故障录波及常见故障波形讲解课件
故障录波介绍

中性点经接地电阻接地方式
接地变压器结构与一般 三相芯式变压器相似。T0 为接地变压器,铁芯为三 相三柱式,每个铁芯上有 两个匝数相等,绕向相同 的绕组,每相上面一个绕 组与下面一个绕组反极性 串联,并将每相下面一个 绕组的首端连在一起作为 中性点,组成曲折形的星 形接线。二次绕组视工程 需要决定是否配置。
接地变零序保护误动、拒动探讨
防范措施 (3)35kV母线并列运行时,不得同时投入两条母线的接 地变。
感谢您的聆听
故障录波在线查看
【波形设置】选项
故障的起始时刻
故障录波在线查看
高度 长度
故障的起始时刻
故障录波离线分析软件
三 典型波形识别
故障录波分析-三相短路电压
故障录波分析-三相短路低压侧电流
0.052s故障开始
0.18s故障结束
故障录波分析-三相短路高压侧电流
故障录波分析-两相短路低压侧电流
故障录波分析-两相短路低压侧电流
实际波形分析-案例 1 保护动作信息
1号接地变保护测控信息
实际波形分析-案例 1 1号接地变零序电流波形
实际波形分析-案例 1
原因分析 直接原因:35kV I段母线所带风机线路上一台配电变压
器A相高压侧引线折断,搭接至变压器本体导致A相接 地故障。 根本原因:35kV I段母线所带风机线路未配置零序电流 互感器,未设置零序电流保护。
五 零序保护误动、拒动探讨
接地变零序保护误动、拒动探讨
(一)两条线路同相接地的电流叠加
当一条线路经高阻接地,由于故障电流小,保护不能动
作;此后,另一条线路又经高阻接地,线路的故障电流也未
达到保护动作值,两条线路同时发生高阻接地等值电路为: 图中,R1 、R2 分别为故障线 路1、线路2的接地过渡电阻; Il1 、IL2 分别为故障线路1、线 路2的零序电流;IR 为流过接 地变的零序电流;XCΣ 、Xb 分 别为线路对地电容、接地变压 器的电抗值;R为接地电阻值。
故障录波培训课件

关于送终端线路
关于两个开关两次重合
重合闸整组复归后再故障 非全相期间再故障 重合闸整组复归前再故障
关于多次故障
单相故障 两套主保护的单相跳闸信号,两套后备 保护动作信号,差动动作信号,收信、 发信信号,重合闸动作信号
两相及以上故障 两套主保护的三相跳闸信号,两套后备
保护动作信号,差动动作信号,收信、 发信信号,
简单故障分析
两相接地故障-- 有两相电流突变增大,有零序电流出现。
简单故障分析
对于一个正常运行的输电线路,电流与电压的相位角 关系跟线路的有功和无功的方向有关。
任何正方向故障下电流永远滞后于电压,其角度等于 线路阻抗角,但受过渡电阻的影响,角度变小。
关于负荷潮流与故障电流的相位
关于顺序重合闸
故障录波器之配置原则
➢ 模拟量和开关量之比为1:3或1:4配置,以保证有足够 的通道接入开关量
➢ 必须接入录波器的开关量:
• 按相接入每个开关的副接点,设置为在开关有闭合变为分闸 时启动录波器
• 直接作用于跳闸线圈的保护装置的跳闸出口接点,有分相出 口的要按相接入
• 有关的告警信息:高频保护的收、发信信号,DTT信号,差 动保护的通道告警信号,保护装置故障信号、失电信号, PT/CT断线信号
2、通过站内某台录波器的交换机,将故障录波器接入 到数据网
故障录波器接入数据网方案
无子站情形下录波器的接入
数据网交换机
220kV 录 波 器 集 中 交 换机
HUB
HUB
具有独立网口的录波器设备
站工录
网卡
程波
师器
也可能是串口服务 器
HUB
其他输出口的录波器
➢ 有保护子站情况下的录波器接入方案 1、每一台录波器均通过网络接入子站交换机,对于无 网络口输出的设备可以通过配置串口服务器转换为网 络口。
故障录波及常见故障波形讲解共27页文档

梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
故障录波及常见故障波形讲解 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
故障录波及常见故障波形讲解

无故障跳闸
查明原因, 马上恢复送 电
02
故障录波器的功能
➢ 3、继电保护装置有不正确动作行为 • 继电保护装置勿动造成无故跳闸 • 系统有故障但保护装置拒动 • 系统有故障但保护动作行为不符合预先设计
利用故障录波器记录下来的保护事件和开关副 节点状态信息找出保护不正确动作原因
03
故障录波器的原理
06 故障录波器的波形分析
➢ 6.3、根据故障录波图能够获得的信息: • 1、发生故障的电气元件和故障类型; • 2、保护动作时间和故障切除时间; • 3、故障电流和故障电压; • 4、重合时间以及是否重合成功; • 5、详细的保护动作情况; • 6、完成附属功能(测距、阻抗轨迹、相量以及谐波分析等)
07 故障录波器在应用中存在的问题及措施
采取措施:
(1)加强巡视:定期对故障录波器进行手动触发,检验其是否在正 常的工作状态,一旦发现工作不正常立即联系处理。 (2)采用备用方案:在笔记本电脑上安装波形分析软件在保护管理 机不能调阅故障录波器的波形时,采用笔记本电脑调阅方式,对故 障进行及时的分析和判断。 (3)加强培训:利用系统维护的机会,请故障录波器厂家人员到 现场讲解。
故障录波器与故障波形分析精编版

5、录波数据采样及记录方式 5.1模拟量采样方式
模拟量采样及记录方式按下图执行:
五、故障录波器之主要参数
系统大扰动开始时刻
S
A B C D
t=00.0000 模拟量采样时段顺序
t (s )
A时段:系统大扰动开始前的状态数据,记录时间为40ms~100ms可调。采样频率 10kHz、5kHz、2kHz、1kHz可设。 B时段:系统大扰动后初期的状态数据,记录时间200ms~2000ms可调。采样频率同 A段。 C时段:系统大扰动后中期的状态数据,记录时间1.0s~10s可调。数据输出速率1kHz、 0.5kHz、0.25kHz可设。 D时段:系统动态过程数据,不定长录波,录波时间最长为30min,数据输出速率 50Hz,10Hz,1Hz可设,输出为有效值。
三、故障录波器的原理 四、故障录波器之装置特点 五、故障录波器的主要参数 六、故障录波器的技术分析
七、故障录波器在应用中存在的问题及措施
八、典型故障波形的分析
一、故障录波器之概念
故障录波器是电力系统发生故障及振荡时能自动 记录的一种装置, 它可以记录因短路故障、系统振 荡、频率崩溃、电压崩溃等大扰动引起的系统电 流、电压及其导出量, 如有功、无功以及系统频率 的全过程变化现象。
故障录波器在应用中存在的问题
故障录波器在实际应用过程中经常出现保护管理机调不 到故障波形的故障,严重影响了故障波形的分析,在系统 发生故障时将影响对故障性质的判断,根据现场处理的情 况有以下几种原因导致该故障的发生: • (1) 保护管理机与故障录波器之间通信中断
• (2) 保护管理机死机导致死数据 • (3) 故障录波器存储单元损坏 • (4) 故障录波器软件版本低导致数据溢出
故障录波识图基础及典型故障分析课件

变压器故障录波可以监测其运行状态,为设备检修提供依据,保障电力系统的稳 定运行。
详细描述
变压器故障录波可以记录其运行过程中的电压、电流、温度等参数的变化情况, 通过分析这些数据,可以判断出变压器的健康状态,为设备检修提供依据。
案例三:电机故障录波在工业生产中的应用
总结词
电机故障录波能够监测电机的运行状态,为工业生产中的设 备维护提供依据,保障生产线的稳定运行。
设备故障诊断与预防
设备故障检测
通过分析故障录波数据,可以检 测出电力设备是否存在故障。
设备故障类型识别
故障录波数据可以帮助识别电力 设备的故障类型。
设备维护策略制定
基于故障录波数据,可以制定更 有效的设备维护策略,预防设备
故障。
电力系统的运行监控
1 2
电力系统运行状态监测
通过实时监测电力系统的运行状态,及时发现异 常情况。
04
故障录波的应用场景
电力系统稳定性分析
电力系统的暂态稳性
通过故障录波数据,可以分析电力系统在故障情况下的暂态稳定 性,为系统设计提供依据。
电力系统的动态稳定性
故障录波数据可以用于分析电力系统的动态稳定性,预测系统在故 障情况下的行为。
电力系统的频率稳定性
通过故障录波数据,可以分析电力系统在故障情况下的频率稳定性 ,确保系统的频率波动在可接受的范围内。
02
这些记录的波形图可以用于分析 故障类型、原因和影响,为后续 的维护和修复工作提供重要依据 。
故障录波的重要性
故障录波对于电力系统的安全稳定运 行至关重要。
通过分析故障录波,可以及时发现并 解决潜在的故障隐患,避免事故扩大 ,保障电力系统的稳定供电。
故障录波的历史与发展
故障录波器与故障波形分析

C时段:系统大扰动后中期的状态数据,记录时间1.0s~10s可调。数据输出速率1kHz、 0.5kHz、0.25kHz可设。
五、故障录波器之主要参数
➢3、最大故障电流记录能力 该指标用来保证在系统最大短路电流下
能够完整地记录故障过程,不发生削波, 同时在极小电流时又要能用一定的精度。 该指标有时还影响到录波器启动定值的灵 敏度。
五、故障录波器之主要参数
➢ 4、录波记录时间 故障录波器被触发后,将根据事先设定的录
波时间采集数据、存储数据。这几个时段有:
三、故障录波器之原理
➢动作原理
由电压互感器、电流互感器提供的电流经A/D转换器, 将 模拟量变为数字量, 再送入计算机, 由CPU 处理后存入存储 器, 进行检测计算,探测故障。断路器位置及保护动作情况经 开关量输入接口变成电信号, 再经隔离之后, 成组进入CPU 处理存储。在正常情况下, 对电压电流只进行采集, 对开关 只进行扫描。当有故障发生时,CPU 采集到电流电压突变量, 或过电流、 过电压、零序电流、 开关状态变化等信号时, 启动故障录波。 由于数据采集是连续的, 故可将故障前一定 时段的数据和故障后的全部数据采集, 送入RAM。然后存入磁 盘, 由离线分析程序显示出波形曲线图、 一次/二次录波值 等。
一、故障录波器之概念
➢ 故障录波器是电力系统发生故障及振荡时能自动 记录的一种装置, 它可以记录因短路故障、系统振 荡、频率崩溃、电压崩溃等大扰动引起的系统电 流、电压及其导出量, 如有功、无功以及系统频率 的全过程变化现象。
二、故障录波器之功能
按照电力系统发生故障的不同情况,对应于 录波器的作用主要体现在以下三个方面: ➢ 1、系统发生故障,保护动作正确
故障录波图讲义

幻灯片1故障录波图分析幻灯片2在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT极性是否正确等等问题。
接下来我就先讲一下分析录波图的基本方法:1、当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。
2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。
(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。
幻灯片3第一节单相接地短路故障录波图分析幻灯片4分析单相接地故障录波图要点:1、一相电流增大,一相电压降低;出现零序电流、零序电压。
2、电流增大、电压降低为同一相别。
3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4、故障相电压超前故障相电流约80度左右;零序电流超前零序电压约110度左右。
当我们看到符合第1条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2条可以确定电压、电流相别没有接错;符合第3条、第4条可以确定保护装置、二次回路整体均没有问题幻灯片5(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。
若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。
这里需要特别说明一下南瑞公司的900系列线路保护装置,该系列保护在计算零序保护时加入了一个78度的补偿阻抗,其录波图上反映的是零序电流超前零序电压180度左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 不定长动态录波和故障测距,测距精度优于 2% ;
? 记录系统发生大扰动时的时刻 :年、月、日、时、分、秒、毫秒;
? 记录系统发生大扰动前后各输入量 ( 电流、电压、高频、开关状态等 ) 的 变化过程;
? 电力系统实时监测 ,可实时显示电压、电流波形及系统的有功 相角;
/ 无功力率、
? 故障分析和电能质量分析;
11
05 故障录波器的主要参数
? 2 、A/D 转换位数
A/D 转换器的位数决定了录波器记录数据的准确度。对于不同位 数的 A/D 转换器 , 在量度同一个幅值的模拟量时 , 显然高位数 A/D 转换 器的每格所代表的值要比低位数 A/D 转换器小 ,也就是说分辨率比较高 , 这样就可以具有较高的精度 ,保证所有通道采样的一致性。
由电压互感器、电流互感器提供的电流经 A/D 转换器,将模
拟信号变为数字量 ,在送入计算机,由 CPU 处理后存入存储器,
进行检测计算,探测故障 . 断路器位置及保护动作情况经开关量
输入接口变成电信号,再经隔离之后,成组进入
CPU 处理储存。
在正常情况下, CPU 采集到电流电压突变量 ,或过电流、过电
13
05 故障录波器的主要参数
? 5、录波数据采样及记录方式 ? 5.1 、模拟量采样方式
模拟量采样及记录方式按下图执行
系统大扰动开始时刻
A
B
C
D
t=00.0000
t(s)
模拟量采样时段顺序
? A时段:系统大扰动开始前的状态数据,记录时间为40ms~100ms可调。采样频率10kHz、
5kHz、2kHz、1kHz可设。B时段:系统大扰动后初期的状态数据,记录时间200ms~2000ms可
压 、 零序电流 、 开关状态变化等信号时 , 启动故障录波 。 由 于
数据采集是连续的 ,故可将故障前一定时段的数据和故障后的
全部数据采集送入 RAM 。然后存入磁盘,由离线分析程序显示
出波形曲线图、一次 /二次录波值等。
8
04 故障录波器的装置特点
? 1、集故障录波与测距、实时监测和电能质量分析为一体
3
02
故障录波器的功能
根据电力系统发生故障的不同情况,对应于故障录波 器的作用主要体现在以下三个方面:
? 1 、系统发生故障,保护动作不正确 利用故障录波器记录下来的电压、电流量对故障线路
进行测距,同时给出能否强送的依据
4
02
故障录波器的功能
? 2 、电力 系统元件发生不明原因跳闸 利用故障录波器记录下来的电压、电流量判断出是否
? 故障录波器
用来记录电力系统中电气量和非电气量以及开关量的 自动记录装置,通过记录和监视系统中模拟量和事件量来 对系统中发生的故障和异常等事件生成故障波形储存,通 过分析软件的处理对波形进行分析和计算,从而对故障性 质故障发生点的距离,故障的严重程度进行准确地判断。
7
03
ቤተ መጻሕፍቲ ባይዱ
故障录波器的原理
? 动作原理
10
05 故障录波器的主要参数
? 1 、采样速率
采样速率的高低决定了录波器对高次谐波的记录能力 , 在系 统发生故障之初 ,故障波形的高次谐波非常严重 , 因此 , 为了较真实 地记录故障的暂态过程 , 录波器要有较高的采样速率。电力行业 标准规定 ,故障录波器的采样速率应达到 5kHz 。但高的采样速率 , 则要使用较多的存储空间 , 同时在进行数据传输时 , 要花费更长的 时间 , 这很不利于故障后的快速分析故障。
调 。 采 样 频 率 同 A 段 。 C 时 段 : 系 统 大 扰 动 后 中 期 的 状 态 数 据 , 记 录 时 间 1. 0 s ~ 1 0 s 可 调 。 数 据 输 出
速 率 1 k H z 、 0. 5 k H z 、 0. 2 5 k H z 可 设 。 D 时 段 : 系 统 动 态 过 程 数 据 , 不 定 长 录 波 , 录 波 时 间 最 长 为
? 功角、相角测量;
? 记录保护和其它自动装置的动作情况;
? 连续慢扫描。
9
04 故障录波器的装置特点
? 2 、录波启动方式
? 越限启动量优于± 2%, 突变启动量优于± 5% ; ? 任一路模拟量均可设置为突变量启动和越限启动 (含过量和低量 启动 ); ? 相、序量突变量和越限启动; ? 开关量变位或上跳变、下跳变启动; ? 手动启动。
? 故障前记录时间:这部分录波数据主要是用来进行故障定位计 算时使用。
? 触发时段:这部分录波数据记录的是故障发生的前期过程
,含
有较多的暂态分量 , 故障后进行故障定位和其他电气量计算使
用的主要是这部分数据。
? 故障后时段:这个时段主要记录系统在故障结束后系统的情况 , 这段数据主要关心的是变化过程。
无故障跳闸
查明原因, 马上恢复送 电
5
02
故障录波器的功能
? 3 、继电保护装置有不正确动作行为 ? 继电保护装置勿动造成无故跳闸 ? 系统有故障但保护装置拒动 ? 系统有故障但保护动作行为不符合预先设计
利用故障录波器记录下来的保护事件和开关副 节点状态信息找出保护不正确动作原因
6
03
故障录波器的原理
30min, 数据输出速率 50Hz,10Hz,1Hz 可设 , 输出为有效值。
14
05 故障录波器的主要参数
? 5、录波数据采样及记录方式
? 5.2 、 不定长录波的实现
? 3 、最大故障电流记录能力
该指标用来保证在系统最大短路电流下能够完整地记录故障过程 , 不发生削波 ,同时在极小电流时又要能用一定的精度 该指标有时还影响到录波器启动定值的灵敏度。
12
05 故障录波器的主要参数
? 4 、录波记录时间
故障录 波器被触 发后 , 将根 据事先设 定的录波 时间采集 数据 、 存储数据。这几个时段有:
故障录波及常见故障波形讲解
1
01
故障录波器的概念
02
故障录波器的功能
03
故障录波器的原理
04
故障录波器的装置特点
05
故障录波器的主要参数
06
故障录波器的波形分析
07 故障录波器在应用中存在的问题及措施
08 故障录波器的典型故障波形的分析
目 录
2
01
故障录波器的概念
? 故障录波器是电力系统发生故障及振荡时能 自动记录的一种装置,它可以记录因短路故 障、系统振荡、频率崩溃、电压崩溃等大扰 动引起的系统电流 、电压及其导出量 ,例如 有功、无功以及系统频率的全过程变化现象。