:连接PF、QF,∵EF垂直平分PQ,∴PF=QF∵∠A=∠D=90°,∴AP²+AF²=DF²+DQ²即x²+(6-y)²=y²+(8-x)²,∴3y=4x-7,y=(4x-7)/3其中x的定义域0<x<89.在△ABC中,∠ACB=90°,D是AB的中点,过点B作∠CBE=∠A,BE与射线CA相交于点E,与射线CD相交于点F.(1)如图, 当点E在线段CA上时, 求证:BE⊥CD;(2)若BE=CD,那么线段AC与BC之间具有怎样的数量关系?并证明你所得到的结论;(3)若△BDF是等腰三角形,求∠A的度数.解:1)∵∠ACB=90°,D是AB的中点,∴AD=BD=CD,∴∠CBA=∠DCB,∠A=∠DCA∵∠CBE=∠A,∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,∴∠DCB=∠BEC∵∠CBE+∠BEC=90°,∴∠CBE+∠DCB=90°,∴∠BFC=90°,即CD⊥BE2)∵BE=CD,∴BE=AD=BD=CD,∴AB=2BE∵∠CBE=∠A,,∠BCE=∠ACB∴△BCE∽△ACB,∴BC:CA=1:2,∴AC=2BC3)∵△BDF是等腰三角形,∠BFD=90°,∴∠BDF=45°①当点E在线段CA上时,∠A=1/2∠BDF=22.5°②当点E在线段CA延长线上时,∠BAC=(180°-∠CDA)/2=67.5°10.已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.解:1)∵A 在两个函数图象上,∴2=3k,k=2/3,即正比例函数y=2x/3∴2=k/3,k=6,即反比例函数y=6/x2)当0<x<3时,反比例函数的值大于正比例函数的值3)∵M(m,n),∴n=6/m,N(0,n) C(3,0),D(3,n)S 四边形OADM=S 梯形OADB-S △OMB=[(n-2)+n]×(3/2)-(mn/2)=3n-3-3=3n-6=6∴n=4,∴m=6/4=3/2,即M(3/2,4)∵A(3,2),∴OC=BD=3,∴BM=DM11.已知:如图,在⊿ABC 中,∠C=90°,∠B=30°,AC =6,点D 在边BC 上,A D平分∠CAB ,E 为AC上的一个动点(不第26题图FE DC BA与A、C重合),E F⊥AB,垂足为F.(1)求证:AD=DB;(2)设CE=x,BF=y,求y关于x的函数解析式;(3)当∠DEF=90°时,求BF的长.解:1)∵∠C=90°,∠B=30°,∴∠A=60°,∵AD平分∠CAB,∴∠BAD=30°=∠B,∴AD=DB2)∵BF=y=AB-AF=12-AF,∵EF⊥AB,∠A=60°,∴∠AEF=30°∴AF=1/2AE=1/2(AC-CE)=1/2(6-X),∴y=12-1/2(6-X)=9+1/2x∴y=9+1/2x为解析式3)∵∠DEF=90°,∴∠EDA=∠BAD=∠EAD=30°,∴∠EDC=30°∴AE=ED=2EC,∵AE+EC=AC=6,∴EC=2当EC=x=2时,y=9+1/2×2=10,即BF=10M AD EC B第12.如图,在△中,∠=90°,∠=30°,是边上不与点A 、C 重合的任意一点,⊥,垂足为点,是的中点.(1)求证:=;(2)如果=,设=,=,求与的函数解析式,并写出函数的定义域;(3)当点在线段上移动时,∠的大小是否发生变化?如果不变,求出∠的大小;如果发生变化,说明如何变化.解:1)∵∠ACB=90°,DE ⊥AB ,∵M 是BD 的中点,∴CM=1/2BD=EM2)∵CM=y ,∴BM=DM=EM=y∵∠ACB=90°,∠A=30°,∴AB=2BC ,∵BC=,∴AB=2,∴AC=3,∴CD=3-xABC ACB A D ACDE AB E M BD CM EM BC 3AD x CM y y x D AC MCE MCE 33∴(3-x)²+3=4y²,y=1/2 ,其中x的定义域是0<x<3 3)∵CM=BM,∴∠MBC=∠MCB,∵BM=EM,∴∠MBE=∠MEB,∵∠ACB=90°,∠A=30°,∴∠ABC=60°∵∠ABC=∠MBC+∠MBE=60°,∵∠MBC+∠MCB=∠CMD,∠MBE+∠MEB=∠EMD∴∠CME=∠CMD+∠EMD=2∠ABC=120°,∵CM=EM,∴∠MCE=∠MEC=30°。

相关文档
最新文档