北师大版七年级第四章(基本平面图形)测试题
北师大版七年级上册数学第四章 基本平面图形 含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、在15°、65°、75°、135°的角中,能用一副三角尺画出来的有()A.1个B.2个C.3个D.4个2、如图,射线OA表示的方向是()A.西北方向B.西南方向C.西偏南10°D.南偏西10°3、已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2B.∠1=∠3C.∠1<∠2D.∠2>∠34、如图,A、B、C、D四点在同一条直线上,M是AB的中点,N是DC的中点,MN=a,BC=b,那么AD等于()A.a+bB.a+2bC.2b﹣aD.2a﹣b5、如图,直线l1∥l2,∠1=50°,∠2=23°20′,则∠3的度数为()A.26°40′B.27°20′C.27°40′D.73°20′6、如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°7、如图,AB//CD,∠1+∠2=110°,则∠GEF+∠GFE的度数为()A.110°B.70°C.80°D.90°8、某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB的长为20m,C为AB的一个黄金分割点(AC<BC),则AC的长为(结果精确到0.1m)()A.6.7mB.7.6mC.10mD.12.4m9、已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠CB.∠A>∠B=∠CC.∠B>∠C>∠AD.∠B=∠C>∠A10、已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cmB.3cm或5cmC.7cm或3cmD.5cm11、已知凸n边形有n条对角线,则此多边形的内角和是()A.360°B.540°C.720°D.900°12、已知线段AB=1.8cm,点C在AB的延长线上,且AC=BC,则线段BC等于()A.2.5cmB.2.7cmC.3cmD.3.5cm13、如果线段AB=5cm,BC=4cm,且A、B、C、D,在同一条直线上,那么A、C 两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上结果都不对14、用量角器测得∠MON的度数,下列操作正确的是()A. B. C.D.15、下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形二、填空题(共10题,共计30分)16、15°=________ 平角;周角=________ °。
北师大版七年级上册数学第四章 基本平面图形含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是()A.两点之间,直线最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短2、如图,方向是北偏西方向,平分,则的度数为()A. B. C. D.3、多边形每一个内角都等于150°,则从该多边形一个顶点出发可引出对角线的条数是( )A.7条B.8条C.9条D.10条4、某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东50°B.西偏北50°C.南偏东40°D.东南方向5、周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6间的大小关系是()A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S36、若圆的半径为R,圆的面积为S,则S与R之间的关系式为()A.S=2πRB.S=πR 2C.S=4πR 2D.S=7、如图所示,在边长为4的正三角形ABC中,E,F,G分别为AB,AC,BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值为()A.4B. +4C.6D.2+8、有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()A.4个B.3个C.2个D.1个9、如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6.M是BD的中点,则CM的长为()A. B.2 C. D.310、如图,某正方形园地由边长为1m的四个小正方形组成,现要在园地上建一个花坛(阴影部分),使花坛面积是园地面积的一半,下图中设计不符合要求的是()A. B. C. D.11、下列说法中,正确的有()个①两点之间直线最短;②若,则a=b;③任何一个有理数都可以用数轴上的一个点来表示;④过n边形的每一个项点有(n﹣2)条对角线.A.1B.2C.3D.412、正六边形的周长为6mm,则它的面积为()A. mm 2B. mm 2C.3 mm 2D.6 mm 213、如图,两块直角三角板的直角顶点O重叠在一起,且恰好平分,则的度数为()A. B. C. D.14、钟表在5点30分时,它的时针和分针所成的锐角是().A.15°B.70°C.30°D.90°15、若一个多边形共有20条对角线,则它是()边形.A.六B.七C.八D.九二、填空题(共10题,共计30分)16、正六边形的边长为1,则它的面积是________17、已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是________.18、如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,则∠MON的度数为________.19、计算:38°47′+57°23′=________.20、如图,将一副三角尺的直角顶点重合,且使AB∥CD,则∠DEB的度数是________°.21、若将弯曲的河道改直,可以缩短航程,根据是________22、如图所示,AB+CD________AC+BD.(填“<”,“>”或“=”)23、计算:15°37′+42°50′=________°.24、种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是________.25、如图,MN为⊙O的弦,∠M=50°,则∠MON等于________三、解答题(共5题,共计25分)26、如图,在. 是的平分线,是边上的高,,,求的度数.27、如图,回答下列问题:(1)比较∠FOD与∠FOE的大小;(2)借助三角板比较∠DOE与∠BOF 的大小;(3)借助量角器比较∠AOE与∠DOF的大小.28、王老师到市场去买菜,发现如果把10kg的菜放到秤上,指标盘上的指针转了180°.如图所示,第二天王老师就给同学们出了两个问题:(1)如果把0.5kg的菜放在秤上,指针转过多少角度?(2)如果指针转了54°,这些菜有多少kg?29、地震后,许许多多志愿者到灾区投入了抗震救灾行列中.志愿者小方八点多准备前去为灾民服务,临出门他一看钟,时针与分针正好是重合的,下午两点多他拖着疲惫的身体回到家中,一进门看见钟的时针与分针方向相反,正好成一条直线,问小方是几点钟去为灾民服务?几点钟回到家?共用了多少时间?30、已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:∠A=∠B.参考答案一、单选题(共15题,共计45分)1、D2、D4、C5、B6、B7、C8、B9、C10、D11、A12、B13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
北师大版七年级上册数学第四章 基本平面图形 含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、下列说法中,正确的有()①-22=(-2)2成立②若∠1+∠2+∠3=180°,则∠1、∠2、∠3互补③连接两点的线段叫做两点的距离④若点B是线段AC的中点,则AB=BCA.1个B.2个C.3个D.4个2、下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条3、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A.两点确定一条直线B.两点确定一条线段C.过一点有一条直线 D.过一点有无数条直线4、如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°5、给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y随x的增大而增大.其中真命题的个数是()A.2B.3C.4D.56、点A、B为数轴上的两点,若点A表示的数是1,且线段,则点所表示的数为( )A. B. C. 或 D. 或7、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.三角形的外心是这个三角形三条角平分线的交点C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧8、如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB-∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.0个B.1个C.2个D.3个9、点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BMB.AB=2AMC.BM= ABD.AM+BM=AB10、下列说法正确的是()A.若MA=MB,则M是线段AB的中点B.直线比射线长,射线比线段长 C.线段BA与线段AB表示同一条线段 D.射线OA和射线AO是同一条射线11、如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128 °D.90°12、点A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,若点M为AC的中点,那么线段BM的长为()A.1cmB.3cmC.1cm或3cmD.无法确定13、在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CDB.∠AOB=4∠ACDC.弧AD=弧BDD.PO=PD14、在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1B.2C.3D.415、如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转80°B.右转80°C.右转100°D.左转100°二、填空题(共10题,共计30分)16、120°24′﹣60.6°=________°.17、如图,在等腰三角形ABC中,BC=3 cm,△ABC的面积是9 cm2,腰AB 的垂直平分线EF交AC于点F,若点D为BC边上的中点,M为EF上的动点,则BM+DM的最小值为________.18、乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A,B两站之间需要安排不同的车票________种.19、从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC=________.20、如图①,点在线段上,图中有三条线段、和,在这三条线段中,若其中一条线段的长度是另外一条线段长度的3倍,则称点是线段的“猫眼”.如图②,点和点在数轴上表示的数分别是和26,点是线段的“猫眼”,则点在数轴上表示的数可能为________.21、如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只妈蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是________.22、如图,把一块三角板的直角的顶点放在直尺的一边上,若,则________23、如图,∠MON=90°,已知△ABC中,AC=BC=25,AB=14,△ABC的顶点A、B 分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为________.24、已知线段,直线上有一点C,并且,点D是线段的中点,则线段________.25、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、正八边形的一个中心角的度数为________°.B、用科学计算器比较大小:cos20°________π.三、解答题(共5题,共计25分)26、计算:(1)﹣22÷﹣(﹣)×(﹣3)2(2)16°51′+38°27′×3﹣35°29′.27、如图,已知直线AB和CD相交于点O,∠COE= 90 , OF平分∠AOE,∠COF=28 .求∠AOC的度数.28、如图,处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,求从处看、两处的视角是多少度.29、实践与探索:木工师傅为了充分利用材料,把两块等宽的长方形木板锯成图①和图②的形状,准备拼接成一块较长的无缝的长方形木板使用,他量得,,那么他应把和分别锯成多大的角才能拼成一块的无缝的长方形木板?为什么?30、如图,在中,于,平分交于点,,求的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵ (▲)∴ ▲(等式的性质)∵ 平分(已知)∴▲ = ▲()∵ (已知)∴ ,∴∴ .参考答案一、单选题(共15题,共计45分)1、A3、A4、B5、A6、C7、B8、D9、D10、C11、A12、C13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
完整版北师大版七年级上册数学第四章 基本平面图形含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、下列叙述正确的是()A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”。
D.在直线AB上任取4点,以这4个点为端点的线段共有6条2、过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条3、正六边形的周长为6mm,则它的面积为()A. mm 2B. mm 2C.3 mm 2D.6 mm 24、如图所示,∠1=28°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.128°B.118°C.108°D.152°5、从A市到B市,乘坐火车共经过5个车站(不包括A,B两种),买车票的价格因为起点和终点不同有很多种,从A市到B市的任意两个车站的车票价格最多有()A.7种B.14种C.21种D.28种6、如图,下列表示角的方法,错误的是()A.∠1与∠AOB表示同一个角B.∠AOC也可以用∠O来表示C.∠β表示的是∠BOCD.图中共有三个角:∠AOB,∠AOC,∠BOC7、下列命题中,假命题的是()A.经过两点有且只有一条直线B.平行四边形的对角线相等C.两腰相等的梯形叫做等腰梯形D.圆的切线垂直于经过切点的半径8、如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连接AC、BC.若∠ABC=54°,则∠1的大小为()A.36°B.54°C.72°D.73°9、锐角加上锐角的和是()A.锐角B.直角C.钝角D.以上三种都有可能10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列各图中所给的线段、射线、直线能相交的是()A. B. C. D.12、将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是().A. B. C.D.13、对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理 C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理 D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理14、如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有5个.其中正确的结论是()A.1个B.2个C.3个D.4个15、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题(共10题,共计30分)16、从n边形的一个顶点出发有四条对角线,则这个n边形的内角和为________度.17、如图,小明从点A向北偏东75°方向走到B点,又从B点向南偏西30°方向走到点C,则∠ABC的度数为________18、计算:180°﹣20°40′=________19、试写出用n边形的边数n表示对角线总条数S的式子:________.20、往返于甲、乙两地的火车中途要停靠三个站,则有________种不同的票价(来回票价一样),需准备________种车票.21、如图,点O是直线AB上一点,∠COD=120°,则∠AOC+∠BOD=________.22、已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB 度数为________.23、如图,是的平分线,是的平分线,且,________度.24、已知∠AOB=80°,∠BOC=20°,OE平分∠AOC,则∠AOE=________.25、若∠α=35°16′,则∠α的余角的度数为________.三、解答题(共5题,共计25分)26、计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷527、已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点.求证:∠A=∠B.28、如图,O是直线AB上一点,OD,OE分别是∠AOC和∠BOC的平分线.求证:∠DOE=90°.29、如图,C、D、E将线段AB分成四部分,且AC:CD:DE:EB=2:3:4:5,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21.求PQ的长.30、两个相等的角,有公共顶点和一条公共边,另两条边所成的角是直角.求这两个角的度数.参考答案一、单选题(共15题,共计45分)1、D2、C3、B4、B5、C6、B7、B8、C9、D10、A11、B12、D13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
北师大版七上第四章基本平面图形测评

七上第四单元测评挑战卷(90分钟100分)一、选择题(每小题3分,共30分)1.(2021·重庆期中)已知平面上有三点,经过其中的任意两点画直线,最多能把这个平面分成(D)A.4部分B.5部分C.6部分D.7部分【解析】同一平面内不在同一直线上的3个点,可画三条直线.最多能把这个平面分成7部分.2.把50°40′30″化成度的形式为(C)A.50.43°B.50.65°C.50.675°D.50.765°【解析】50°40′30″=50.675°.3.如图,不是凸多边形的是(C)【解析】图形不是凸多边形的是C.4.如图,用一副三角板画角,不可能画出的角的度数是(B)A.120°B.85°C.135°D.165°【解析】A.120°=90°+30°,故本选项不符合题意;B.85°不能写成90°,60°,45°,30°的和或差,故本选项符合题意;C.135°=90°+45°,故本选项不符合题意;D.165°=90°+45°+30°,故本选项不符合题意.5.(2021·深圳期末)下列说法正确的有(A)①两点之间,线段最短;②若AB=BC,则点B是线段AC的中点;③射线AB和射线BA是同一条射线;④直线比线段长.A.1个B.2个C.3个D.4个【解析】①两点之间,线段最短,正确;②若AB=BC,则点B是线段AC的中点,不正确,只有点B在线段AC上时才成立;③射线AB和射线BA是同一条射线,不正确,端点不同;④直线比线段长,不正确,直线不能度量.共1个正确.6.如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,则从灯塔P观测A,B两处的视角∠P的度数是(A)A.30°B.32°C.35°D.40°【解析】∵∠P AB=30°,∠ABP=120°,∴∠APB=180°-∠P AB-∠ABP=30°.7.如图,OC平分∠AOB,OD是∠BOC内的一条射线,且∠COD=1 2∠BOD,则∠AOB等于∠COD的(A)A.6倍B.4倍C.2倍D.3倍【解析】∵∠COD=12∠BOD,∴∠COB=3∠COD,∵OC平分∠AOB,∴∠AOB=2∠COB,∴∠AOB=6∠COD.8.两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为(C)A.2 cm B.4 cm C.2 cm或22 cm D.4 cm或44 cm 【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,∵M,N分别为AB,BC的中点,∴BM=12 cm,BN=10 cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22 cm;②如图2,BC在AB上时,MN=BM-BN=12-10=2 cm.综上所述,两根木条的中点间的距离是2 cm或22 cm.9.(2021·西安期末)如图,A,B,C是一条公路上的三个村庄,A,B 间的路程为50 km,A,C间的路程为30 km,现要在A,B之间建一个车站P,若要使车站到三个村庄的路程之和最小,则车站应建在何处?(A)A.点C处B.线段BC之间C.线段AB的中点D.线段AB之间【解析】设P,C间的路程为x km,由题意,得如图1,当点P在点C的左侧,车站到三个村庄的路程之和为:30-x+x+20+x=x+50(km);如图2,当点P在点C的右侧,车站到三个村庄的路程之和为:30+x+x+20-x=x+50(km).综上所述:车站到三个村庄的路程之和为(x+50)km;因为x为非负数,即x≥0,所以,当x=0时,x+50最小.即当车站建在C处时,车站到三个村庄的路程之和最小.10.如图,在长方形ABCD中,AB∶BC=2∶1,AB=12 cm,点P 沿AB边从点A开始,向点B以2 cm/s的速度移动,点Q沿DA边从点D 开始向点A 以1 cm/s 的速度移动,如果P ,Q 同时出发,用t s 表示移动时间(0<t <6).在这运动过程中,下列结论:①当t =2 s 时,AP =AQ ;②当t =3 s 时,∠BPC =45°;③当t =2 s 时,PB ∶BC =4∶3;④四边形QAPC 的面积为36 cm 2. 其中正确的结论有( D )A .1个B .2个C .3个D .4个【解析】①当t =2 s 时AP =4 cm ,AQ =AD -DQ =6-2=4 cm ,故①正确;②当t =3 s 时,BP =AB -AP =12-3×2=6 cm ,∴BC =BP , 又∵∠B =90°,∴△BPC 是等腰直角三角形,故②正确;③当t =2 s 时,PB =AB -2×2=12-4=8 cm ,∵AB ∶BC =2∶1,AB =12 cm ,∴BC =6 cm ,∴PB ∶BC =8∶6=4∶3,故③正确;④t s 时,PB =AB -2t =12-2t ,DQ =t ,∴四边形QAPC 的面积=12×6-12 (12-2t)×6-12 ×12×t =72-36+6t-6t =36 cm 2,故④正确.所以正确的是①②③④共4个.二、填空题(每小题3分,共24分)11.(2021·宿州期末)时钟的时间是2点30分,时钟盘面上的时针与分针的夹角是__105°__.【解析】2点30分时,时针指向2与3的正中间,分针指向6,表盘上两个相邻数字间夹角为30°,故此时二者的夹角是3×30°+12×30°=105°.12.数轴上点A表示数a,点B表示数b,若|a|=7,|b|=4,则AB =__3或11__.【解析】∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,AB =7-4=3;当a=-7,b=4时,AB=|-7-4|=11;当a=7,b=-4时,AB=|7+4|=11;当a=-7,b=-4时,AB=|-7+4|=3.故AB的长为3或11.13.计算:90°-52°22′=__37°38′__.【解析】90°-52°22′=89°60′-52°22′=37°38′.14.如图,已知∠AOC=90°,∠COB=α°,OD平分∠AOB,则∠COD等于__45°-12α°__.(用含α的代数式表示)【解析】∵∠AOC=90°,∠COB=α°,∴∠AOB=∠AOC+∠COB=90°+α°.∵OD 平分∠AOB ,∴∠BOD =12 (90°+α°)=45°+12 α°,∴∠COD =∠BOD -∠COB =45°-12 α°.15.如图,点C 、点D 在线段AB 上,E ,F 分别是AC ,DB 的中点,若AB =m ,CD =n ,则线段EF 的长为__m +n 2 __(用含m ,n 的式子表示).【解析】∵AB =m ,CD =n.∴AB -CD =m -n ,∵E ,F 分别是AC ,DB 的中点,∴CE =12 AC ,DF =12 DB ,∴CE +DF =12 (m -n),∴EF =CE +DF +DC =12 (m -n)+n =m +n 2 .16.如图甲,圆的一条弦将圆分成2部分;如图乙,圆的两条弦将圆分成4部分;如图丙,圆的三条弦将圆分成7部分.由此推测,圆的四条弦最多可将圆分成__11__部分;圆的十九条弦最多可将圆分成__191__部分.【解析】一条弦将圆分成1+1=2部分,二条弦将圆分成1+1+2=4部分,三条弦将圆分成1+1+2+3=7部分,四条弦将圆分成1+1+2+3+4=11部分,…n 条弦将圆分成1+1+2+3+…+n =1+n (n +1)2部分, 当n =19时,1+n (n +1)2=191部分. 17.如图,将一张长方形纸片ABCD 分别沿着BE ,BF 折叠,使边AB ,CB 均落在BD 上,得到折痕BE ,BF ,则∠ABE +∠CBF =__45°__.【解析】由折叠得,∠ABE =∠DBE ,∠CBF =∠DBF ,∵∠ABE +∠DBE +∠CBF +∠DBF =∠ABC =90°,∴∠ABE +∠CBF =12 ∠ABC =12 ×90°=45°. 18.一副三角板AOB 与COD 如图1摆放,且∠A =∠C =90°,∠AOB =60°,∠COD =45°,ON 平分∠COB ,OM 平分∠AOD.当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,α+β=__105__度.【解析】如题图1,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°+∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°+∠BOD),∴∠MON =α=∠NOB +∠MOD -∠BOD =12 (45°+60°),如题图2,∵ON 平分∠COB ,OM 平分∠AOD.∴∠NOB =∠CON =12 ∠BOC =12 (45°-∠BOD),∠MOD =∠MOA =12 ∠AOD =12 (60°-∠BOD),∴∠MON =β=∠NOB +∠MOD +∠BOD =12 (45°+60°),∴α+β=45°+60°=105°.三、解答题(共46分)19.(6分)如图所示,OB 平分∠AOC ,且∠2∶∠3∶∠4=2∶5∶3.求∠2,∠3,∠4的度数.【解析】设∠2=2x ,∠3=5x ,∠4=3x ,根据OB 平分∠AOC ,故∠1=∠2=2x ,∴∠1+∠2+∠3+∠4=2x +2x +5x +3x =12x =360°,解得:x =30°, ∴∠2=2x =60°,∠3=5x =150°,∠4=3x =90°.20.(6分)如图,∠1=∠2=∠3,若图中所有角的和等于180°,求∠AOB的度数.【解析】如图,设∠1=∠2=∠3=x,∵∠AOC+∠AOD+∠AOB+∠COD+∠COB+∠DOB=180°,∴x+2x+3x+x+2x+x=180°,∴x=18°,∴∠AOB=3x=54°.21.(6分)如图,线段AB=10 cm,C是AB的中点,点D在CB上,DB=3 cm.求线段CD的长.【解析】由AB=10 cm,C是AB的中点,得BC=12AB=5 cm,由线段的和差,得CD=BC-BD=5-3=2(cm).22.(6分)已知A,B,C,D是直线上顺次四点,AB,BC,CD的长度比是1∶2∶3,点E,F分别是AB,CD的中点,且EF=8 cm,求AD的长.【解析】如图所示:∵AB,BC,CD的长度比是1∶2∶3,∴设AB =x ,则BC =2x ,CD =3x ,∵点E ,F 分别是AB ,CD 的中点,且EF =8 cm ,∴EF =12 x +2x +32 x =8,解得x =2,∴AD =x +2x +3x =6x =12 cm .23. (10分)(2021·宁波质检)如图,点A ,B 和线段CD 都在数轴上,点A ,C ,D ,B 起始位置所表示的数分别为-2,0,3,12;线段CD 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)当t =0秒时,AC 的长为________,当t =2秒时,AC 的长为________.(2)用含有t 的代数式表示AC 的长为________.(3)当t =________秒时AC -BD =5,当t =________秒时AC +BD =15.【解析】(1)当t =0秒时,AC =|-2-0|=|-2|=2;当t =2秒时,移动后C 表示的数为2,∴AC =|-2-2|=4.答案:2 4(2)点A 表示的数为-2,点C 表示的数为t ;∴AC =|-2-t|=t +2.答案:t +2(3)∵t 秒后点C 运动的距离为t 个单位长度,点D 运动的距离为t 个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12-(3+t)|,∵AC-BD=5,∴t+2-|12-(t+3)|=5.解得:t=6.∴当t=6秒时AC-BD=5;∵AC+BD=15,∴t+2+|12-(t+3)|=15,t=11;当t=11秒时AC+BD=15.答案:61124.(12分)如图,∠AOB=90°,∠BOC=20°.(1)如图1所示,分别作∠AOC,∠BOC的平分线OM,ON,求∠MON 的度数;(2)如图2所示,若将(1)中的OC绕O点向下旋转,使∠BOC=2x°,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数?若能,求出其值;若不能,试说明理由;(3)如图3所示,∠AOB=90°,若将(1)中的OC绕O点向上旋转,使OC在∠AOB的内部,且∠BOC=2y°,仍然分别作∠AOC,∠BOC的平分线OM,ON,还能否求出∠MON的度数吗?若能,求出其值;若不能,说明理由.【解析】(1)∵∠AOB=90°,∠BOC=20°,∴∠AOC=∠AOB+∠BOC=110°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×110°=55°,∠NOC=12∠BOC=12×20°=10°,∴∠MON=∠MOC-∠NOC=55°-10°=45°.(2)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2x°,∴∠AOC=∠AOB+∠BOC=90°+2x°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°+2x°)=45°+x°,∠NOC=12∠BOC=12×2x°=x°,∴∠MON=∠MOC-∠NOC=45°+x°-x°=45°;(3)能求出∠MON的度数,∠MON=45°.∵∠AOB=90°,∠BOC=2y°,∴∠AOC=∠AOB-∠BOC=90°-2y°,∵OM,ON分别平分∠AOC,∠BOC,∴∠MOC=12∠AOC=12×(90°-2y°)=45°-y°,∠NOC=12∠BOC=12×2y°=y°,∴∠MON=∠MOC+∠NOC=45°-y°+y°=45°.。
北师大版七年级上第四章__基本平面图形检测题

一、选择题1.如图,下列不正确的几何语句是( ) A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段2.如图,从A 地到B 地最短的路线是( )A.A -C -G -E -BB.A -C -E -BC.A -D -G -E -BD.A -F -E -B 3.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是( ) A.3 cm B.4 cm C.5 cm D.不能计算4.用一副学生用的三角板的内角(其中一个三角板的内角是45°,45°,90°; 另一个是30°,60°,90°)可以画出大于0°且小于等于150°的不同角度的角共有( )种. A.8 B.9 C.10 D.115.已知α、β都是钝角,甲、乙、丙、丁四人计算61(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( )A.甲B.乙C.丙D.丁6.如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( )A.BC =AB -CDB.BC =21AD -CDC.BC =21(AD +CD ) D.BC =AC -BD7.如图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD是同一条射线;③AB +BD >AD ;④三条直线两两相交时,一定有三个交点.A.1B.2C.3D.48.下列说法中正确的是( )A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90° 9.如图,阴影部分扇形的圆心角是( )A.15°B.23°C.30°D.36°10.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为a 、b ,则( ) A.a=b B.a <b C.a >b D.不能确定11.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( )A.3 cmB.4 cmC.5 cmD.不能计算12.已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E ,再画出AE 的中点F ,那么AF 等于AB 的( )A.41B.83C.81D.163 13.如图5,下列说法,正确说法的个数是( )图5①直线AB 和直线BA 是同一条直线;②射线AB 与射线BA 是同一条射线;③线段AB 和线段BA 是同一条线段;④图中有两条射线.A.0B.1C.2D.3 14.下列语句中,正确的是( )A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点15.下列说法正确的是( )A.延长直线ABB.延长射线ABC.延长线段AB 到点CD.线AB 是一射线 16.如右图∠AOB 为平角,且∠AOC =21∠BOC ,则∠BOC 的度数是( )A.100°B.135°C.120°D.60°A B C D17.如图,军舰从港口沿OB 方向航行,它的方向是( ) A.东偏南30° B.南偏东60°C.南偏西30° D.北偏东30° 18.关于直线,射线,线段的描述正确的是( )A.直线最长,线段最短B.射线是直线长度的一半C.直线没有端点,射线有一个端点,线段有两个端点D.直线、射线及线段的长度都不确定19.一个人骑自行车前行时,两次拐弯后,仍按原方向前进,这两次拐弯的角度是( )A.向右拐30°,再向右拐30°B.向右拐30°,再向左拐30°C.向右拐30°,再向左拐60°D.向右拐3020.如图,射线OA 表示的方向是( )A 、西南方向B 、东南方向C 、西偏南10°D 二、填空题1、把一根木条钉牢在墙壁上需要__________个钉子,其理论依据是__________.2、画线段AB =1 cm ,延长线段AB 到C ,使BC =2 cm ,已知D 是BC 的中点,则线段AD =__________ cm.3、如图3,A 、B 、C 、D 、E 是直线l 上顺次五点,则 (1)BD =CD +______; (2)CE =______+______;(3)BE =BC +____+DE ; (4)BD =AD -______=BE -______.4、如图2,∠1=∠2,则∠BAD =____ .5、已知线段AB =10 cm ,BC =5 cm ,A 、B 、C 三点在同一条直线上, 则AC =_ _.6. 如图,OM 平分∠AOB ,ON 平分∠COD .若∠MON =50°,∠BOC =10°,则∠AOD = __________.7. 一个正多边形过一个顶点有5条对角线,则这个多边形的边数是_________. 8. 如图,线段AB =BC =CD =DE =1 cm ,那么图中所有线段的长度之和等于________cm.9. 一条直线上立有10根距离相等的标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.5 s ,则当他走到第10杆时所用时间是_________. 10、 (1)15°30′5″=_______″;(2)7 200″=_______´=________°; (3)0.75°=_______′=________″;(4)30.26°=_______°_______´______〞.11. 平面内三条直线两两相交,最多有a 个交点,最少有b 个交点,则a +b =_________. 13、 如图,点O 是直线AD 上一点,射线OC 、OE 分别是∠AOB 、∠BOD 的平分线,若∠AOC =28°,则∠COD =_________,∠BOE =__________. 14、 n 边形过每一个顶点的对角线有 条. 15、 (121)°=( ) ´=( )″; 48″=( ) ´=( ) ° 16.上午10点30分,时针与分针成___________度。
北师大版七年级上册数学第四章 基本平面图形含答案(参考答案)

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、如图,已知线段AB=10 cm,点N在AB上,NB=2 cm,M是AB中点,那么线段MN的长为()A.5 cmB.4 cmC.3 cmD.2 cm2、A、B两点间的距离是()A.连结A、B两点的线段B.连结A、B两点的直线C.连结A、B两点的线段的长度D.连结A、B间的线的长度3、下列说法正确的有()①一个有理数不是整数就是分数;②从六边形的一个顶点能引出4条对角线;③连接两点之间的线段,就是两点之间的距离;④若AB=BC,则B是AC的中点;⑤符号相反的数是相反数.A.1个B.2个C.3个D.4个4、半径为5的圆的一条弦长不可能是()A.3B.5C.10D.125、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边6、如图,在□ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC =2S△EFB;④∠CFE=3∠DEF,其中符合题意结论的个数共有().A.1个B.2个C.3个D.4个7、下列说法正确的个数为()⑴过两点有且只有一条直线⑵连接两点的线段叫做两点间的距离⑶两点之间的所有连线中,线段最短⑷直线AB和直线BA表示同一条直线.A.1B.2C.3D.48、如图所示,OC,OD分别是∠AOB、∠BOC的平分线,且∠COD=26°,则∠AOB 的度数为()A.96°B.104°C.112°D.114°9、已知:∠ ,∠ ,∠ ,则下列说法正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1、∠2、∠3互不相等10、下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是()A.①②B.②③C.①④D.③④11、下列说法中,①两条射线组成的图形叫角;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点;正确的有()A.1个B.2个C.3个D.4个12、下列说法错误的是()A.两点之间,线段最短B.两点确定一条直线C.射线和射线是同一条射线 D.直线和直线是同条直线13、下列结论中,正确的是()A.把一个角分成两个角的射线叫角平分线B.两点确定一条直线C.若AB=BC,则点B是线段AC的中点D.两点之间,直线最短14、如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()A.3cmB.4cmC.5cmD.6cm15、如图,已知正方形ABCD边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE长为()A.2 -2B. -1C. -1D.2-二、填空题(共10题,共计30分)16、________°.17、已知∠1与∠2互余,∠2与∠3互补,∠1=67°12′,则∠3=________.18、数轴上的点A,B分别表示数-2和1,点C是AB的中点,则点C所表示的数是________.19、如图,相交于点,是的角平分线,若,,则________.20、如图,C,D是线段AB上两点,若CB= ,DB= ,且D是AC的中点,则AB的长等于________.21、如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD 上的一个动点,当PC与PE的和最小时,∠CPE的度数是________.22、(1)131°28′﹣51°32′15″=________.(2)58°38′27″+47°42′40″=________.23、计算:78°18′﹣56°46′=________.24、如图,点O是直线AB上一点,图中共有________个小于平角的角.25、我们知道:平面上有一个点,过这一点可以画无数条直线.若平面上有两个点,则过这两点可以画的直线的条数是________若平面上有三个点,过每两点画直线,则可以画的直线的条数是________若平面上有四个点,过每两点画直线,则可以画的直线的条数是________三、解答题(共5题,共计25分)26、计算:①96°﹣18°26′59″②83°46′+52°39′16″③20°30′×8④105°24′15″÷327、如图,直线AB、CD、EF相交于点O,∠DOB是它的余角的2倍,∠AOE=2∠DOF,且有OG⊥AB,求∠EOG的度数.28、如图,点 P、M、N 在线段 AB 上,线段 MN=4,若点 M、N 分别是线段PN、AB 的中点,且线段 AB=26,求线段 AP 的长.29、读句画图填空:(1)画∠AOB;(2)作射线OC,使∠AOC=∠AOB;(3)由图可知,∠BOC 与∠AOB的关系.30、已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,求此多边形的内角和.参考答案一、单选题(共15题,共计45分)1、C3、A4、D5、C6、D7、C8、B9、C10、B11、A12、C13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
北师大版七年级上册数学第四章 基本平面图形 含答案

北师大版七年级上册数学第四章基本平面图形含答案一、单选题(共15题,共计45分)1、图中包含了()个小于平角的角A.5个B.6个C.7个D.8个2、如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF等于()A.35°B.45°C.55°D.65°3、下列说法错误的是()A.两点之间,线段最短B.两点确定一条直线C.射线和射线是同一条射线 D.直线和直线是同条直线4、如图,点C是线段AB的中点,点D是线段BC的中点,下面等式不正确的是()A.CD=AC-DBB.CD=AD-BCC.CD=AB-BDD.CD=AB5、甲、乙、丙、丁四个学生在判断时钟的分针和时针互相垂直的时刻,每个人说两个时刻,说对的是()A.甲说3点和3点半B.乙说6点1刻和6点3刻C.丙说9点和12点1刻D.丁说3点和9点6、如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD= ()A.60°B.50°C.40°D.30°7、下列说法正确的是()A.射线和射线是同一条射线B.连接两点的线段叫两点间的距离 C.两点之间,直线最短 D.六边形的对角线一共有9条8、如图,正方形OABC的边长为6,点A,C分别在x轴、y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为()A.2B.C.4D.69、下列说法正确的是 ( )A.两点的所有连线中,直线最短B.连接两点之间的线段,叫做这两点之间的距离C.锐角的补角一定是钝角D.一个角的补角一定大于这个角10、如图,已知是直角,OM平分,ON平分,则的度数是()A.30°B.45°C.50°D.60°11、如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分()A. B.16+π C.18 D.1912、一个钝角与一个锐角的差是()A.锐角B.直角C.钝角D.不能确定13、下列说法错误的是()A.直径是圆中最长的弦B.半径相等的两个半圆是等弧C.面积相等的两个圆是等圆D.长度相等的两条弧是等弧14、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.两点之间线段的长度,叫做这两点之间的距离D.圆上任意两点间的部分叫做圆弧15、正六边形的半径是6,则这个正六边形的面积为( ).A.24B.54C.D.二、填空题(共10题,共计30分)16、如图①是半径为1的圆,在其中挖去2个半径为的圆得到图②,挖去22个半径为()2的圆得到图③…,则第n(n>1)个图形阴影部分的面积是________.17、点C在射线AB上,若AB=3,BC=2,则AC为________18、如图,在Rt△ABC中,∠ACB=90°,AC BC=2,以BC为直径的半圆交AB 于点D,P是弧CD上的一个动点,连结AP,则AP的最小值是________19、如图,是直线上的顺次四点,分别是的中点,且,则________ .20、工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是________21、木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为________.22、如图,已知点C在线段AB上,AC=3cm,BC=2cm,点M、N分别是AC、BC 的中点,则线段MN的长度为________cm.23、22.5°=________°________′;12°24′=________°.24、若线段AB的长度为6cm,线段BC的长度为4cm,A、B、C三点在同一直线上,且M为AB的中点,N为BC的中点,则线段MN的长度为________.25、如图,若CB等于15cm,DB等于23cm,且D是AC的中点,则AC=________cm.三、解答题(共5题,共计25分)26、如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.27、如图,∠AOB是直角,∠BOC=50°,OD平分∠AOC,若∠DOE=45°,那么OE平分∠BOC吗?请说明理由.28、如图,点,在线段上,,,线段、的中点、之间的距离是,求线段的长.29、互余的两个角的度数之比为3∶7,则这两个角的度数分别是多少?30、如图,OB平分∠COD,∠AOB=90°,∠AOC=125°,求∠DOC的度数.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、D7、D8、A9、C10、B11、D12、D13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C A B 40︒60︒南
北(4)北西南东C A B 电白县实验中学初一数学《基本平面图形》测试题
班别: 学号: 姓名: 分数:
一、选择题。
(每小题3分,10小题共30分)
1、下列各直线的表示法中,正确的是( )
A :直线A ,
B :直线AB ,
C :直线ab ,
D :.直线Ab
2、一个钝角与一个锐角的差是( ) A.锐角 B.直角 C.钝角 D.不能确定
3、手电筒射出去的光线,给我们的形象是( ) A.直线 B.射线 C.线段 D.折线
4、图中给出的直线、射
线、线段,根据各自的性质,能相交的是( )
5、如图,AB=CD,则AC 与BD 的大小关系是( )
A.AC>BD
B.AC<BD
C.AC=BD
D.不能确定
6.角是指( ) A.由两条线段组成的图形; B.由两条射线组成的图形
C.由两条直线组成的图形;
D.有公共端点的两条射线组成的图形
7、下列说法正确的是( )
A. 两点之间的连线中,直线最短
B.若P 是线段AB 的中点,则AP=BP
C. 若AP=BP, 则P 是线段AB 的中点
D. 两点之间的线段叫做者两点之间的距离
8、 已知线段AB=6cm,C 是AB 的中点,D 是AC 的中点,则DB 等于( )
A. 1.5cm
B. 4.5 cm C3 cm. D.3.5 cm 9、如图3,下列表示角的方法,错误的是( )
A.∠1与∠AOB 表示同一个角;
B.∠AOC 也可用∠O 来表示
C.图中共有三个角:∠AOB 、∠AOC 、∠BOC;
D.∠β表示的是∠BOC 10、如图4,在A 、B 两处观测到的C 处的方位角分别是( )
A.北偏东60°,北偏西40°
B.北偏东60°,北偏西50°
C.北偏东30°,北偏西40°
D.北偏东30°,北偏西50°
二、填空题。
(每小题3分,5小题共15分)
1、5点钟时,时针与分针所成的角度是
2、用一副三角板,可以拼出不同度数的角共有 个。
3、要把木条固定在墙上至少需要钉_______颗钉子,根据是 .
4、计算:48°39′+67°41′= ,41.2°= ° ′
5、 过8边形的一个顶点可作 条对角线,可将8边形分成 个三角形。
β(3)
1O C A
B
C A
D
B
A D
B 三、作图题。
(每小题5分,3小题共15分)
1、已知线段a 和b ,求作线段MN ,使MN=a+b 。
(不要求写作法,但要保留痕迹)
a
b
2、已知平面上四点A 、B 、C 、D,如图:
(1)画直线AD;
(2)画射线BC ,与AD 相交于O 。
(3)连结AC 、BD 相交于点F.
3、已知∠AOB ,利用能画直角的工
具再画出一个与它相等的角。
四、解答题。
(第1、2小题每题5分,其余每小题6分,共40分)
1、已知D 是AC 的中点, AD=2,CB=5,求AB 的长度。
2、已知∠AOB=25°,∠BOC=3∠AOB ,求∠AOC
的大小。
C O
B
A
3如图,BC=4cm,BD=7cm , D 是AC 的中点,求AC 的长度。
4、将一个半径为10cm 的圆分成3个扇形,其圆心角的比1:2:3,求:
①各个扇形的圆心角的度数。
②其中最小一个扇形的面积。
5、如图,AB=20cm,C 是AB 上一点,且AC=12cm,
D 是AC 的中点,
E 是BC 的中点,求线段DE 的长.
6、如图,如果∠1=65.4°,∠2=78°30′,求∠3的度数。
C 31
2
7、如下图,∠AOC=∠BOD=90°, ∠BOC=38° ,求∠AOD 的度数.
附加题。
(每小题5分)
1、平面上有不在一直线上n 个点,过其中的每两点画直线,最多可以画 条线段,
一个会议,任两个人都要互相握手一次,则n 个人一共握了 次手。
2、从n 边形的一个顶点出发,可以画 条对角线,n 边形总共有 条对角线
3、如图所示,OE 平分∠BOC,OD 平分∠AOC,∠COE=20.6°, ∠COD=40°40′,•求∠AOB 的度数.
4、计算: 49°28′52″÷4,
5、已知A 、B 、C 在同一直线上,且AB=25,BC=5,求D 是AB 的中点,E 是BC 的中点,求
DE 的长。
O C A D B E C B A D O。