从分数到分式练习含答案
人教版七年级从分数到分式

-
(−3) 2 − 4 −3+ 2 = −5
x − 4的值为零。 要想分式值零蛋,分子分母都要看; 要想分式值零蛋 分子分母都要看; 零蛋, 的值为零。 光想分式值为零,一不留神掉陷阱。 光想分式值为零 一不留神掉陷阱。 x+2
2
教师警示: 教师警示:
活动4 独立解题, 活动4:独立解题,提高认知
2011-5-25
A B
分子分母上下铺, 分子分母上下铺, 下铺必须含字母。 下铺必须含字母。
合作交流 巩固认知 活动2: 活动 : 分组讨论 根据分式的概念判断
3x x
1 、π
是分式吗?
下面的式子哪些是分式?请把分式领回家。 小试牛刀:下面的式子哪些是分式?请把分式领回家。
4 5b + c
2 b−s
1 (4)当x ≠ ±1 时, 分式 2 有意义. _____ x −1
2011-5-25
探究2 探究2
A 在什么条件下值为0? 分式 在什么条件下值为 ? B
就可以了吗? 仅仅是 A = 0 就可以了吗? 归纳: 分式的值要为0,需满足的条件是: 归纳: 分式的值要为 ,需满足的条件是: 分子的值等于0且分母值不为 且分母值不为0. 分子的值等于 且分母值不为 . 思考: 是什么值时, 值是0? 应用举例 思考:当 x 是什么值时,分式的 x + 2 值是 ?
3000 300 − a
2 7
V S
S 32
1 2x + 5
2
−5
5x − 7
x 2 − xy + y 2 2x −1
3x − 1
2
分式 之家: 之家:
2011-5-25
活动3 活3:
从分数到分式

(2) 4 ; 3b2 5
(5) x ; x2 y2
(3) 5 ; π
(6) c . 3(a b)
注意:分式分母中必须含有字母.
再探概念
问题4 说说分式与分数的联系与区别.
当分母不为 0 时,分式有意义.
例题解析
例 下列分式中的字母满足什么条件, 分式有意义?
(1) 2 ; 3x
(3) 1 ; 5 - 3b
题15.1 , 第1、2题; 选做题:优化练习 , 第1—3题.
(2) x ; x 1
(4) x y . x y
检测反馈
1.下列各式,哪些是整式?哪些是分式?
(1) 1 ,(2)x 1,(3) z ,(4) a b ,(5) 2ab ,(6) 3 (x y).
a
xy
15
a b2
4
2.列式表示下列各量:
(1)某村有 n 个人,耕地 40 hm2 则人均耕地面积为
人教版 数学 八年级(上)
第十五章 分 式
15.1.1从分数到分式
引入新课
形成概念
问题1 填空
s
(1)长方形面积为S cm2,长为 a cm,宽为
a
cm.
v
(2)圆柱体体积为Vcm3,底面积为 S cm2,高为 s cm.
(3)船在静水航速为 30 km/h,水的流速为 v km/h
90
①若船顺流航行 90 km,所用时间 30 v h;
60
②若船逆流航行 60 km,所用时间 30 v h.
问题2 下列式子有什么共同特点?
s , v , 90 , 60 . a s 30 v 30 v
共同特点: 都具有分数形式 A ;
B
同课异构《从分数到分式》教案 (省一等奖)

15.1.1 从分数到分式教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 重点难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.教学过程一、例、习题的意图分析本章从实际问题引出分式方程v+20100=v-2060,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出[思考]让学生自己依次填出:710,S a ,33200,V S.为下面的[思考]提供具体的式子,就以上的式子v+20100,v-2060,S a ,V S,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 〔即A ÷B 〕的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式BA可以表示为两个整式相除的商〔除式不能为零〕,其中包括所有的分数 .≠0时,分式BA才有意义. 3.例1填空是应用分式有意义的条件——分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义〞,使学生比拟全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的根底.4.[拓广探索]中第13题提到了“在什么条件下,分式的值为0?〞分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共局部才是这一类题目的解. 二、课堂引入1.让学生填写[思考],学生自己依次填出:710,aS ,33200,SV .2.学生看课本问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速B A顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为v 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v -2060,a S ,SV ,有什么共同点?它们与分数有什么相同点和不同点?三、例题讲解 〔教科书〕例1[分析]分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围. 知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2 当m 为何值时,分式的值为0? 〔1〕 〔2〕 (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共局部,就是这类题目的解. [答案] 〔1〕m=0 〔2〕m=2 〔3〕m=1 四、随堂练习1.判断以下各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,以下分式有意义? 〔1〕 〔2〕 〔3〕3. 当x 为何值时,分式的值为0? 〔1〕 〔2〕 (3) 五、课后练习1.列代数式表示以下数量关系,并指出哪些是整式?哪些是分式?(1〕甲每小时做x 个零件,那么他8小时做零件 个,做80个零件需 小时. 〔2〕轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差与4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 六、答案:四、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1〕x ≠-2 〔2〕x ≠ 〔3〕x ≠±2 3.〔1〕x=-7 〔2〕x=0 (3)x=-11-m m32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --22123xx x --212312-+x x五、1.〔1〕8x 〔2〕a+b a-b 〔3〕4y x -整式:8x , a+b,a-b ,4y x -;分式:x80.2.x= 3. x=-1 [教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
(一)从分数到分式专题训练

此人 于 J长 途 电 1 古明 H 日是 ( 可1 J
) .
A .
D
分钟 分钟
B .
+ D
C 墨 .
D
分钟 分 钟
的值 为负数 ,则 的取
) .
D 量 .
D
1. 2 如果 分式
上 一 ZX
值范 围是 (
≤ }
c≥ . 争
() 1 v的值是正 数 :
() 1 ;
( )△ B 的 面 积 为 S B 2 C , C边 长 为 。 则 高 ,
AD 为 :
() 3 一辆 汽车 行驶 。千米用 b小 时 , 的平 它 均车速 为 千 米/ 时:一列 火车 行
6 下列 各式 中 , . 无论 取 何值 , 式都 有 意义 分
的是 (
A.
) .
B.
驶 。千 米 比 这 辆 汽 车 少 用 1 时 . 小 它 的 平 均 车 速 为 千 米 /, H. 1 -
2 示 . 一 手表
÷… 一 商那 (+ … 一的 , 2 一 么Ⅱ
C.
D . 蠢
b ÷( +n 可 以 表 示 为 ) m )
7 当 : .
3 甲种 水 果 每干 克价 格 为 口元 .乙种水 果 每 .
千 克 价 格 为 b元 .取 甲 种 水 果 m 千 克 . 乙 种 水 果 n千 克 , 合 后 , 均 每 千 克 价 格 混 平 是 元. ,
+ 1
时分 宝 } 意 . , j辞 义 式 ± l无 一
有 意义 ? ( )2 ; 1 1 ()
r 。 上
() 5
;
() 6
一
16.1.1从分数到分式导学案

猜想、类比启发引导
一.自主先学(人之所以能,是相信能)
1.长方形的面积是10cm2,长为7 cm,宽为cm;长方形的面积为S,长为a,宽为.
2.把体积为200cm3的水倒入底面积是33cm2的圆柱形容器中,水面高度为cm,把体积为V的水倒入底面积是S的圆柱形容器中,水面高度为.
思考:式子 、 、 与分数 、 有什么相同点和不同点?式子 、 、 有什么共同特点?
用自己的话说出满足那些条件,才能保证分式的值为零:
三.课堂检测(拾级而上,一定可以到达顶峰)
1、指出下列式子中的分式.
, , 3 + , , , .
2、分式 无:
1、当x时,分式 值为0;2、当x时,分式 值为0;
3、当x时,分式 值为0;
四、课堂小结(给我点时间我一定行)
你对同学有哪些温馨的提示?_____________________________________
你还需要老师为你解决哪些问题?_____________________________
五.课后巩固(每一次都尽力超越上次的表现,很快你就会超越周卫的人。)
1.分式 ,当 _______时,分式有意义;当 _______时,分式的值为零.
A. B. C. D.
6.使分式 无意义,x的取值是()
A.0 B.1 C. D.
拓展创新题
1.(学科综合题)已知 , 取哪些值时:(1) 的值是零;(2)分式无意义.
5x-7, 3x2+2, , , -5, , , ,
注意:分式的分母不能为,即B时,分式 才有意义.
练一练:
1、当x时,分式 有意义;
2、当x时,分式 有意义;
3、当b时,分式 有意义;
15.1.1_从分数到分式

x2 4 无意义。 所以当x = -2时,分式 x2
(2)由(1)得 当x ≠-2时,分式有意义。
x 4 例2. 已知分式 , x2 (3) 当x为何值时,分式的值为0; (4) 当x= - 3时,分式的值是多少?
4 5b c
3000 300 a
2 7
2
V S
S 32
2
1 2x 5
2
5
5x 7
x xy y 2x 1
3x 1
2
分式:
2、下列式子中,哪些是分式?哪些是 整式?两类式子的区别是什么?
1 x
x x 4 2a 5 2 2 3 x y 3 3b 5 3
mn mn
x 2x 1 2 x 2x 1
2
c 3a b
区分整式与分式的标准就是看分母中是否含 有字母,含有字母的是分式,不含字母的是整式。
思考:
A 1、分式 的分母有什么条件限制? B A 当B=0时,分式 无意义。 B A 当B≠0时,分式 B有意义。
A B
A 2、当 B =0时分子和分母应满足什
人教版八年级(下册)
第十五章分式
15.1分式(第1课时)
问题 :
一艘轮船在静水中的最大航速是20千米/时, 它沿江以最大船速顺流航行100千米所用时间, 与以最大航速逆流航行60千米所用的时间相等。 江水的流速是多少?
如果设江水的流速为v千米/时。
最大船速顺流航行 100千米所用时间
=
以最大航速逆流航行 60千米所用的时间
B.
x2x 1或x 2x3 6、分式 2 的值能等于0吗?说明理由. x x 12
从分数到分式

有意义,只需要( C ) B. x ≠ 3 x= -1时分母为零 D. x≠-1 或 x≠3 只取一个不行
A .x ≠-1 x=3时分母为零 C. x≠-1且x≠3
2.在下列各分式中,当 x 等于什么数时,分式 的值为0?当 x 等于什么数时,分式没有意义? 2x 1 2 x 0.5 . ( 1) ; (2) 2 x 3x 1
当x=1时x+1≠0 当 x = - 1 时 x + 1 = 0 分式无意义。 ∴当 x = 1 时原分式的值为零。
解:由分子|x| - 1 =0 得 x = ±1
若使分式的值为零,需满足两个条件:
①分子值等于零; ②分母值不等于零.
巩固性练习(二)
1、要使分式
( x 1)( x 3) ( x 1)( x 3)
巩固性练习(三) x3 ⑴分式 2 的值能等于0吗?说明理由. x x 12 ⑵有一个分式,字母的取值范围是 x 1 ,若 分子为“x 2 ”,你能写出一个符合上面条 件的分式吗?试试看.
xa 3.x=2时,分式 的值为0,则a= xb
,b≠
.
2 3x 4.使分式 2 的值为负数,则x取值范围是 2x 5
学习分式概念中应注意的问题. (1) 分式是两个整式相除的商,分数线可以理解 为除号,并含有括号的作用. x 1 如: x 3 可表示为(x -1) ÷ (x -3) . (2) 分式的分子可以含有字母,也可以不含有
字母,但分母必须含有字母. (3) 分式分母的值不能为0,否则分式无意义.
A 思考 2 分式 在什么条件下值为0? B 仅仅是 A 0 就可以了吗?
注意:代数式包括整式,也就是说整式是代数式但代数式就
不一定是整式了. 有了这些预备知识,这节课我们将要学习另外一种
分式的加减法练习题及答案

分式的加减法练习题及答案一、基础练习题1. 计算下列分式的和或差:(1) 1/2 + 1/3(2) 3/5 - 1/4(3) 2/3 + 5/6(4) 7/8 - 2/92. 用分式表示下列各数:(1) 八分之三(2) 六分之五(3) 三分之六(4) 十分之一3. 简化下列分式:(1) 4/8(2) 6/12(3) 9/27(4) 10/20二、深度练习题1. 小明喝了1/2瓶可乐,小红喝了3/4瓶可乐,两人一共喝了多少瓶可乐?解答:小明和小红喝的可乐瓶数之和为 1/2 + 3/4 = 2/4 + 3/4 = 5/4 瓶可乐。
2. 小华从家到学校有4/5小时的路程,小明从家到学校有3/4小时的路程,两人谁比较早到学校?解答:比较两人到学校所需的时间,3/4小时 < 4/5小时,即小明比小华更早到学校。
3. 小明在数学考试中获得了4/5的分数,小红获得了3/4的分数,两人的总分是多少?解答:小明和小红的总分为 4/5 + 3/4 = 20/25 + 15/20 = 35/25 = 7/5。
三、答案:一、基础练习题1.(1) 1/2 + 1/3 = (3 + 2)/6 = 5/6(2) 3/5 - 1/4 = (12 - 5)/20 = 7/20(3) 2/3 + 5/6 = (4 + 5)/6 = 9/6 = 3/2(4) 7/8 - 2/9 = (63 - 16)/72 = 47/722.(1) 八分之三 = 3/8(2) 六分之五 = 5/6(3) 三分之六 = 6/3 = 2(4) 十分之一 = 1/103.(1) 4/8 = 1/2(2) 6/12 = 1/2(3) 9/27 = 1/3(4) 10/20 = 1/2二、深度练习题1. 小明和小红一共喝了 5/4 瓶可乐。
2. 小明比小华更早到学校。
3. 小明和小红的总分为 7/5。
希望以上练习题及答案对你有帮助!如有其他问题可以继续咨询。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1.1 从分数到分式
第1课时
课前自主练
1.________________________统称为整式.
2.23
表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.
课中合作练
题型1:分式、有理式概念的理解应用
4.(辨析题)下列各式a π,11x +,15
x+y ,22a b a b --,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.
题型2:分式有无意义的条件的应用
5.(探究题)下列分式,当x 取何值时有意义.
(1)2132
x x ++; (2)2323x x +-. 6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )
A .121x +
B .21x x +
C .2
31x x + D .2221x x + 7.(探究题)当x______时,分式2134
x x +-无意义. 题型3:分式值为零的条件的应用
8.(探究题)当x_______时,分式2212
x x x -+-的值为零. 题型4:分式值为±1的条件的应用
9.(探究题)当x______时,分式
435
x x +-的值为1; 当x_______时,分式435
x x +-的值为-1. 课后系统练 基础能力题
10.分式
24
x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④
12.分式31
x a x +-中,当x=-a 时,下列结论正确的是( )
A .分式的值为零;
B .分式无意义
C .若a ≠-
13时,分式的值为零; D .若a ≠13
时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )
A .2211m m +-
B .211m m -+
C .211
m m +- D .211m m ++ 15.使分式||1
x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1
拓展创新题
16.(学科综合题)已知y=123x x
--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.
17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.
18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.
19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.
20.(探究题)若分式22
x x +-1的值是正数、负数、0时,求x 的取值范围. 21.(妙法巧解题)已知
1x -1y =3,求5352x xy y x xy y +---的值. 22.(2005.杭州市)当m=________时,分式
2(1)(3)32m m m m ---+的值为零. 答案
1.单项式和多项式 2.2,3,2a b m n ++ 3.ma nb m n
++(元) 4.11x +,22a b a b --;a π,15x+y ,-3x 2,0;a π,11x +,15
x+y ,22a b a b --,-3x 2,0 5.(1)x ≠-
23, (2)x ≠32
6.D 7.43 8.-1 9.-83,25 10.≠±2,=0 11.C 12.C 13.<5,任意实数
14.B 15.D
16.当2
3
<x<1时,y为正数,当y>1或x<
2
3
时,y为负数,
当x=1时,y值为零,当x=2
3
时,分式无意义.• •
17.
xm
x b +
克
18.(
s
a b
-
-
s
a
)秒
19.
ab b a -
20.当x>2或x<-2时,分式的值为正数;
当-2<x<2时,分式的值为负数;
当x=2时,分式的值为0.
21.12
5
22.3。