《黄金分割》教案

合集下载

教案 北师大版 初中数学 八年级下册《黄金分割》教案

教案 北师大版 初中数学 八年级下册《黄金分割》教案

教案北师大版初中数学八年级下册《黄金分割》教案一. 教材分析北师大版初中数学八年级下册《黄金分割》教案旨在让学生理解黄金分割的概念,掌握黄金分割的应用。

通过本节课的学习,学生能够了解黄金分割的历史背景,熟悉黄金分割的基本性质,并能够运用黄金分割解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的知识,具备了一定的观察、分析、解决问题的能力。

但部分学生可能对黄金分割的概念和应用存在理解上的困难,需要教师在教学中给予关注和引导。

三. 教学目标1.知识与技能:让学生掌握黄金分割的概念,了解黄金分割的基本性质,能够运用黄金分割解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生独立思考和合作解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和审美观念。

四. 教学重难点1.重点:黄金分割的概念及其应用。

2.难点:黄金分割性质的证明和运用。

五. 教学方法1.情境教学法:通过设置情境,引导学生主动参与学习,提高学生的学习兴趣。

2.启发式教学法:引导学生独立思考,发现问题,解决问题。

3.合作学习法:鼓励学生之间相互讨论、交流,共同提高。

六. 教学准备1.准备相关图片、实例等教学资源。

2.设计好课堂练习题和作业。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中常见的黄金分割实例,如建筑、艺术品等,引导学生观察、思考,引出黄金分割的概念。

2.呈现(10分钟)教师简要介绍黄金分割的历史背景,讲解黄金分割的定义和性质,引导学生通过观察、操作,理解黄金分割的特点。

3.操练(10分钟)学生分组进行实践活动,运用黄金分割的知识解决实际问题。

教师巡回指导,帮助学生克服困难,提高解决问题的能力。

4.巩固(10分钟)教师出示一些练习题,让学生在课堂上完成。

通过练习,巩固所学知识,提高学生的应用能力。

5.拓展(10分钟)教师引导学生思考黄金分割在实际生活中的应用,如设计、建筑等领域。

《黄金分割》教案

《黄金分割》教案

《黄金分割》教案教案:《黄金分割》一、教学目标:1.了解黄金分割的概念和原理;2.掌握黄金分割的计算方法;3.认识黄金分割在美术设计中的应用。

二、教学内容:1.黄金分割的概念和原理;2.黄金分割的计算方法;3.黄金分割在美术设计中的应用。

三、教学过程:Step 1:导入新课教师出示一张钟摆的图片,引导学生观察钟摆,并思考为什么钟摆的摆动会显得和谐美观。

Step 2:学习黄金分割的概念和原理1.教师向学生介绍黄金分割的概念,即将一个整体分为两个部分,使得大部分与小部分之比等于整体与大部分之比。

2.通过示意图和事例,向学生解释黄金分割的原理,即大部分与小部分之比等于黄金分割比例1.618Step 3:学习黄金分割的计算方法1.教师向学生提供一个直线段AB,并指导学生使用黄金分割比例计算中点C的位置。

2.教师以示例的形式,演示黄金分割的计算方法,即将整体长度除以黄金分割比例1.618Step 4:黄金分割在美术设计中的应用1.教师向学生展示一些美术作品,解释其中使用到黄金分割的原因和效果。

2.教师指导学生设计一个简单的海报或画作,其中要运用黄金分割比例来布局。

3.学生开始个别或小组创作,教师给予必要的指导和建议。

4.学生展示创作成果,互相欣赏和评价。

四、教学方法和学法:1.教学方法:导入新课、讲授、示范、实践。

2.学法:观察、思考、尝试、合作、展示。

五、教学资源与评价:1.教学资源:钟摆图片、黄金分割示意图、美术作品图片、美术用品。

2.教学评价:观察学生的学习兴趣和参与度、作品的创意和布局是否符合黄金分割原理。

六、教学延伸:1.教师可引导学生进一步观察和研究其他事物中是否存在黄金分割;2.学生可以通过阅读相关资料,了解黄金分割在建筑、音乐等领域的应用。

七、教学反思:本节课通过导入新课和示范实践的方式,让学生了解和掌握了黄金分割的概念、原理和计算方法,并将其应用于美术设计中。

同时,通过学生的创作展示,培养了学生的审美能力和创造力。

北师大版八下《黄金分割》word教案3篇

北师大版八下《黄金分割》word教案3篇

大路中学数学讲学稿1、掌握黄金分割的含义.2、能通过作图找到一条线段的黄金分割点.学习重点能通过作图找到一条线段的黄金分割点.学习难点掌握黄金分割的含义并能进行简单运用.一、学前准备1.填空(1)四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即dcb a =(或a:b=c:d )那么这四条线段a,b,c,d 叫做,简称.反过来,如果四条线段a,b,c,d 成比例线段,则可以记作.(2)已知a=2,b=4,c=6;若a ,b ,c ,x 是成比例线段,则x=;若a ,x ,b ,c 是成比例线段,则x=.(3)若=y x 25则=x y ;=+y y x ;=-yy x ; (4)小明的身高为1.6m ,测得他的影长为1m ,在同一时刻,旗杆的影长为5m ,则旗杆的实际高度是. 2.选择(1)已知cd ab =,则把它改写成比例式后错误的是 ( ) Ab dc a = Bd a b c = C d c b a = D ad c b = (2)一个矩形的长为2cm ,宽为1cm ,则它的长、宽及对角线的比为 ( ) A 4:2:5 B 4:2:10 C 2:1:5 D 2:1:25 3.已知a ∶b ∶c =4∶3∶2,且a +2b -4c =24.求2a -3b +c 的值4.已知:d c b a ==f e=3(b +d +f ≠0),求f d b e c a 3232+-+-的值二、探究活动1、自主探究·解决问题五角星是我们常见的图形.在下图中,度量点C 到点A ,B 的距离,AB AC 和ACBC相等吗?2、师生探究·合作交流如图,在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的,AC 与AB 的比叫做.其中ABAC =≈,=2AC . 3、学以致用·牛刀小试作一条线段的黄金分割点.如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB . (3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点.你知道为什么吗?线段AB 有没有除点C 以外的黄金分割点呢?如果有应满足怎样的条件?三、自我测验1、选择(1)已知线段AB 的黄金分割点是C ,且AC >BC ,则下列各式正确的是 ( )A . AB 2=AC ·CB B . CB 2=AC ·AB C . AC 2=CB ·ABD . AC 2=2AB ·BC(2)若AB=a ,C 点是AB 上的黄金分割点,且AC >BC ,则BC 等于 ( )A.a 215- B.a 253- C. 1 D. 无法判断 ACB(3)若点C 为线段AB 的黄金分割点,则ABAC等于 ( ) A.215- B.215+ C.215-或253- D.253-2、填空(1)已知点C 为线段AB 的黄金分割点,且AB AC =215-,则ACCB 的近似值为(2)点C 是线段AB 上的一个黄金分割点,且AC>BC ,若AB =5cm ,则AC =_____,BC=____. (3)若点C 是线段AB 上一点,AB =1,AC =215- ,则AC :BC =______. (4)把长为10cm 的线段黄金分割,则较长的线段长为;较短的线段长为.(结果精确到0.01)四、学习收获1、通过今天的学习,你有何收获?2、预习中遇到困惑解决了吗?3、你还有哪些疑惑?五、应用与拓展1、如图,点C,D 是线段AB 的两个黄金分割点,已知AB=1,试求CD 的长2、作图(1)宽与长的比等于黄金比的矩形称为黄金矩形.设法做出一个黄金矩形(2)底边与腰的比等于黄金比的等腰三角形称为黄金三角形,设法做出一个黄金三角形3、收集一些有关黄金分割的数学知识,例如黄金分割的由来、黄金分割在实际生活中的运用等等,介绍给你的同伴.北师大版八年级数学第四章相似图形第二节黄金分割教案1、课题§4.2 黄金分割2、教学目标:知识技能目标:(1)掌握黄金分割的定义及黄金分割点的作法;(2)会进行黄金分割的有关计算。

九年级数学上册《黄金分割》教案、教学设计

九年级数学上册《黄金分割》教案、教学设计
九年级数学上册《黄金分割》教案、教学设计
一、教学目标
(一)知识与技能
1.理解黄金分割的定义,掌握黄金分割点的概念,能够运用黄金分割的概念解决实际问题。
2.学会运用黄金分割比计算线段、图形的黄金分割点,并能运用黄金分割的性质分析解决实际问题。
3.掌握黄金分割与相似三角形、三角形面积的关系,能够运用相关知识解决综合问题。
3.教学方法:小组合作法、讨论法。
(四)课堂练习
1.教学内容:设计具有针对性的练习题,检验学生对黄金分割知识的掌握程度。
2.教学过程:首先,设计一些基础题,让学生巩固黄金分割点的计算方法。然后,设计一些综合题,让学生运用黄金分割知识解决实际问题。
3.教学方法:练习法、指导法。
(五)总结归纳
1.教学内容:总结本节课的学习内容,强调黄金分割的重要性,激发学生对数学美的追求。
学生在这个阶段,正处于形象思维向抽象思维过渡的关键时期,他们对新鲜事物充满兴趣,但同时也可能在学习过程中遇到一些困难和挑战。因此,在教学过程中,教师应关注学生的个体差异,充分调动他们的积极性,引导他们通过观察、思考、实践等途径,逐步理解并掌握黄金分割的知识。
此外,学生在小组合作学习中,需要提高沟通与协作能力。教师应关注学生在合作过程中的表现,适时给予指导和鼓励,帮助他们建立自信,培养团队精神。在此基础上,教师还应关注学生的情感态度,激发他们对数学美的追求,使他们在学习过程中体验到数学的魅力和价值。
4.通过课堂练习、课后作业、阶段测试等形式,巩固学生对黄金分割的理解和应用,提高学生的解题技巧。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生对数学美的感知和欣赏能力。
2.培养学生的创新意识,使学生认识到数学在现实生活中的重要作用,增强学生的应用意识。

黄金分割教案

黄金分割教案

黄金分割教案黄金分割教案一、教学目标:1.了解黄金分割的定义和性质;2.学会计算黄金分割点的方法;3.培养学生的分析问题和解决问题的能力;4.增进学生对数学学科的兴趣。

二、教学内容:1.黄金分割的概念介绍;2.黄金分割点的计算方法;3.通过实例让学生进行练习。

三、教学重点和难点:1.黄金分割点的计算方法;2.运用黄金分割点解决实际问题。

四、教学过程:1.导入:通过一段视频演示黄金分割在建筑、艺术等领域的应用,引起学生的兴趣。

2.知识讲解:(1)黄金分割的定义和性质;黄金分割就是指一条线段,将其分割为两部分,使其比例等于整条线段的比例。

黄金分割的比例为:(1+√5)/2,约等于1.618。

黄金分割具有美学上的特点,常用于建筑、艺术等领域。

(2)黄金分割点的计算方法;设线段的长为x,分割点距离起点的长度为a,则黄金分割点满足以下比例:x/a = a/(x-a),解得a^2 - ax + x^2 = 0。

求得a = x(√5 - 1)/2,即黄金分割点距离起点的长度为线段的长乘以(√5 - 1)/2。

3.实例讲解:(1)例一:已知一段线段的长为8cm,求黄金分割点距离起点的长度。

解:根据计算方法,可得a = 8(√5 - 1)/2 ≈ 3.0902cm。

(2)例二:一段线段分割成两部分,其中长部分为20cm,求黄金分割点距离起点的长度。

解:设黄金分割点距离起点的长度为a,则根据计算方法:20/a = a/(20-a),解得a^2 - 20a + 20^2 = 0。

求得a ≈ 12.3614cm。

4.练习:(1)练习一:已知一段线段的长为10cm,求黄金分割点距离终点的长度。

(2)练习二:一段线段分割成两部分,其中短部分为15cm,求黄金分割点距离终点的长度。

5.总结和拓展:总结黄金分割的定义和性质,以及计算黄金分割点距离起点的方法。

拓展黄金分割在其他领域的应用,如绘画、设计等。

六、教学延伸:对于更高年级的学生,可以进一步引导他们进行更复杂的黄金分割问题的求解,培养他们的抽象思维能力和创新能力。

《黄金分割》教案

《黄金分割》教案

《黄金分割》教案一、教学目标:1. 让学生了解黄金分割的概念和特点。

2. 培养学生运用黄金分割知识解决实际问题的能力。

3. 提高学生对数学美的感知,培养学生的审美情趣。

二、教学内容:1. 黄金分割的定义及历史背景。

2. 黄金分割线的画法及应用。

3. 黄金分割在生活中的实例分析。

三、教学重点与难点:1. 黄金分割的概念及画法。

2. 黄金分割在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解黄金分割的概念、历史背景及应用。

2. 采用案例分析法,分析生活中的黄金分割实例。

3. 采用实践操作法,让学生动手画黄金分割线,提高实际应用能力。

五、教学过程:1. 导入新课:通过展示著名的黄金分割作品,引发学生对黄金分割的好奇心,激发学习兴趣。

2. 知识讲解:讲解黄金分割的定义、历史背景及画法,让学生掌握基本知识。

3. 案例分析:分析生活中的黄金分割实例,让学生了解黄金分割在现实生活中的应用。

4. 实践操作:让学生动手画黄金分割线,提高实际应用能力。

6. 板书设计:黄金分割1. 定义:线段分割的比例,使较长线段与整体线段的比等于较短线段与较长线段的比。

2. 画法:通过特定方法画出黄金分割线。

3. 应用:生活中的黄金分割实例分析。

六、教学评价:1. 课后作业:要求学生绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

3. 同伴评价:学生之间互相评价对方的作品,从黄金分割的应用和创意等方面进行评价。

七、课后作业:1. 绘制一幅包含黄金分割的画作,并写一篇短文阐述黄金分割在作品中的运用及其美感。

2. 收集生活中的黄金分割实例,下节课分享。

八、教学反思:1. 课堂节奏是否适中,学生是否能跟上教学进度。

2. 教学方法是否有效,学生是否能更好地理解和掌握黄金分割的知识。

3. 学生参与度如何,是否都能积极投入到课堂活动中。

《黄金分割》教案

《黄金分割》教案

《黄金分割》教案教学目标知识与技能1.明确黄金分割的意义并能进行简单的计算;了解黄金矩形的意义.2.会用尺规作出一条线段的黄金分割点.数学思考与问题解决经历“探索—发现—猜想”,通过建筑、艺术、人体艺术、生物等实际问题的研究,提高学生分析问题的能力,在应用中进一步理解线段的比、成比例线段,并在实际操作、思考、交流等过程中进一步感悟数学与生活的密切联系,增强用数学的意识.情感与态度提高分析问题、解决问题的能力,增强用数学的意识,提高审美意识和能力.重点难点重点理解黄金分割的意义,并能简单地应用来解决实际问题.难点用尺规作出一条线段的黄金分割.教学设计—、复习回顾1.若四条线段a,b,c,d成比例,则有_____.2.如图,已知点B在线段上AC,且CB AB.若AC=1,求AB的长.AB AC老师引导学生通过解方程求AB的长.二、创设情境美是一种感觉,本应没有什么客观标准,但在自然界,人们的确感受到了很多美的东西.其中物体形状的比例提供了在匀称与协调上的一种美感参考.在数学上这个比例称为黄金分割.(板书课题)三、问题探究探究1黄金分割课件呈现教材中的芭蕾舞演员,上海东方明珠电视塔图案.提出问题:1.问题:度量点B到点A,C的距离,AB BC与相等吗?AC AB说明:在测量的过程中可用刻度尺直接测量,要注意测量的准确性.归纳:通过上面的问题,可得AB BC.AC AB我们称点B把线段AC黄金分割,点B为线段AC的黄金分割点.用语言叙述为:若一个点把一条线段分为较长和较短两条线段,且较长线段是较短线段和总长的比例中项,那么这个点叫做这条线段的黄金分割点.思考:(1)一条线段的黄金分割点有几个?(2)AB的比值是多少?AC引导学生回顾前面复习回顾.2.“黄金分割”给人以美的感觉,用数学的眼光看事物,不难发现生活中存在着大量的黄金分割(展示国歌的歌谱).同学们,国歌是一个国家的象征,《义勇军进行曲》是我国的国歌,其实它的歌词是散文式的自由体新诗,作曲家聂耳在谱曲时,创造性地将它谱成由6个长短不等的乐句组成的自由体乐段.歌曲的髙潮部分在结构上几乎正好是全曲的黄金分割的位置,音乐富有动力,让人感到无比的振奋!你还能举出一些黄金分割在现实生活中的应用吗?问题2黄金矩形思考:回顾课本习题6.1第5题“你最喜欢的矩形”,你选择哪个矩形?度量你喜欢的矩形的长与宽,并计算宽与长的比值,你发现了什么?结论:把宽.与长的比为0.618的黄金比的矩形叫黄金矩形.问题3作一条线段的黄金分割点(拓展点)主持人在舞台上主持节目,站在舞台的黄金分割点是最美观的.如图,线段AC表示舞台,主持人的位置是C点,要使他主持的节目美观,又让他走的距离尽可能的少,请你在图中作出主持人应站的位置点B.作完图之后检査是否符合题目要求.说明:可让学生看习题6.2第3题.四、巩固运用1.课本练习第1、2题.2.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20米,试计算主持人应走到离A点至少多少米处是比较得体时位置(结果精确到0.1米)?五、本课小结通过本节课的学习,你有哪些收获?还有哪些不明白的地方六、作业1.课本习题6.2第1、2题.2.科李研究表明,当人的下肢与身高比为0.618时看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最隹高度约为多少cm(精确到(0.1 cm)?。

黄金分割教学教案

黄金分割教学教案

黄金分割教学教案一、教学目标1. 让学生了解黄金分割的概念和特点。

2. 培养学生运用黄金分割知识解决实际问题的能力。

3. 提高学生对数学美的感受,培养审美情趣。

二、教学内容1. 黄金分割的定义和比例计算。

2. 黄金分割在自然界和生活中的应用。

3. 黄金分割在艺术创作中的意义。

三、教学重点与难点1. 黄金分割的概念和计算方法。

2. 黄金分割在实际应用中的理解。

四、教学方法1. 采用讲授法,讲解黄金分割的定义、计算和应用。

2. 运用案例分析法,分析黄金分割在自然界和生活中的实例。

3. 启发式教学,引导学生发现黄金分割的美学价值。

五、教学准备1. 课件、图片和实物道具。

2. 练习题和案例分析材料。

六、教学过程1. 引入黄金分割的概念,讲解黄金分割的计算方法。

2. 分析黄金分割在自然界中的实例,如植物、动物的身体比例。

3. 探讨黄金分割在生活中的应用,如建筑、设计、时尚等领域。

4. 引导学生发现黄金分割在艺术创作中的美学价值,如绘画、雕塑、音乐等。

5. 布置练习题,巩固所学知识。

七、课堂互动1. 提问环节:让学生回答黄金分割的概念和计算方法。

2. 小组讨论:分组讨论黄金分割在自然界和生活中的实例。

3. 分享环节:各小组代表分享讨论成果。

八、教学评价1. 课堂问答:评估学生对黄金分割知识的掌握。

2. 练习题:检验学生运用黄金分割解决实际问题的能力。

3. 课后作业:布置相关课题的绘画或设计作品,展示学生对黄金分割的理解和应用。

九、教学拓展1. 引导学生进一步研究黄金分割在数学、物理学、生物学等领域的应用。

2. 组织参观展览或艺术家工作室,深入了解黄金分割在艺术创作中的应用。

十、教学反思2. 根据学生反馈,调整教学内容和方法,提高教学质量。

3. 探索更多黄金分割在各个领域的应用,丰富教学资源。

六、教学活动1. 引入黄金分割的概念,讲解黄金分割的计算方法。

通过展示相关图片和实物道具,引导学生直观地理解黄金分割的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄金分割
课时:1
【教学目的】
1.了解黄金分割的由来和定义。

2.了解黄金分割在人体、日常生活、音乐、艺术、建筑、植物、战争、数学等中的应用。

3.在了解黄金分割在各方面应用的过程中,培养学生学会多角度观察生活中的美的能力,同
时提升审美能力,从而美化生活。

【教学重难点】
重点:黄金分割在人体、日常生活、音乐、艺术、建筑、植物、战争、数学等中的应用。

难点:黄金分割在数学中的应用.
【教学方法】
观察法,实践法,讲授法
【教学过程】
(一)黄金分割的由来?
关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯
走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。

他发现铁匠打
铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。

被应用在很多领域,
后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。

在金字塔建成
1000年后才出现毕达哥拉斯定律,可见这很早就存在。

只是不知这个谜底。

(二)黄金分割的定义
一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值

21-5
,取其小数点后三位的近似值是0.618。

由于按此比例设计的造型十分美丽柔和,
因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,它的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

(三)黄金分割的应用
1.人体中的黄金分割
(1)上、下身比例:以肚脐为界,上下身比例应为5比8,符合“黄金分割”定律(2)胸围:由腋下沿胸部的上方最丰满处测量胸围,应为身高的一半。

(3)腰围:在正常情况下,量腰的最细部位。

腰围较胸围小20厘米。

(4)髋围:在体前耻骨平行于臀部最大部位。

髋围较胸围大4厘米。

(5)大腿围:在大腿的最上部位,臀折线下。

大腿围较腰围小10厘米。

(6)小腿围:在小腿最丰满处。

小腿围较大腿围小20厘米。

(7)足颈围:在足颈的最细部位。

足颈围较小腿围小10厘米。

(8)上臂围:在肩关节与肘关节之间的中部。

上臂围等于大腿围的一半。

(9)颈围:在颈的中部最细处。

颈围与小腿围相等。

(10)肩宽:两肩峰之间的距离。

肩宽等于胸围的一半减4厘米。

2.日常生活中的黄金分割
现代科学研究表明,0.618在养生中也起重要作用。

此比值和医学保健、健康长寿有着
千丝万缕的联系,亦可称为健康的黄金分割律。

人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。

这也可纳入饮食的0.618规律之列。

小学生一节课40分钟,而注意力只有40×(1-0.618)=15.28分钟,因此教师必须不断注意学生的学习。

普通人一天上班8小时,8×0.618=4.944,上班第5个小时是最需要休息的时候,同时也是开始期待下班的时候。

舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧。

以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

黄金数还运用于化学制药中。

如合成药物,不知道它在0~100℃之间的哪一个温度制得合成率最高,药效最好。

很显然,一个个温度去试是不实际的。

如果运用黄金数就简单多了。

如果市场上有的电视屏幕主要有两种,一种是宽:长为3∶4的,另一种是9∶16的。

这两个比值都很接近0.618,也就是因为黄金矩形是最美的。

3.音乐中的黄金分割
黄金分割在优美的音乐和诗歌中同样可以找到。

据说,公元前6世纪,古希腊数学家、哲学家毕达哥拉斯(Pythagoras,公元前580-500年)有一天路过一个铁匠铺,被里面清脆悦耳的打铁声吸引住了,驻足细听,凭直觉认定这声音有“秘密”。

他走进铺里,仔细测量了铁砧和铁锤的大小,发现它们之间的比例近乎于1∶0.618,回家后,他拿来一根木棒,让他的学生在这根木棒上刻下一个记号,其位置既要使木棒的两端距离不相等,又要使人看上去觉得满意。

经多次实验得到一个非常一致的结果,即用C点分割木棒AB,整段AB与长段CB之比,等于长段CB与短段CA之比,毕达哥拉斯接着又发现,把较短的一段放在较长的一段上面,也产生同样的比例。

这个故事说明,“黄金分割”最早的发明似乎就与声音有关。

后来音乐家们则是有意识地利用这种比例来“美化”其作品。

典型的例子有巴赫的《神游》D小调中7对间奏和沃兹涅先斯基的诗《戈雅》中的叠句。

4.艺术中的黄金分割
1483年左右,达芬奇画的一副未完成的油画,包围着圣杰罗姆躯体的黑线,就是一个黄金分割的矩形,当时达芬奇似乎有意利用这一黄金分割的比值。

《检阅》是法国印象派画家舍勒特的一副油画,它的画杠结构比例也正是0.618的比值。

英国画家斐拉克曼在名著《希腊的神话和传说》一书中,工绘有96幅美人图。

每一幅画上的美人都妩媚无比婀娜多姿。

如果仔细量一下她们的比例也都与雅典娜相似。

5.建筑中的黄金分割
黄金分割被认为是建筑和艺术中最理想的比例。

建筑师们对数字0.618特别偏爱,世界上最有名的建筑物中几乎都包含“黄金分割比”。

无论是古埃及的金字塔、古希腊的帕特农神殿、古埃及胡佛金字塔、印度泰姬陵、中国故宫、法国巴黎圣母院这些著名的古代建筑,还是遍布全球的众多优秀近现代建筑,尽管其风格各异,但在构图布局设计方面, 都有意无意地运用了黄金分割的法则, 都有与0.618有关的数据,给人以整体上的和谐与悦目之美。

黄金分割就像它的名字一样,是一笔神秘而又美丽的宝藏。

6.植物中的黄金分割
植物叶子,千姿百态,生机盎然,给大自然带来了美丽的绿色世界。

尽管叶子形状随种而异,但它在茎上的排列顺序(称为叶序),却是极有规律的。

你从植物茎的顶端向下看,经细心观察,发现上下层中相邻的两片叶子之间约成137.5°。

如果每层叶子只画一片来代表,第一层和第二层的相邻两叶之间的角度差约是137.5 °,以后二到三层,三到四层,四到五层……两叶之间都成这个角度数。

植物学家经过计算表明:这个角度对叶子的采光、通风都是最佳的。

叶子的排布,多么精巧!
叶子间的137.5 °中,藏有什么"密码"呢?我们知道,一周是360°,360°-137.5 °=222.5°, 137.5°:222.5 °≈0.618。

瞧,这就是"密码"!叶子的精巧而神奇的排布中,竟然隐藏着0.618。

有些植物的花瓣及主干上枝条的生长,也是符合这个规律的。

7.战争中的黄金分割
当发射子弹的步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。

到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。

8.数学中的黄金分割
“黄金数”与数学的渊源很深,这里不一一阐述。

它的出现,解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等)。

我国国旗上的正五角星,就是根据和应用了黄金分割的特点。

例:
(四)课堂小结
学习大量资料以后,我们了解到“黄金分割”不仅仅是那简简单单的一串数字,我们惊奇地发现小小的“黄金分割”竟然有这么多神奇的应用!既然知道了,我们就更应该在生活中使用黄金数,美化生活。

【作业布置】
思考:现实生活中,还有哪些方面使用黄金数
【板书设计】
黄金分割
一.黄金分割的由来
二.黄金分割的定义
三.黄金分割的应用(数学中)
上网搜索继续探究下列问题:
1.除了上述提及,黄金分割还有什么应用?
2.据说“黄金分割是一个谎言”,了解并且思考,提出你自己关于这个问题的看法。

相关文档
最新文档