梁板式筏型基础设计
筏板基础详解

(一)筏形基础平法施工图的表示方法1.梁板式筏形基础平法施工图,是在基础平面布置图上采用平面注写的方式进行表达。
2.当绘制基础平面布置图时,应将其所支承的混凝土结构、钢结构、砌体结构或混合结构的柱、墙平面与基础平面一起绘制。
3.通过选注基础梁底面与基础平板底面的标高高差来表达二者间的位置关系,可以明确其:“高板位”(梁顶与板顶一平)、“低板位”(梁底与板底一平)、“中板位”(板在梁的中部)三种不同位置组合的筏形基础。
4.梁板式筏形基础构件的类型和编号;a)梁板式筏形基础由基础主梁,基础次梁,基础平板等构成。
(二)梁板式筏形基础平板的平面注写1.梁板式筏形基础平板的平面注写a)梁板式筏形基础平板LPB的平面注写,分板底部与顶部贯通纵筋的集中标注与板底部附加非贯通纵筋的原位标注两部分内容。
当仅设置贯通纵筋而未设置附加非贯通纵筋时,则仅做集中标注。
b)梁板式筏形基础平板LPB贯通纵筋的集中标注,应在所表达的板区双向均为第一跨(X与Y双向首跨)的板上引出(图面从左至右为X向,从下至上为Y 向)板区划分条件:i当板厚不同时,相同板厚区域为一板区。
ii当因基础梁跨度、间距、板底标高等不同,设计者对基础平板的底部与顶部贯通纵筋分区域采用不同配置时,配置相同的区域为一板区。
各板区应分别进行集中标注。
集中标注内容规定如下:注写基础平板的编号。
‚注写基础平板的截面尺寸。
注写h=XXX表示板厚。
ƒ注写基础平板的底部与顶部贯通纵筋及其总长度。
先注写X向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围;在注写Y向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围。
(图面从左至右为X向,从下至上为Y向)贯通纵筋的总长度注写在括号中,注写方式为“跨数及有无外伸”,其表达形式为:(xx)无外伸、(xxA)一端有外伸,(xxB)两端有外伸。
注:基础平板的跨数以构成柱网的主轴线为准;两主轴线之间无论有几道辅助轴线,均可按一跨考虑。
梁板式筏型基础设计

7、梁板式筏形基础设计7.1工程概况和工程地质条件衡阳市平安小学综合楼法上部结构为框架结构,下部为粉质黏土,地下水位埋深1.500m。
基础面积为16m×61m,采用梁板式筏形基础,基础埋深5.2m,基础混凝土强度为C30,底板厚800mm,钢筋采用HRB235级钢。
基础梁受力筋为HPB335,箍筋采用HPB235级钢筋。
上部结构竖向荷载见表7.1;基础平面布置图见图7.1;地质情况见第1部分第一节。
7.1.1.柱荷载图7.1竖向标准荷载分布图柱荷载基本组合kN柱号荷载(kN)柱号荷载(kN)柱号荷载(kN)柱号荷载(kN)合力(kN)南华大学城市建设学院本科毕业设计图7.2基础平面布置简图第 3 页共80页7.2设计尺寸与地基承载力验算7.2.1基础底面地下水压力的计算确定混凝土的防渗等级地下水位位于地面以下1.5米处,此处不考虑水的渗流对水压力的影响。
查《混凝土防渗规范》将底板混凝土防渗等级确定为S6。
7.2.2基础底面尺寸的确定由柱网荷载图可得柱的标准组合总荷载为:iN ∑()22417291930811865⨯+++=()22934353037592340⨯++++ ()22839348836292135⨯++++()22525312530711722⨯++++=90398kN其合力作用点:0=c x ,基础左右两边均外伸0.5m3.6)22934235302375922340[(903981⨯⨯+⨯+⨯+⨯⨯==∑∑iii cNy N y7.8)22839234882362922135(⨯⨯+⨯+⨯+⨯+ ]15)22525231252307121722(⨯⨯+⨯+⨯+⨯+=7.5m基础下边外伸长度0.5m ,为使合力作用点与基础形心重合,基础总宽度为: ()()my b c 1625.75.025.0=⨯+=⨯+=则:基础上边外伸长度为:m 5.05.01516=-- 由以上计算,可得基础底面面积为:219760.6116m A =⨯=基础底面积为2976m ,上部基本组合总荷载为111916kN,基低净反力Pa AN p jk 7.114976111916===∑7.2.3地基承载力的验算按现行国家标准《建筑地基基础设计规范》规定:地基受力层不存在软弱粘性土的建筑物且不超过8层高度在25m 以下的一般民用框架房屋可不进行地基及基础的抗震承载力验算。
梁板式和平板式筏型基础设计计算

悬挑 部分 弯矩计 算式 为 : = M
边缘支座外侧剪力 : p Q= L 板的最小厚度 : = /O ̄ ^ Q 7f 悬臂、 中及支座处 的配筋可按照公式 :。 跨 A=
Mi . 内 9h
7, 、,
的力 F =
=
。在 皿 与
的交叉 点 处 的力
地 反力: = 基 p 专
1 2
IL T L U
( / ; 尺 一F ) 2在
与 且,的交叉 点 处 的力 F = 3
底 板及 跨 中弯矩计 算式 为 : = M
i2 -
n
/ 。在 J: 儿 的交 叉点处 的力 F = F 。 3 ; L与 F 4 B 2 除此 之外 还有 儿 梁外 伸 部 分传 来 的线 荷 载 g = ,:在 地 基 的各 个 转 角 处 的地基 反 力 以集 中力 pn , - = 。: pno 的形式 作 用 儿 上 。最 后 由此 可得 各 在
y Mx M
A — I 一 I
。
l
 ̄ -i l
_
式 中 : 为相应 于荷载 的标 准组合 时筏板基 础 上 ∑
由柱传来 的竖 向荷 载总和; G 为筏形基 础 自重; A 为筏形基础底面积 ; 、 为分别为竖 向荷载 ∑ 对通过筏基底面形心的 x Y 、 轴的力矩 ;、 分别为 xY 计算点的 轴和 Y 轴的坐标。 基地发力应满足下列要求n : 】
式型形基础有单向肋和双向肋之分, 目前采用 比较 广泛 的是双 向肋 , 图 1 示 , 种基础 的传 力体 系 如 所 这 是地基反力传给底板 , 底板再传给次肋 , 次肋传给主 肋 。在 设计时 , 板按照 连续板计 算 。 底
2 1 底 板计算 .
筏板基础设计方法及构造要求

^50007-2002 前提条件:1■上部结构的计算可以提供荷载和凝聚到基础顶面的刚度2■基本参数地基砥载力特征佰Fak I 亦-kFa地基承载力宽度修正系数血|0.3—地基承载力深度俺正系数釧d [il-基底以下土的重廩感浮重度)< 1基底以上土的加权平均重厲¥n [1 阈昭承载力修正用基础埋置深度d --------- m室外目然地坪标鬲 sams基砒归并系数:0:2規凝土强厘等级c |55拉梁承担弯矩盅例 0结构重要性系数 I 1*拉毀承担穹矩比例只影响独基和桩承台的计算一层上部结构荷载作用点标高-也9基础埋置深度:一般应自室外地面标高算起。
对于地下室,采用筏板基础也应自室外地面标高算起, 其他情况如独基、条基、梁式基础从室内地面标高算起。
自动计算覆土重:该项用于独基、条基部分。
点取该项后程序自动按 20kN/m 2的混合容重计算基础 的覆土重。
如不选该项,则对话框中出现“单位面积覆土重”参数需要用户填写。
一般来说如条基、 独基、有地下室时应采用人工填写“单位面积覆土重”,且覆土高度应计算到地下室室内地坪处, 以保证地基承载力计算正确。
一层上部结构荷载作用点标高 :即承台或基础顶标高,先进行估算,计算完成后进行修改。
该参数主要是用于求岀基底剪力对基础底面产生的附加弯矩作用。
在填写该参数时,应输入PMCAD 中确定的柱底标高,即柱根部的位置。
注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。
地梁筏板该菜单定义了按弹性地基梁元法计算需要的有关参数总信息:结构种类:基础基床反力系数:按默认按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。
在此处要与“基础梁板弹性地基梁法计算”中的“沉降计算参数输入”中参数相对应。
筏形基础

筏板上网钢筋
柱及剪力墙插筋
梁钢筋
1、钢筋施工程序
放线并预检 成型钢筋进场 排钢筋 焊接接头 绑扎 柱墙插筋定位 交接验收
2、模板施工程序
3、混凝土施工程序
6.3 钢筋绑扎工艺
筏板基础地梁钢筋绑扎示意图
6.4 模板工程
筏板基础模板工程示意图
6.5 混凝土工程(现场搅拌泵送)
6.6 筏板施工的要点
四、筏形基础的优缺点
在通常设计中平板式筏形基础使用较为普遍, 其原因是平板式筏形基础在钢筋绑扎、模板支撑、 混凝土浇筑等施工过程中施工比较简便,施工速度 较快,对加快施工进度较为有利,致使整个基础工 程的钢筋和混凝土使用量相对梁板式筏形基础较浪 费,对控制基础工程的总造价不利。梁板式筏基与 平板式相比具有材耗低、刚度大的优点,缺点是基 础相对复杂,钢筋绑扎难度大,模板支撑和混凝土 浇筑也较平板式相对麻烦。
五、筏型基础的设计步骤和构造要求
六、筏板基础的施工
6.1 施工机具
1、
手锯 电锯 水性隔离剂 斧子
电钻
扳手
钳子
线坠
2、
砂浆 手推车 搅拌机
大铲
托线板 砖夹子 铁抹子 靠尺板
6.2 筏板基础的施工程序
基地土质验槽 施工垫层
在垫层上弹线抄平
筏板下网钢筋
筏板混凝土(板式) 、筏板及上部(梁式)
梁板式筏形基础 当柱网间距大时,一般采用梁板式筏形基础。根据肋梁的设置分为单向肋和双 向肋两种形式。单向肋梁板式筏形基础是将两根或两根以上的柱下条形基础中间 用底板连接成一个整体,以扩大基础的底面积并加强基础的整体刚度。双向肋梁 板式筏形基础是在纵、横两个方向上的柱下都布置肋梁,有时也可在柱网之间再 布置次肋梁以减少底的厚度。
筏板基础设计要点及计算示例

420KN 0kpa 475KN 650KN
C35
平筏板厚
柱截面 500*500mm 600*600mm
地基净反力
N max
1200KN 1370KN
地基净反力
N max
1350KN 1500KN
8.荷载和配筋:
8.1.筏板底板:
2 应该用净反力 (扣除基础自重) 。 板的手算计算方法: 单向板, 2 端简支时: M中 =PL / 8, j 2 按塑性内力重分布,弯矩调幅方法,当两端固定或连续时: M固 =M中 =PL /16 。一端固定 j 2 2 或连续,一端简支时, M固 =M中 =PL /14 。悬挑板: M固 =PL / 2。 j j
5.平筏板满足冲切时最大柱轴力设计值
由于公式比较复杂,暂且举出一些例子(平筏板抗冲切不同于梁筏板和柱帽,它是要 求产生的剪应力 板能抵抗的剪应力,单位为 kN / m2 ,并且一般是柱子向下轴力远远大于 冲切破坏椎体内的地基净反力设计值时才会产生冲切破坏, 也就是一般假设柱子轴力小, 根 本不会发生什么冲切破坏;计算外力产生的剪应力的公式中 Fl =柱下轴力设计值-(柱长+2 筏板 ho )*(柱宽+2 筏板 ho )*地基净反力;而筏板能抵抗的最大剪应力只与混凝土强度等 级有很大的关系,C35 的筏板能抵抗的最大剪应力为 1091 kN / m2 ) C30.
平筏板厚 1000mm 柱子截面 500*500mm 600*600mm 地基净反力 最大轴力设计值 地基净反力 最大轴力设计值
6300KN 0kpa 6800KN 500kpa
(土建施工)筏板基础施工

复习:钢筋砼基础构造要求?钢筋砼基础施工工艺?导课:随着对地下空间的开发日益加剧,很多建筑都需要地下车库、地下室,那么我们采用筏板基础或桩筏基础,因此今天我们来学习筏板基础的构造知识及施工要点。
筏形基础一、筏形基础的构造要求筏形基础有平板式、梁板式两类,其构造要求如下。
(1)确定筏形基础底面形状和尺寸时首先应考虑使上部结构荷载的合力点接近基础底面的形心。
如果荷载不对称,宜调整筏板的外伸长度,但伸出长度从轴线算起横向不宜大于1500mm,纵向不宜大于1000mm,且同时宜将肋梁挑至筏板边缘。
无外伸肋梁的筏板,其伸出长度宜适当减小。
如上述调整措施不能完全达到目的,对上肋式、地面架空的布置型式,尚可采取调整筏上填土等措施以改变合力点位置。
(2)平板式筏基的板厚按受冲切承载力验算确定,可按楼层层数×每层50mm 初定,但不应小于400mm。
梁板式筏基底板的厚度按受冲切和受剪切承载力验算确定,且不应小于300mm,其厚度尚不宜小于计算区段内最小板跨的1/20。
而肋的高度宜大于或等于柱距的1/6。
对12层以上建筑的梁板式筏基,其底板厚度与最大双向板格的短边≥50≥50≥50450基础梁柱基础梁基础梁墙(a)(b)(c)(d)图6.27 地下室底层柱或剪力墙与基础梁连接的构造要求净跨之比不应小于1/14,且板厚不应小于400mm。
(3)筏形基础的混凝土强度等级不应低于C30。
当有地下室时应采用防水混凝土,防水混凝土的抗渗等级应根据地下水的最大水头与防渗混凝土厚度的比值,按现行《地下工程防水技术规范》选用,但不应小0.6MPa。
必要时宜设架空排水层。
(4)地下室底层柱、剪力墙与梁板式筏基的基础梁连接的构造应符合下列要求:1)柱、墙的边缘至基础梁边缘的距离不应小于50mm(图6.27);2)当交叉基础梁宽度小于柱截面边长时,交叉基础梁连接处应设置八字角,柱角与八字角之间的净距不宜小于50mm,见图6.27(a);3)单向基础梁与柱的连接,可按图6.27(b),(c)采用;4)基础梁与剪力墙的连接,可按图6.27(d)采用。
筏板基础的选型和设计

量, 因此实 际需要 的地基 承载力为 l 楼 的荷 4层 载。即当地基承载力标准值 f 5 k a ≥20 p 时就 能满
3 2
新疆化工
中一种方法进行沉降计算 。
21 0 1年第 1期
于其荷载大、 础宽 , 基 因而压缩层深度大 与一般 多层建筑 物不 同, 地基 不是均一持力层 。因此在
× 宽尺寸减小 、 刚度增大 , 这不仅 降低沉降变形的 挠曲程度 , 提高筏板 的抗 冲切能力 , 同时 , 低 了 减
板中钢筋应力 , 减少筏基 的配 筋量。为协调 各部 分的变形 , 使其趋于一致 , 还可通过变形验算调整
独 立柱 基 的 面 积 。既 满 足 结 构 使 用 要 求 , 达 到 又 相 当可观 的经济 效益 。
基微量隆起 。在实际施工 中回弹再压缩模量较难 测定和计算 , 从经验上 回弹量约为公式计算变形
量 1% ~ 0 。因此高层建筑 的实 际沉降观测结 0 3% 果将是上述计算值 的 1 1 . . ~13倍左右。应该 指
出高层 建 筑 基 础 由 于埋 置 太 深 , 基 回弹再 压 缩 地 变 形 往往 在 总 沉 降 中 占重 要 地 位 , 些 高层 建 筑 有
应 着 重考 虑 如下 问题 :
足设计要求 , 如果筏基底板适当向外挑出 , 则有更 大的可靠度 。
2 天然筏板基础的变形计算
地基的验算应包括地基承载力 和变形两个方 面, 尤其对于高层或超高层建筑 , 变形往往起着决
定性的控制作用。 目前的理论水平可 以说对地基
1 筏 板基础埋深及承载 力的确定
城市 由于用地紧张 , 高层建筑密集 , 因此常需
试验表明: 刚性筏板在试验荷 载下主要是 整 体沉降 , 挠曲变形极小 , 最大也未超过 3 0而有限 %; 刚度筏 板 基 础 则 除 了 整 体 沉 降 外 还 产 生 挠 曲 变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁板式筏形基础设计1.工程概况和工程地质条件衡阳市平安小学综合楼法上部结构为框架结构,下部为粉质黏土,地下水位埋深1.500m。
基础面积为16m×61m,采用梁板式筏形基础,基础埋深,基础混凝土强度为C30,底板厚800mm,钢筋采用HRB235级钢。
基础梁受力筋为HPB335,箍筋采用HPB235级钢筋。
上部结构竖向荷载见表;基础平面布置图见图;地质情况见第1部分第一节。
.柱荷载图竖向标准荷载分布图柱荷载基本组合 kN图2基础平面布置简图2设计尺寸与地基承载力验算基础底面地下水压力的计算确定混凝土的防渗等级地下水位位于地面以下1.5米处,此处不考虑水的渗流对水压力的影响。
查《混凝土防渗规范》将底板混凝土防渗等级确定为S6。
基础底面尺寸的确定由柱网荷载图可得柱的标准组合总荷载为:iN ∑()22417291930811865⨯+++=()22934353037592340⨯++++ ()22839348836292135⨯++++ ()22525312530711722⨯++++=90398kN其合力作用点:0=c x ,基础左右两边均外伸3.6)22934235302375922340[(903981⨯⨯+⨯+⨯+⨯⨯==∑∑iii c Ny N y7.8)22839234882362922135(⨯⨯+⨯+⨯+⨯+ ]15)22525231252307121722(⨯⨯+⨯+⨯+⨯+=基础下边外伸长度,为使合力作用点与基础形心重合,基础总宽度为:()()my b c 1625.75.025.0=⨯+=⨯+=则:基础上边外伸长度为:m 5.05.01516=-- 由以上计算,可得基础底面面积为:219760.6116m A =⨯=基础底面积为2976m ,上部基本组合总荷载为111916kN,基低净反力Pa ANp j k 7.114976111916===∑地基承载力的验算按现行国家标准《建筑地基基础设计规范》规定:地基受力层不存在软弱粘性土的建筑物且不超过8层高度在25m 以下的一般民用框架房屋可不进行地基及基础的抗震承载力验算。
仅演算一般情况下的地基承载力。
先对持力层承载力特征值ak f 进行计算:查规范GB50007-2002,得地基承载力修正系数:3.0=b η,6.1=d η 注:以上系数按照土孔隙比e 及液性指数l I 均小于的粘性土取值。
按照下部土层资料,土的平均重度为:()05.59)5.305.5(81.5-3.55.118⨯-+⨯+⨯=m r 3/28.1105.595.131627m kN =++=1(3)(0.5)a kb d m f f r b r d ηη=+-+-)5.005.5(28.116.1)36(183.0120-⨯⨯+-⨯⨯+=12.822.16120++= =由于上部竖向荷载作用于基础的重心,故基础为轴心受压基础。
基底处的总竖向力:kNG G F k k 10699097656.0976*******=⨯+⨯⨯+='++基底平均压力:kPaA G G F p k k k 6.109976106990=='++=所以kPa f kPa p a k 32.2186.109=<=,满足要求要求。
由于地基土层不存在液化性土层故可以不考虑液化影响。
3筏形基础底板抗冲切承载力和抗剪承载力验算验算底板受冲切承力:梁板式筏板基础的底板厚 为600mm ,单排布筋,板底 有150mm 素混凝土垫层,因 此取钢筋合力点至近边的距离mm 4021035s =+=α 则mm 56040600h 0=-=, 混凝土为C3022N/mm 43.1,N/mm 3.14==t c f f 图7.3.1底板冲切计算示意图验算底板受冲切承载力的 示意图如图7.3.1所示。
单向板板格:按照《建筑地基基础设计规范》(GB50007-2002),底板受冲切承载力按下式计算:07.0h u f F m t hp l β≤式中:l F --------作用在图上阴影部分面积上的地基土平均净反力设计值 0h --------基础底板冲切破坏锥体的有效高度 t f --------混凝土轴心抗压强度设计值m u ---------距基础梁边h0/2处冲切临界截面的周长(图7.3.1) 对于单向板:kN h h p F j l 8.56768.028.77.114)560.026.04.2()560.026.00.9(7.114)26.04.2()26.00.9(00=⨯⨯=⨯--⨯⨯--⨯=--⨯--⨯=当mm h 8000<时,取0.1=hp β满足)(kN 8.567kN 1.892456.096.7214300.17.0560.0)]560.06.04.2()560.06.00.9[(214300.17.07.00>=⨯⨯⨯⨯⨯=⨯--+--⨯⨯⨯⨯=h u f m t hp β因此,筏板的厚度满足要求。
验算底板斜截面受剪承载力:按《建筑地基基础设计规范》(GB50007-2002),底板斜截面受剪承载力应符合下式要求:()002hs s 27.0h h l f V n t -≤β ()s V ----距梁边缘0h 处,作用在图7.3.2中阴影部分面积上的地基土平均净反力设计值hs β----受剪切承载力截面高度影响系数,按下式计算:410800⎪⎭⎫ ⎝⎛=h hsβ,板的有效高 图 底板斜截面受剪示意度0h 小于800mm 时,取mm h 8000=;h 大于2000mm 时,取mmh 20000=验算底板斜截面受剪承载力的示意图如图7.3.2。
对板进行斜截面抗剪验算: ⑴ 对×的板m l n 4.86.00.9l 1.8m ,0.6-2.4n21=-=== 0.1800410=⎪⎭⎫ ⎝⎛=h hs β阴影部分面积上的地基土平均净反力设计值:kN 6.27034.088.137.1145.0)560.028.1()560.028.14.82(0.7.11421)2()2(21010212=⨯⨯⨯=-⨯⨯--⨯⨯⨯=-⨯-+-⨯=h l h l l l p V n n n n j s()()满足要求kN V kN h h l f s n t hs 6.270408156.056.024.814300.17.0)2(7.0002=>=⨯⨯-⨯⨯⨯=-β综上所述:筏板底板厚度满足斜截面抗剪承载力要求。
局部受压承载力验算根据《建筑地基基础设计规范》GB 50007-2002.梁板式筏基的基础梁除满足正截面受弯及斜截面受剪承载力外,尚应按现行《混凝土结构设计规范》GB 50010 有关规定验算底层柱下基础梁顶面的局部受压承载力。
根据《混凝土结构设计规范》GB 50010 7.8.1 ,其局部受压区的截面尺寸应符合下列要求:lbl nc l c l A A A f F =≤βββ135.1式中:1F ----局部受压面上作用的局部荷载或局部压力设计值;c f ---混凝土轴心抗压强度设计值;c β-----混凝土强度影响系数,混凝土等级小于C50时,取,大于C50时取;1β-----混凝土局部受压时强度提高系数;lA ----混凝土局部受压面积 ;ln A ----- 混凝土局部受压净面积;bA ------局部受压的计算底面积.只需验算竖向轴力最大值即可,柱下最大荷载为4648KN ,即kN F l 4648=。
计算示意如图7.3.3:2m 8.16.06.04)36.0()36.0(=⨯⨯-⨯⨯⨯=b A22ln m 36.06.0===A A l24.236.08.1===l b l A A βC30混凝土,0.1,N/mm 3.142==c c f βkN6.1556736.01430024.20.135.135.1ln =⨯⨯⨯⨯=A f c l c ββ而l c l c F kN A f =>464835.1ln ββ 故局部受压承载力满足要求。
4基础梁内力计算用倒梁法计算梁的内力,即假定上部结构是绝对刚性的,各柱没有沉降差异,把柱脚视为条形基础的铰支座,将基础梁按倒置的普通连续梁计算。
用结构力学求解器算出基梁内力(横向梁为次梁,纵向梁为主梁)。
JCL -4集中净反力:()m kN b p j /8.1775.005.17.1144=+⨯=总反力:kN R 1.10667608.1774=⨯=JCL -5集中净反力: kN b p j 9.2401.27.1145=⨯= 总反力: kN R 2.14452609.2405=⨯= JCL -6集中净反力: ()kN b p j 1.2582.105.17.1146=+⨯= 总反力: kN R 15486601.2586=⨯=35.145=R R 45.146=R RJZL -1中柱子荷载合力:∑=+++=kN99022112263128772282iN将各梁反力简化成集中力作用在与JZL -1纵向基础梁的相交处,且横梁反力大小与总压力成正比,于是与JCL -4相交处的反力:()kNR R R R R R R R NQ i4.9613.10990245.1235.14299022424444465414==⨯⨯+⨯⨯+⨯=⨯++=∑与JCL -5相交处的反力:()kNR R R R R R R R NQ i128968.799021.12474.0299022425555565415==⨯⨯+⨯+⨯⨯=⨯++=∑与JCL -6相交处的反力:()kNR R R R R R R R NQ i6.14147990229.047.0299022426566665416==⨯+⨯⨯+⨯⨯=⨯++=∑对JZL -1的中心取矩,可知0=∑M JZL -2柱子荷载合力:∑=+++=16699kN3775449146483785iN将各梁反力简化成集中力作用在与JZL -2纵向基础梁的相交处,且横梁反力大小与总压力成正比,于是与JCL -4相交处的反力:()kNR R R R R R R R NQ i3.16213.101669945.1235.142166992424444465424==⨯⨯+⨯⨯+⨯=⨯++=∑与JCL -5相交处的反力:()kNR R R R R R R R NQ i3.217468.7166991.12474.02166992425555565425==⨯⨯+⨯+⨯⨯=⨯++=∑与JCL -6相交处的反力:()kNR R R R R R R R NQ i6.238571669929.047.0299022426566665426==⨯+⨯⨯+⨯⨯=⨯++=∑对JZL -2的中心取矩,可知0=∑MJZL -2(2)柱子荷载合力:∑=+++=kN161243839432143713593iN将各梁反力简化成集中力作用在与JL -2(2)纵向基础梁的相交处,且横梁反力大小与总压力成正比,于是与JCL -4相交处的反力:()()kNR R R R R R R R NQ i15653.101612445.1235.1421669924244444654422==⨯⨯+⨯⨯+⨯=⨯++=∑与JCL -5相交处的反力:()()NR R R R R R R R NQ ik 210068.7161241.12474.021669924255555654522==⨯⨯+⨯+⨯⨯=⨯++=∑与JCL -6相交处的反力:()()kNR R R R R R R R NQ i230371612429.047.02990224265666654622==⨯+⨯⨯+⨯⨯=⨯++=∑对JCL -2的中心取矩,可知0=∑MJZL -3柱子荷载合力:13233kN3105352036342794=+++=∑iN将各梁反力简化成集中力作用在与JL -3纵向基础梁的相交处,且横梁反力大小与总压力成正比,于是与JCL -4相交处的反力:()NR R R R R R R R NQ ik 8.12843.101323345.1235.142166992424444465434==⨯⨯+⨯⨯+⨯=⨯++=∑与JCL -5相交处的反力:()kNR R R R R R R R NQ i172368.7132331.12474.02166992425555565435==⨯⨯+⨯+⨯⨯=⨯++=∑与JCL -6相交处的反力:()kNR R R R R R R R NQ i189071323329.047.0299022426566665436==⨯+⨯⨯+⨯⨯=⨯++=∑对JZL -3的中心取矩,可知0=∑M次梁:JCL-4的受力图中各支座分别是竖向集中荷载、、1565kN 、、、、、,基底反力为。