氨氮对水体的影响

合集下载

水体监测中氨氮测定的影响因素分析

水体监测中氨氮测定的影响因素分析

水体监测中氨氮测定的影响因素分析水体中的氨氮是指水中存在的氨和氨离子的总和,氨氮的测定是水体监测中常用的一个指标。

氨氮的测定结果不仅能够反映水体中的污染程度,还能够判断水体中的富营养化程度。

下面将从不同方面分析氨氮测定的影响因素。

1. pH值:pH值是水体中氨氮测定过程中的一个重要因素。

氨氮的测定通常是通过蒸发浓缩法和碱性气体分析法进行的,这两种方法在不同的pH条件下对氨氮的反应速率有所不同。

在酸性条件下,氨氮的挥发速率较慢,测定结果偏低;在碱性条件下,氨氮的挥发速率较快,测定结果偏高。

在进行氨氮测定时,需要调整样品的pH值,一般在碱性条件下进行测定。

2.温度:温度是影响氨氮测定分析结果的重要因素。

通常情况下,样品的温度越高,氨氮的挥发速率越快,测定结果偏高;相反,样品的温度越低,氨氮的挥发速率越慢,测定结果偏低。

在进行氨氮测定时,需要控制样品的温度,通常是在100℃左右进行。

3.时间:时间是影响氨氮测定结果的重要因素之一。

通常情况下,氨氮的挥发速率随着时间的延长而增加,因此在进行氨氮测定时,需要控制反应时间,一般为1-2小时。

也需要注意测定结束后,及时停止反应,否则过长的反应时间会使挥发的氨氮重新溶解在水中,导致测定结果偏低。

5.干扰物质:水体中存在的其他有机物和无机物会对氨氮的测定结果产生干扰。

苯酚、硫化物和还原物质等都可以与氨氮发生反应,降低测定结果的准确性。

在进行氨氮测定时,需要进行样品预处理,去除干扰物质,以获得准确的测定结果。

氨氮测定的影响因素主要包括pH值、温度、时间、样品容量和干扰物质等。

在进行氨氮测定时,需要注意控制这些因素,以获得准确可靠的测定结果,从而为水体监测和环境保护工作提供科学依据。

什么是氨氮,氨氮的检测方法有哪些?

什么是氨氮,氨氮的检测方法有哪些?

什么是氨氮,氨氮的检测方法有哪些?氨氮的定义氨氮指的是水中可溶解的氨化物离解出的游离氨和铵离子氮的总和,它常用来评估废水和自然水体中氨化物的浓度。

氨氮是水体中紧要的有机污染物之一,假如不适时处理和排放,会对水环境、生态系统造成很大的危害。

氨氮的来源氨氮的紧要来源包括:1.生活污水:人和动物的排泄物中都含有氨化物,而这些排泄物会被排入下水道,进而进入污水处理厂。

2.工业废水:很多工业过程中会产生含氨的废水,如压缩空气机、炼钢厂、造纸厂等。

3.农业污染:化肥和农药中含有氮元素,这些氮元素会被土壤吸取并散发至水体中。

氨氮的检测方法氨氮的检测方法有很多,以下是常见的几种方法:直接测定法直接测定法是通过对水样中的氨氮进行直接测定来判定其浓度。

该方法紧要分为两种类型:1.Nessler法:这种方法利用红、黄色复合物的形成来测定水中的氨氮。

首先,在水中添加KOH和K2S2O8,使水中的氨化物全部转化为NH3、然后,将水中逐滴添加Nessler试剂,直至水变为黄色为止。

依据沉淀颜色的深浅可以判定水中氨氮的浓度。

2.蒸发法:该方法利用氨氮比有机氮在水中更简单挥发的特性进行测定。

首先将水样蒸发至干燥并加热,使其中的氨氮全部转化为氨气。

然后,将氨气通入酸溶液中反应,用滴定法测定其浓度。

比色法比色法是利用化学试剂与水样中氨化物的反应来测定氨氮浓度的方法。

常用的试剂有叔丁基酚、磷钼酸铵等。

电化学法电化学法是通过检测电信号的变化来测定水样中的氨氮浓度。

该方法可以分为两种类型:1.电导法:利用水中电导率与溶液中离子浓度之间的关系,通过测量水中电导率的变化来判定其中氨氮的浓度。

2.气体敏感电极法:该方法常用的电极有银/银氯化物电极、铂电极、锡电极等。

利用敏感电极与气体间的电位变化来测量氨氮的浓度。

总结氨氮是一种紧要的指标,用来判定水体中氨化物的浓度。

氨氮浓度过高会导致水体中氨化物过剩,引起水质污染。

目前,常用的氨氮检测方法有直接测定法、比色法和电化学法等。

鱼类的适宜养殖水体氨氮控制与处理

鱼类的适宜养殖水体氨氮控制与处理

鱼类的适宜养殖水体氨氮控制与处理鱼类养殖是一种重要的水产养殖方式,而水体中的氨氮含量对鱼类的生长和健康有着重要的影响。

本文将讨论鱼类养殖中适宜的水体氨氮控制与处理方法,以确保鱼类的良好生长环境。

一、氨氮对鱼类养殖的影响氨氮主要由鱼类的代谢产物、鱼饵残留物和鱼粪尿等无机氮化合物生成。

当氨氮超过一定浓度时,会对鱼类产生毒性作用,影响其正常生理功能。

高浓度的氨氮会导致鱼类呼吸困难、免疫力下降、食欲不振等严重问题,甚至造成死亡。

二、适宜养殖水体氨氮的控制方法1. 水质管理合理的水质管理是控制鱼类养殖水体氨氮的关键。

首先,要保持水体的循环,增加溶解氧含量,促进氨氮的氧化和转化。

其次,定期抽排底泥,避免底泥中过多的氨氮污染水质。

最后,控制饲料投喂量,避免过多的氨氮产生。

2. 生物过滤系统生物过滤系统是一种常用的水体氨氮控制方法。

通过利用硝化菌降解氨氮,将其转化为亚硝酸盐和硝酸盐,从而减少水体中的有毒氨氮浓度。

这种方式需要在养殖池中增加适量的生物过滤器,提供良好的生物附着面积,为硝化菌提供理想的生长环境。

3. 水体曝气处理水体曝气处理是一种简单有效的氨氮控制方法。

通过加强水体中的氧气供应,促进水中的氨氮氧化为亚硝酸盐和硝酸盐。

可以使用曝气装置或喷嘴等设备,提供充足的氧气供应,并增加水体的流动性,加强氮气转化的效果。

三、高氨氮水体的处理方法当鱼类养殖水体中出现高浓度的氨氮时,需要采取相应的处理方法,以避免对鱼类造成更大的伤害。

1. 增加水体循环对于高氨氮水体,首要的处理方法是增加水体的循环,提高氧气供应量,加速氨氮的氧化转化。

可以通过增加水泵或水循环设备来实现。

同时,也要避免过度饲喂,减少氨氮的产生。

2. 水质调节剂的使用适量使用水质调节剂是处理高氨氮水体的一种有效方法。

良好的水质调节剂可以中和水体中过高的氨氮浓度,使其转化为无害物质。

在选择水质调节剂时,应根据具体情况选择,避免使用对鱼类有毒性或副作用的产品。

氨氮对养鱼的危害、预防、解决方案

氨氮对养鱼的危害、预防、解决方案

解读水中杀手“氨”养鱼要先养水,而养水的核心是培养硝化菌来分解水中的毒素。

水中毒素一般是指氨和亚硝酸盐,它们都属于剧毒,可以造成鱼的慢性中毒或者急性死亡。

这两种毒素被称为水中的第一杀手,只需要极少量就会造成鱼的暴毙。

鱼是病从鳃入,氨和亚硝酸盐的慢性中毒会破坏鱼体组织的免疫系统,降低抵抗力。

第一节“氨”一、氨的产生途径:1、鱼的呼吸:鱼通过腮部可以直接将体内产生的氨排出体外。

2、鱼的尿液:鱼的尿液中含有氨。

3、有机物被异营菌分解后的代谢产物:鱼的粪便、残饵、死鱼等有机物被异营菌分解后,其代谢产物为氨,这是氨的主要来源。

二、氨的危害:氨对鱼类的毒害反映非常强,在很低的浓度下即可使许多鱼类产生中毒症状,甚至死亡。

氨对鱼类的毒害情形根据浓度和鱼类的不同会有所差异,大致情况如下:在较低浓度下:鱼类可以忍受一段时间,但长此以往会慢性中毒。

氨会干预鱼类渗透调节系统,破坏鱼鳃的粘膜层,减低血红素携带氧气能力。

鱼类慢性中毒症状表现有:常在水面喘气,鳃转为紫色或暗红,比较容易瞌睡,食欲不振,老停留在缸底不活动,鱼鳍或体表出现异常血丝等。

在低浓度下:氨会和其他疾病一同加速鱼类死亡。

在略高浓度下:会直接破会鱼类皮肤和肠道粘膜,造成体表和内部器官出血,同时伤害大脑和中枢神经系统,鱼类会因急性中毒迅速死亡。

三、氨的中毒机理:毒素通过鱼的呼吸作用,由鳃进入血液,会使其丧失输氧能力,出现组织缺氧,窒息而死。

四、氨中毒的症状:鱼出现窜游现象,并时而出现下沉、侧卧、痉挛等症状。

呼吸急促,大口挣扎,死前眼球突出。

鳃盖部分张开,鳃丝呈紫红色或紫黑色。

鱼鳍舒展,根基出血,体色变浅,体表粘液增多。

打开腹腔,血液不凝,血色发暗,紫而不红,肝脾肾的颜色呈紫色。

五、氨的存在形式:水中的氨有两种不同的形式:一种是分子形态存在的“氨”(NH3);另一种是以离子形态存在的“铵”(NH4+)。

氨有剧毒,铵无毒。

一般氨测试所测的是氨和铵的总浓度,有时候测试出总浓度非常高,但鱼却很健康,这是因为水中铵的比例大,而有毒的氨(NH3)的百分比很小的原因。

禽畜养殖污染对水环境的影响

禽畜养殖污染对水环境的影响

禽畜养殖污染对水环境的影响范文:随着人口的增长和经济的发展,禽畜养殖业在全球范围内扮演着重要角色。

然而,由于不合理的养殖方式和管理不善,禽畜养殖也带来了一系列环境问题,其中水环境污染是最重要的之一。

本文将深入探讨禽畜养殖污染对水环境的影响,并提供解决该问题的步骤和方法。

一、养殖废弃物对水质的污染1. 养殖废弃物的产生:禽畜养殖过程中,动物粪便、尿液和饲料残渣等废弃物大量排放。

2. 废弃物中的污染物:禽畜排泄物中含有大量氨氮、硫化物、重金属等有害物质,以及细菌、病毒等微生物。

3. 废弃物的处理和排放:很多养殖场没有合理的废物处理系统,导致废弃物直接进入河流、湖泊和地下水,引起水质恶化。

二、废水排放对水体健康的威胁1. 养殖废水的含有物质:禽畜场排放的废水中含有养殖动物的粪便、尿液、饲料残渣以及饲料添加剂等。

2. 化学物质的危害:废水中的重金属、农药残留和抗生素等化学物质对水体生态和水生生物健康造成严重威胁。

3. 养殖废水的传播途径:废水通过河流或地下渗漏进入湖泊和地下水,扩大了污染的范围。

三、氨氮的排放对水环境的影响1. 氨氮的危害:禽畜粪便中产生的大量氨氮会导致水体富营养化,引起水中藻类大量繁殖,形成赤潮等水体生态失衡现象。

2. 藻类水华引发的问题:藻类水华会耗尽水中的氧气,造成水体寡氧化,对鱼类和其他水生生物造成严重威胁,甚至引起大量死亡。

3. 氨氮的控制方法:加强禽畜养殖场的管理,改善饲养方式,减少氨氮的排放。

解决禽畜养殖污染对水环境的方法:1. 加强监管措施:政府应加强对禽畜养殖场的监管,制定严格的环保标准和法规,对不合格的养殖场进行处罚和整改。

2. 推广环境友好养殖技术:鼓励养殖场采用生态循环农业技术,如养殖废弃物资源化利用、沼气发电和水质净化技术等,减少废弃物对环境的负面影响。

3. 提高养殖管理水平:加强养殖场的技术培训,提高养殖人员的专业素质,推广科学合理的饲养方式和废物处理方法。

4. 跨行业合作与溯源体系:加强养殖业与相关行业的合作,建立健全的监管体系和溯源体系,从源头上控制水环境污染。

污水处理中氨氮超标对人类健康有何风险

污水处理中氨氮超标对人类健康有何风险

污水处理中氨氮超标对人类健康有何风险污水处理是保护环境、维护人类健康的重要环节之一。

然而,当污水处理过程中出现氨氮超标时,可能会对人类健康产生一定的风险。

本文将就氨氮超标对人类健康的潜在风险展开探讨。

一、氨氮超标的来源氨氮主要来自于人类日常生活、工农业生产等活动中产生的废水。

例如,生活污水中含有大量的尿液,而尿液中正是氨氮的主要成分之一;农业活动中的施肥也可能导致土壤中氨氮含量升高;部分工业过程中产生的废水含有氨氮等。

二、氨氮超标对人类健康的风险1. 对水体生态系统的影响氨氮超标会进入水体中,对水生生物产生直接或间接的危害。

过量的氨氮会降低水体中的溶解氧含量,导致水生生物窒息、死亡。

此外,氨氮的存在也可能导致水体富营养化、水藻过度繁殖,引发蓝藻等有害藻类的暴发,对水生生态系统造成破坏。

2. 对人体健康的潜在风险氨氮超标的废水如果未经适当处理,排入自然水体中,可能会对人体健康造成一定的风险。

尤其是在饮用水的净化过程中,高浓度的氨氮可能对人体健康带来潜在威胁。

据研究表明,长期摄入含氨氮超标的饮用水,可能会对人体的肝脏、肾脏、中枢神经系统等造成损害,甚至引发肝硬化、脑损伤等疾病。

三、防范和控制氨氮超标的措施为了防范和控制氨氮超标对人类健康的潜在风险,以下几方面措施可供参考:1. 加强废水处理工艺优化在污水处理过程中,应采用适当的技术手段,如物理处理、生物处理等,以确保废水中的氨氮含量在合理的范围内。

同时,对于含氨氮较高的废水源头,可采取分流处理的方式,降低氨氮的负荷。

2. 推广水资源的高效利用通过加强节水意识,提高水资源的利用效率,减少废水的排放,有助于减少氨氮的超标情况发生。

3. 强化监管和法律法规的完善加强对废水排放的监管力度,建立健全的法律法规体系,提高违规排水行为的成本,以维护废水处理的正常运行和人类健康的安全。

4. 加强宣传教育通过加强公众对氨氮超标风险的认知,推动广大民众积极参与到废水处理和环境保护中来,共同构建生态友好型社会。

氨氮对水产养殖的危害及防治措施

氨氮对水产养殖的危害及防治措施

为 了防止养 殖水 体氨 氮含量 过 高 ,除了定 期检 测水
中氨的指标 外 ,还要注意 : ( 1 )加换新 水 。适 时加注新 水 或换去部分老水 ,是最 直接 、经济而快捷有效的办法 ; ( 2 )增氧 。高 温季节晴 天中午开启增 氧机 曝气 ; ( 3 )生
六 氨氮控制指 标
的皮 、胃、肠道 的粘膜 ,造成 渗透 调节失调 ,引起 体表和 血呈 红色 ,最 为明显 ,其次是臀鳍基部前端 、眼眶外缘 、 内部器官 充血 ,表现 出与 出血性 败血症相似 的症状 ,造成 鳃盖边缘和 口腔 充血呈红色 ;体色变浅 ,体表 粘液增多 , 鱼类大批死亡 。 鳃 丝呈 紫色 。解剖 腹腔 可见 血色 发暗 ,紫 而不 红 ,肝 、
发生。在养殖水域存 在的有害物质 中 ,氨氮 比亚硝酸盐和 多 ,透 明度低 ,一般 在3 0 c m以下 ;二是水质 老化 ,没有 硫 化氢等对水产养殖 的危害事故更频 发 ,带来的经济损 失
更 巨大 ,氨氮 已成为养殖鱼类 的隐性杀手 。


氨氮的危害
四 氨氮中毒症状
由于氨对水产动物 的毒 害依 其浓度不 同而不 同,氨氮
1 . 慢 性 中毒 症 状
白天有浮头现象 ,采取增 氧措施 效果不明显 ;易发鱼
进入鱼 体 ,损伤鳃表 皮细胞 ,使血液和组织 中氨的浓度升 病 ,即使对症 治疗但效果很差 ,即使 鱼病 治疗 好后很快又
高 ,降低血液的载氧 能力 ,使鱼呼吸 困难 ,食 欲减退 ,影 复发 ,病鱼死亡较快 。
氨 氮 在 养 殖 水 体 中 以 两 种 形 式 存 在 :一 种 是 氨
强 的毒 害性 ;另一种是铵 ( NH ),又叫离子态氨 ,对水 产动物 无毒 。由于氨具有 较高的脂溶性 ,能通 过鳃和皮膜

氨氮的危害及防治措施

氨氮的危害及防治措施

水产养殖中氨氮的危害及防治措施衢江区水利局王俏俏随着工业污染排放、畜禽养殖业污水排放、生活污水排放、水产养殖中过量投喂饲料行为等,淡水养殖水体中氨氮超标致使水生生物中毒死亡的的事情频繁发生,给养殖户带来极大的经济损失。

一、水体中氨氮的积累和危害池塘养鱼水体中的总氨氮一般以两种形式即非离子氨(NH3)和铵离子(NH4+)存在,在pH值小于7时,水中的氨几乎都以NH4+的形式存在,在pH大于11时,则几乎都以NH3的形式存在,温度升高,NH3的比例增大。

氨氮对水生生物的危害主要是指非离子氨的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。

另外,在生物体内富集的高浓度氨氮可转化为亚硝酸盐后对生物体产生危害,而亚硝酸盐又是强氧化剂,不仅会使生物体中毒,它还有致癌作用。

二、氨氮超标的防治措施根据《渔业水质标准》,水产养殖生产中,应将氨的浓度控制在0.02mg/L以下。

目前,可以从以下三个方面降低水体中氨氮的含量,防治氨氮中毒。

(一)科学进行养殖生产1、做好清淤工作,经常换水,保持水体新鲜。

2、饲料过量投喂是造成氨氮污染的主要原因之一,因此要减少饵料系数,提高饲料使用率,减少养殖生物的粪便排泄量。

3、用盐酸或醋酸调节PH值,降低PH值至7.0以下,降低氨氮毒性,再用沸石粉、麦饭石等吸附剂去除水体中的氨氮。

(二)利用微藻减少水体中的氨氮微藻是一种单细胞藻类,以水为电子供体,以光能作为能源,利用氮、磷等营养物质合成有机质。

能吸收水体中的氨氮并将其转换合成氨基酸等含氮物质,是水生生物的天然饵料。

微藻还能产生大量的氧气,水体中充足的氧气能促进亚硝酸盐向硝酸盐的转化,同时可减少水体因缺氧而形成的恶臭气味,改善水体生态环境,抑制和减轻氨氮对鱼类的毒害作用,提高鱼类食欲和饲料利用率,促进鱼类生长发育。

(三)利用微生物制剂减少水体中的氨氮微生物制剂是从天然环境中筛选出来的微生物菌体经培养、繁殖后制成的含有大量有益菌的活性菌制剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氨氮对水体的影响
氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮,两者的组成比取决于水的pH值和水温。

当pH值偏高时,游离氨的比例较高;反之,铵盐的比例高。

氨氮是环境水体污染的一项重要指标,其氧化过程会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。

当水体氨氮浓度较高时,会导致水体富营养化,进而造成一系列的严重后果。

水体中的分子氨浓度过高时会使鱼虾产生毒血症,长期的氨氮偏高则将影响鱼虾的生长繁殖,严重性的将中毒至死亡。

相关文档
最新文档