密云区2020届初三期末数学试题及答案(官方版)

合集下载

2020-2021学年北京密云区初三第一学期数学期末试卷及答案

2020-2021学年北京密云区初三第一学期数学期末试卷及答案

2020-2021学年北京密云区初三第一学期数学期末试卷及答案一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个选项是符合题意的.1. 抛物线的顶点坐标是( ) 2(2)1y x =+-A. (﹣2,1) B. (﹣2,﹣1) C. (2,1) D. (2,﹣1) 【答案】B 【解析】【分析】根据二次函数解析式的顶点式即可解答.【详解】解:抛物线的顶点坐标是(﹣2,﹣1), 2(2)1y x =+-故选:B .【点睛】本题考查了根据二次函数解析式的顶点式求顶点坐标,熟练掌握和运用求二次函数顶点坐标的方法是解决本题的关键.2. 如图,直线l 1∥l 2∥l 3,直线l 4被l 1,l 2,l 3所截得的两条线段分别为CD 、DE ,直线l 5被l 1,l 2,l 3所截得的两条线段分别为FG 、GH .若CD =1,DE =2,FG =1.2,则GH 的长为( )A. 0.6B. 1.2C. 2.4D. 3.6【答案】C 【解析】【分析】根据平行线分线段成比例可得=,代入数值即可求得的值 CDDE FG GHGH 【详解】∵直线l 1∥l 2∥l 3, ∴=, CD DE FG GH∵CD=1,DE =2,FG =1.2, ∴=, 12 1.2GH∴GH=2.4,故选:C .【点睛】本题考查了平行线分线段成比例,掌握平行线分线段成比例是解题的关键. 3. 已知点是反比例函数图像上的两点,则( ) 12(1,),(2,)P y Q y 3y x=A.B.C.D.120y y <<210y y <<120y y <<210y y <<【答案】D 【解析】【分析】直接利用反比例函数的性质求解即可.【详解】,3,30y k x==>Q ∴反比例函数位于第一、三象限,且在每个象限内都是y 随着x 的增大而减小,21> ,210y y ∴<<故选:D .【点睛】本题主要考查反比例函数的性质,掌握反比例函数的增减性是解题的关键. 4. 将的各边长都缩小为原来的,则锐角A 的正弦值( ) Rt ABC 12A. 不变 B. 缩小为原来的C. 扩大为原来的2倍D. 缩小为12原来的14【答案】A 【解析】【分析】根据正弦的定义计算即可求解. 【详解】设AC =b ,AB =c ,BC =a , ∴ sin a A c=当各边长都缩小为原来的时,,, , 121112B C a =1112A C b =1112A B c =∴112sin 12aa A c c ==∴锐角A 的正弦值不变,故选:A .【点睛】本题考查锐角三角函数的定义,解题的关键是熟练掌握正弦的定义.5. 如图,二次函数的图像经过点,,,则下列结2y ax bx c =++(1,0)A -(3,0)B (0,1)C -论错误的是( )A. 二次函数图像的对称轴是1x =B. 方程的两根是, 20ax bx c ++=11x =-23x =C. 当时,函数值y 随自变量x 的增大而减小 1x <D. 函数的最小值是 2y ax bx c =++2-【答案】D 【解析】【分析】A :由点A 、B 的坐标得到二次函数图象的对称轴,即可求解;B :由函数图象知,与x 轴交点坐标为(-1,0)、(3,0),即可求解; 2y ax bx c =++C :抛物线的对称轴为x=1,根据对称轴左侧函数的增减性,即可求解;D :由点A 、B 、C 的坐标求出抛物线表达式,即可求解.【详解】解:A :由点A 、B 的坐标知,二次函数图象的对称轴是x=(3-1)=1,故不符合题意;B :由函数图象知,与x 轴交点坐标为(-1,0)、(3,0),故方程ax2+bx 2y ax bx c =+++c=0的两根是,,故不符合题意;11x =-23x =C :抛物线的对称轴为x=1,从图象看,当x <1时,函数值y 随自变量x 的增大而减小,故不符合题意;D :设抛物线的表达式为, ()()()()1213y a x x x x a x x =--=+-当x=0时,y=a (0+1)(0-3)=-1,解得a=, 13故抛物线的表达式为y=(x +1)(x-3), 13当x=1时,函数的最小值为,故符合题意; 2y ax bx c =++()()141113233+-=-≠-故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 6. 如图,AB 是的直径,C ,D 是上的两点,,则的度数为O O 20CDB ∠=︒ABC ∠( )A. B. C. D.20︒40︒70︒90︒【答案】C 【解析】【分析】首先根据AB 是直径得出,然后利用圆周角定理的推论得出90ACB ∠=︒,最后利用直角三角形两锐角互余即可得出答案.20CAB CDB ∠=∠=︒【详解】解:∵AB 是的直径, O .90ACB ∴∠=︒∵和都是所对的圆周角, CAB ∠CDB ∠ BC, 20CAB CDB ∴∠=∠=︒,9070ABC CAB ∴∠=︒-∠=︒故选:C .【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理及其推论的内容是解题的关键.7. 如图,在平面直角坐标系中有两点A (-2,0)和B (-2,-1),以原点O 为位似中心xOy 作△COD,△COD 与△AOB 的相似比为2,其中点C 与点A 对应,点D 与点B 对应,且CD 在y 轴左侧,则点D 的坐标为( )A. B.C.D.(4,2)(4,2)--1(1,21(1,)2--【答案】B 【解析】【分析】直接利用位似图形的性质即可得出答案.【详解】∵B(-2,-1),以原点O 为位似中心作△COD,△COD 与△AOB 的相似比为2,点D 与点B 对应,且CD 在y 轴左侧,∴点D 的横坐标为,纵坐标为, ()224-⨯=-()122-⨯=-∴点D 的坐标为, ()4,2--故选:B .【点睛】本题主要考查位似变换,掌握位似图形的性质是解题的关键.8. 如图,AB 是的直径,,P 是圆周上一动点(点P 与点A 、点B 不重合),O 4AB =,垂足为C ,点M 是PC 的中点.设AC 长为x ,AM 长为y ,则表示y 与x 之间函PC AB ⊥数关系的图象大致为( )A. B.C. D.【答案】B 【解析】【分析】证明∠PAC=∠BPC,则,进而求解.()24PC AC BC x x =⋅=-【详解】解:∵AB 是直径,则∠APB=90°, 则∠BPC+∠APC=90° 而∠APC+∠PAC=90°, ∴∠PAC=∠BPC, 则tan∠PAC=tan∠BPC, ∴,即, PC BC AC PC=()24PC AC BC x x =⋅=-∵点M 是PC 的中点,则, 2221144CM PC x x ==-则, 22222213(04)44y MC AC x x x x x x =+=-+=+<<∴(0<x<4), y =可知y 与x 之间的函数图像不是一次函数,故排除C ,当x=1时,,故排除D , 1y =>=当x=3时,,故排除A , 3y =>=故选:B .【点睛】本题考查动点问题的函数图像,确定函数的表达式是解题的关键.二、填空题(本题共24分,每小题3分)9. 若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留) π【答案】23π【解析】【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算. 60︒【详解】解:依题意,n=,r=2, 60︒∴扇形的弧长=. 6022==1801803n r πππ⨯︒︒故答案为:. 23π【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=. 180n rπ10. 已知中,D 是BC 上一点,添加一个条件使得,则添加的条件ABC ABC DAC △△可以是_________.【答案】(本题答案不唯一) B DAC ∠=∠【解析】【分析】由相似三角形的判定定理即可求解. 【详解】添加:∠B=∠DAC 在△ABC 和△DAC 中, ∵∠BAC=∠C,∠B=∠DAC ∴△ABC∽△DAC故答案为:∠B=∠DAC(答案不唯一)【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理. 11. 已知点是反比例函数图像上的两点,其中,则1122(,),(,)P x y Q x y 2y x=120x x +=_________.12y y +=【答案】0 【解析】【分析】根据反比例函数图象上点的坐标特征,把两个点的坐标分别代入解析式得出:, ,然后利用即可求解. 112y x =222y x =()121212122+22x x y y x x x x +=+=【详解】∵点是反比例函数图像上的两点, 1122(,),(,)P x y Q x y 2y x=∴, 112y x =222y x =∵ 12+=0x x ∴()121212122+22=0x x y y x x x x +=+=故答案为:0【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象上点的满足反比例函数解析式.12. 如图,中,E 是AD 中点,BE 与AC 交于点F ,则与的面积比为ABCD Y AEF △CBF V _________.【答案】14【解析】【分析】由平行四边形的性质可知AE∥BC,可证△AEF∽△CBF,相似比为,12EF AE BF BC ==由相似三角形的性质可求与的面积比. AEF △CBF V 【详解】解:∵平行四边形ABCD 中,AE∥BC, ∴△AEF∽△CBF, ∴, 12EF AE BF BC ==∴, 21()4AEF CBF S AE S BC == 故答案为:. 14【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得出相似三角形,利用相似比求相似三角形的面积.13. 二次函数的最小值是_________. 2=23y x x --【答案】 4-【解析】【分析】求开口向上的抛物线的最小值即求其顶点的纵坐标,再由二次函数的顶点式解答即可.【详解】∵二次函数y=x 2-2x-3可化为y=(x-1)2-4, ∴最小值是-4.【点睛】本题考查二次函数的最值问题,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.14. 如图,是上三点,,垂足为D ,已知,,则BC ,,A B C O BC OA ⊥3OA =1AD =长为_________.【答案】【解析】【分析】连接OB ,先由垂径定理得BD=CD ,再由勾股定理求出,即可得出答案. 【详解】解:连接OB ,如图所示:∵BC⊥OA, ∴BD=CD, ∵OB=OA=3,AD=1, ∴OD=OA-AD=2,==故答案为:【点睛】本题考查了垂径定理和勾股定理;熟练掌握垂径定理和勾股定理是解题的关键. 15. 如图是某商场自动扶梯的示意图,自动扶梯AB 的倾斜角为30°,在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60°,A 、C 之间的距离为6m ,则自动扶梯的垂直高度BD=_________m .(结果保留根号).【答案】【解析】【分析】根据等腰三角形的性质和三角形外角的性质得到BC =AC =6cm ,根据三角函数定义即可求解.【详解】解:∵∠BAC+∠ABC=∠BCD=60°, 又∠BAC=30°, ∴∠ABC=30°, ∴BC=AC =6cm , 在Rt△BCD 中,cm n 6si B B B CD D C ∠===⋅故答案为:【点睛】本题考查解直角三角形的应用-俯角仰角问题,坡度坡角问题、含30°角的直角三角形,解题的关键是掌握仰俯角的定义,求得BC =AC =6cm .16. 《九章算术》是我国古代数学名著,也是古代东方数学的代表作之一.书中记载了一个问题:“今有勾五步,股十二步,问勾中容圆半径几何?”译文:“如图,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的半径是多少步?”根据题意,该直角三角形内切圆的半径为____步.【答案】2【解析】【分析】连接,可知四边形为正方形,设半径为,根据切线长定理列方OD OE 、ODCE r 程求解即可.【详解】解:连接,如下图:OD OE 、由题意可得:, 90C OED ODC ∠=∠=∠=︒BD BF CD CE AF AE ===,,,12AC =5BC =∴四边形为矩形, ODCE 13AB ==又∵OD OE =∴矩形为正方形ODCE 设半径为,则r CD OD CE r ===∴,12AF AE r ==-5BF BD r ==-∴12513r r -+-=解得2r =故答案为:2【点睛】此题考查了勾股定理,切线长定理,正方形的判定与性质,解题的关键是熟练掌握相关基本性质.三、解答题(本题共52分,其中17-21每题5分,22题6分,23-25题每题7分)17.2sin 452cos 60|1++【答案】【解析】【分析】先进行二次根式化简、求三角函数值、绝对值化简,再计算.【详解】解:原式 12212=-+⨯11=-=【点睛】本题考查了包含二次根式、三角函数值、绝对值的实数运算,解题关键是准确的进行二次根式化简,知道特殊角三角函数值.18. 已知抛物线经过两点A (4,0),B (2,-4).2y x bx c =++(1)求该抛物线的表达式;(2)在平面直角坐标系xOy 内画出抛物线的示意图;(3)若直线y=mx+n 经过A ,B 两点,结合图象直接写出不等式的解2x bx c mx n ++<+集.【答案】(1);(2)见解析;(3)24y x x =-24x <<【解析】【分析】(1)根据待定系数法将点A 、B 坐标代入解析式即可求解;(2)根据二次函数解析式画出函数图象即可;(3)根据已求的图象即可求解.【详解】解:(1)∵抛物线经过两点2y x bx c =++(4,0),(2,4)-∴ 1640424b c b c ++=⎧⎨++=-⎩解得: 40b c =-⎧⎨=⎩∴该抛物线的表达式为;24y x x =-(2)画出函数图象,如图所示:(3)由图象可知:即抛物线图象在直线y=mx +n 图象的2x bx c mx n ++<+24y x x =-上方,即点A 、B 之间的部分符合题意,∴不等式的解集:.2x bx c mx n ++<+24x <<【点睛】本题考查待定系数法求解析式、二次函数的图象和性质,正确画出二次函数图象,利用数形结合的思想是解题的关键.19. 如图,AB⊥BC,EC⊥BC,点D 在BC 上,AB =1,BD =2,CD =3,CE =6.(1)求证:△ABD∽△DCE;(2)求∠ADE 的度数.【答案】(1)见解析 (2)∠ADE=90°【解析】【分析】(1)根据两边对应成比例夹角相等证明两三角形相似即可;(2)根据(1)的结论可得∠BAD=∠EDC,进而求得∠ADB+∠EDC=90°,进而求得ADE ∠的度数【小问1详解】证明:∵AB⊥BC,EC⊥BC,点D 在BC 上,∴∠ABD=∠DCE=90°.∵AB=1,BD =2,CD =3,CE =6, ∴=,=. A B B D 12DC CE 12∴=. A B B D DC CE ∴△ABD∽△DCE;【小问2详解】由(1)知,△ABD∽△DCE,则∠BAD=∠EDC.∵∠BAD+∠ADB=90°,∴∠ADB+∠EDC=90°.∴∠ADE=180°﹣∠ADB﹣∠EDC=90°.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.20. 如图,四边形ABCD 中,,,,90CBA CAD ∠=∠= 45BCA ∠= 60ACD ∠=AD 的长.BC =【答案】【解析】【分析】首先在中利用求出AC 的长度,然后在中再利用Rt ABC sin 45BC AC︒=Rt ACD即可求解. tan 60AD AC︒=【详解】解:∵,,, 90CBA ∠=︒45BCA ∠=︒BC =∴, 2AC ==∵,,90CAD ∠=︒60ACD ∠=︒∴, tan 60AD AC=︒=∴AD =【点睛】本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.21. 已知双曲线与直线交于,. k y x=1l (1,2)A (2,)B m -(1)求k ,m 值;(2)将直线,平移得到:,且与双曲线围成的封闭区域内(不含边界)1l 2l y ax b =+12,l l 恰有3个整点(把横纵坐标均为整数的点称为整点)结合图象,直接写出b 的取值范围.【答案】(1),;(2)或2k =1m =-10b -≤<23b <≤【解析】【分析】(1)由A 点坐标可求出反比例函数解析式,从而求出B 点的坐标,即可得出结论;(2)作图并观察,若直线在直线的下方时,则有整点(1,1),(0,0),(-1,-1),若2l 1l 直线在直线的上方时,则有整点(-2,0),(-1,1),(0,2),据此解答即可.2l 1l 【详解】解:(1)∵点在双曲线上, (1,2)A k y x=∴, 21k =∴, 2k =∴双曲线的表达式为, k y x=2y x =∵点在双曲线上, (2,)B m -k y x =∴, 212m ==--∴,;2k =1m =-(2)如图所示,当直线在直线的下方时,,2l 1l 10b -≤<当直线在直线的上方时,,2l 1l 23b <≤∴b 的取值范围是:或.10b -≤<23b <≤【点睛】本题考查一次函数与反比例函数的交点问题,主要考查待定系数法求解析式,数形结合的思想是解题关键.22. 如图,AB 是的直径,C 、D 是圆上两点,CD=BD ,过点D 作AC 的垂线分别交AC ,AB O 延长线于点E ,F .(1)求证:EF 是的切线;O (2)若AE-3,,求的半径. 4sin 5EAF ∠=O 【答案】(1)见解析;(2)158【解析】 【分析】(1)连接OD ,AD ,由等腰三角形的性质得出∠CAD=∠DAB,∠ADO=∠DAB,由直角三角形的性质可得出EF⊥OD,则可得出结论;(2)设EF=4k ,AF=5k (k >0),则AE=3k ,求出k=1,证明△FOD∽△FAE,由相似三角形的性质得出,则可求出答案. FO OD FA AE=【详解】解:(1)证明:连接OD ,AD∵CD BD =∴CAD DAB ∠=∠∵OA OD =∴ADO DAB ∠=∠∴CAD ADO ∠=∠∵AE ED ⊥∴90AED ∠= ∴90EAD EDA ∠+∠= ∴90ADO EDA ∠+∠= ∴EF OD ⊥∴是的切线EF O (2)在中,Rt AEF ∆90AEF ∠= ∴ sin EF EAF AF ∠=∵ 4sin 5EAF ∠=∴设,(),解得4EF k =5AF k =0k >3AE k =∵3AE =∴1k =∴5AF =∵,EF OD ⊥EF AE ⊥∴//OD AE ∴FOD FAE ∆∆ ∴ FO OD FA AE=∴ 553r r -=解得: 158r =【点睛】本题主要考查了切线的判定,圆周角定理,等腰三角形的性质,相似三角形的判定与性质,锐角三角函数,解题的关键是熟练掌握切线的判定.23. 已知抛物线与y 轴交于点P ,将点P 向右平移4个单位得到点Q ,点23y ax bx a =++Q 也在抛物线上.(1)抛物线的对称轴是直线 ;x =(2)用含的代数式表示b ;a (3)已知点,,抛物线与线段MN 恰有一个公共点,求的取值范(1,1)M (4,41)N a -a 围.【答案】(1)2;(2);(3)或4b a =-a<001a <≤【解析】【分析】(1)先求得点P 的坐标,再根据平移的性质得到点Q 的坐标;由于点P 、点Q 的坐标关于对称轴对称,可以求得该抛物线的对称轴;(2)根据对称轴公式即可求得;(3)根据题意,可以画出相应的函数图象,然后利用分类讨论的方法即可得到a 的取值范围.【详解】解:(1)∵抛物线y=ax 2+bx+3a 与y 轴交于点P ,∴P(0,3a ),∵将点P 向右平移4个单位得到点Q ,∴Q(4,3a );∵P 与Q 关于对称轴x=2对称,∴抛物线对称轴直线x=2,故答案为2;(2)∵抛物线的对称轴是直线2x =∴ 22b a-=∴;4b a =-(3)解:由(2)知,抛物线的表达式为243y ax ax a =-+令,解得:0y =121,3x x ==∴抛物线经过和(1,0)(3,0)设点,在抛物线上,则,,故此点M 在R 上方1(1,)R y 2(4,)S y 10y =23y a =①当时,若抛物线与线段恰有一个公共点,需满足点N 与点S 重合(如图1)或点N 在0a >点S 下方(如图2),即,解得:,即341a a ≥-1a ≤01a <≤②当时,,故此点N 在点S 下方,此时抛物线与线段恰有一个公共点(如a<0341a a >-图3)综上所述:的取值范围是:或a a<001a <≤【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合是解题的关键.24.如图,矩形ABCD 中,AD>AB ,DE 平分∠ADC 交BC 于点E ,将线段AE 绕点A 逆时针旋转90°得到线段AF ,连接EF ,AD 与FE 交于点O .(1)①补全图形;②设∠EAB 的度数为,直接写出∠AOE 的度数(用含的代数式表示).αα(2)连接DF ,用等式表示线段DF ,DE ,AE 之间的数量关系,并证明.【答案】(1)①见解析;②;(2),证明见解析45α+ 2222DF DE AE +=【解析】【分析】(1)①根据题意补全图形即可;②首先根据旋转的性质和等腰直角三角形的性质得出,然后通过等量代45F AEF ∠=∠=︒换得出,最后利用即可求解;FAO EAB α∠=∠=AOE F AFO ∠=∠+∠(2)延长DE ,AB 交于点G ,首先利用矩形的性质和角平分线的定义得出,则,进而得出,FAD EAG ≅△△45FDA EGA ∠=∠=︒90FDE FDA ADE ∠=∠+∠=︒根据勾股定理有,然后再通过等量代换即可得出222DF DE FE +=.2222DF DE AE +=【详解】(1)①如图,②∵将线段AE 绕点A 逆时针旋转90°得到线段AF ,,90,EAF AE AF ∴∠=︒=.45F AEF ∴∠=∠=︒∵四边形ABCD 是矩形,∴.90DAB ∠=︒,90OAE EAB OAE FAO ∠+∠=∠+∠=︒ ,FAO EAB α∴∠=∠=;45AOE F AFO α∴∠=∠+∠=︒+(2),2222DF DE AE +=证明:延长DE ,AB 交于点G ,∵四边形ABCD 是矩形,∴.90ADC DAB ∠=∠=︒∵平分,DE ADC ∠∴,45ADE ∠=︒∴.AD AG =∵,90=︒∠FAE ∴.90FAD DAE ∠+∠=︒∵,90DAE EAG ∠+∠=︒∴.FAD EAG ∠=∠∵,AF AE =∴,FAD EAG ≅△△∴,45FDA EGA ∠=∠=︒∴,90FDE FDA ADE ∠=∠+∠=︒∴.222DF DE FE +=∵,22222FE AF AE AE =+=∴.2222DF DE AE +=【点睛】本题主要考查矩形的性质,全等三角形的判定及性质,勾股定理等,掌握这些性质及定理是解题的关键.25. 对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 是图形M 上的任意一点,Q 是图形N 上任意一点,如果P ,Q 两点间距离有最小值,则称这个最小值为图形M ,N 的“最小距离”,记作d (M ,N ).已知的半径为1.O (1)如图,P (4,3),则(点,)= ,d (点P ,)d O O O = .(2)已知A 、B 是上两点,且弧AB 的度数为60°.O①若轴且在x 轴上方,直线,求d (,AB )的值;//AB x :2l y =-l②若点R ,1),直接写出点d(点R ,AB )的取值范围.【答案】(1)1,4;(2≤d(点R ,AB1-1+【解析】【分析】(1)根据定义可知,(点,)=r ,d (点P ,)=PO-r ,求解即可;d O O O (2)①假设设点B 在点A 右侧,AB 与轴交于点P ,连接OA 、OB ,可求得y∴,直线与轴交于点C ,与轴交于点D ,则点,,60BOC ∠=︒l x y C (0,2)D -继而求出,可知点B 到CD 的距离就是AB 与直线的“最小距离”,然后过点O 60OCD ∠=︒l 作,垂足为E ,即可求得;OE CD ⊥(,)1d l AB =②d(点R ,AB )最短为:OR-r ,最长为:OR+r ,求出OR 即可求解.【详解】解:(1)(点,)=r=1, d O Od (点P ,),O 故答案为:1,4;(2)①如图,不妨设点B 在点A 右侧,AB 与轴交于点P ,连接OA 、OB ,y∵AB 的度数为,60︒∴,60AOB ∠=︒∴,30POB ∠=︒∴,60BOC ∠=︒设直线与轴交于点C ,与轴交于点D ,则点,, l x y C (0,2)D -∴,tan OCD ∠==∴,60OCD ∠=︒∴,//OB CD 观察图形可知,点B 到CD 的距离就是AB 与直线的“最小距离”,l 过点O 作,垂足为E ,OE CD ⊥∵,60OCD ∠=︒∴,30ODC ∠=︒∴,1OE =∴;(,)1d l AB =②d(点R ,AB )最短为:OR-r ,最长为:OR+r ,∵,OR ==≤d(点R ,AB .11【点睛】本题考查点与直线的位置关系、直线与圆的位置关系,解题的关键是综合运用相关知识解决问题.。

最新北京市密云县九年级上期末考试数学试卷及答案

最新北京市密云县九年级上期末考试数学试卷及答案

密云县—度第一学期期末考试试卷初三数学学校 姓名 班级 考号考 生 须 知1.本试卷共6页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题纸上准确填写学校名称、姓名、班级和考号.3.试题答案一律填涂或书写在答题纸的答题区域内,在试卷上答题无效. 4.除画图可以用铅笔外,其他试题用黑色或蓝色钢笔、或签字笔作答.一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题目要求的. 1.如果532x =,那么x 的值是 A .152 B .215 C .103 D . 3102.如图,在Rt △ABC 中, ∠C =90︒,AB =5,AC =3,则sin B 的值是A .35 B .45 C .53 D .543.把只有颜色不同的1个白球和2个红球装入一个不透明的口袋里搅匀,从中随机地摸出1个球后放回搅匀,再次随机地摸出1个球,两次都摸到红球的概率为A . 12B .13C .19D .494.已知点(1,)A m 与点B (3,)n 都在反比例函数xy 3=(0)x >的图象上,则m 与n 的关系是A .m n >B .m n <C .m n =D .不能确定 5.将抛物线23y x =向右平移2个单位后得到新的抛物线,则新抛物线的解析式是A .23(2)y x =+ B .23(2)y x =- C .232y x =- D .232y x =+6.如图,在△ABC 中,DE ∥BC ,AD =2DB ,△ABC 的面积为36,则△ADE 的面积为A .81B .54C .24D .167.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①因为a >0,所以函数y 有最大值; ②该函数图象关于直线1x =-对称; ③当2x =-时,函数y 的值大于0;④当31x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是A .1B .2C .3D .48.如图,点A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿线段»OC CD--线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是二、填空题(本题共16分,每小题4分) 9.已知tan 3α=,则锐角α是 ︒.10.如图,将⊙O 沿着弦AB 翻折,劣弧恰好经过圆心O ,若⊙O 的半径为4,则弦AB 的长度等于__ .11.如图,⊙O 的半径为2,1C 是函数212y x =的图象,2C 是函数212y x =-的图象,3C 是函数y =3x 的图象,则阴影部分的面积是 .12.如图,已知Rt △ABC 中,AC =6,BC = 8,过直角顶点C 作1CA ⊥AB ,垂足为1A ,再过1A 作11A C ⊥BC ,垂足为1C ,过1C 作12C A ⊥AB ,垂足为2A ,再过2A 作22A C ⊥BC ,垂足为2C ,…,这样一直做下去,得到了一组线段1CA ,11A C ,12C A ,…,则1CA = ,1n n n nC AA C +(其中n 为正整数)= .三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o.14.已知:如图,∠1=∠2,AB •AC=AD •AE . 求证:∠C =∠E .15.用配方法将二次函数223y x x =--化为k h x a y +-=2)(的 形式(其中k h , 为常数),写出这个二次函数图象的顶点坐标 和对称轴方程,并在直角坐标系中画出他的示意图.16.如图,⊙O 是△ABC 的外接圆,45A ∠=o,BD 为⊙O 的直径, 且2BD =,连结CD .求BC 的长.17.已知:如图,在△ABC 中,DE ∥BC ,EF ∥AB .试判断AD BFDB FC=成立吗?并说明理由.18.如图,在△ABC 中,∠B =90°,5cos 7A =,D 是AB 上的一点, 连结DC ,若∠BDC =60°,BD =23.试求AC 的长.四、解答题(本题共20分,每小题5分)19.在学校秋季田径运动会4×100米接力比赛时,用抽签的方法安排跑道,初三年级(1)、(2)、(3)三个班恰好分在一组.(1)请利用树状图列举出这三个班排在第一、第二道可能出现的所有结果; (2)求(1)、(2)班恰好依次..排在第一、第二道的概率.20.如图,小磊周末到公园放风筝,风筝飞到C 处时的线长为20米, 此时小磊正好站在A 处,牵引底端B 离地面1.5米.假设测得 60CBD ∠=o,求此时风筝离地面的大约高度(结果精确到1米, 2 1.414≈3 1.732≈).21.已知:如图,⊙O 的直径AB 与弦CD 相交于E,»»BCBD =, BF ⊥AB 与弦AD 的延长线相交于点F . (1)求证:CD ∥BF ;(2)连结BC ,若6AD =,7tan C =,求⊙O 的半径 及弦CD 的长.22.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23. 已知二次函数22(21)y x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)设与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且121x x y -=,结合函数的图象回答:当自变量m 的取值满足什么条件时,y ≤2.24. 已知:如图,AB 是⊙O 的直径,点E 是OA 上任意一点,过点E 作弦CD AB ⊥,点F是»BC上任一点,连结AF 交CE 于H ,连结AC 、CF 、BD 、OD . (1)求证:ACH AFC △∽△;(2)猜想:AH AF ⋅与AE AB ⋅的数量关系,并证明你的猜想;(3)试探究:当点E 位于何处时,△AEC 的面积与△BOD 的面积之比为1:2?并加以证明.25.在平面直角坐标系xoy 中,以点A (3,0)为圆心,5为半径的圆与x 轴相交于点B 、C (点B在点C 的左边),与y 轴相交于点D 、M (点D 在点M 的下方). (1)求以直线x =3为对称轴,且经过D 、C 两点的抛物线的解析式; (2)若E 为直线x =3上的任一点,则在抛物线上是否存在这样的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平 行四边形?若存在,求出点F 的坐标;若不存在,说明理由.13.密云县2011-2012学年度第一学期期末考试初三数学试卷参考答案及评分标准阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分标准参考给分.题 号1 2 3 4 5 6 7 8 答 案 C A D A B D B C9.60; 10.; 11.53π; 12.244,55. 三、解答题(本题共30分,每小题5分) 13.计算:tan 452cos30sin 60+-o o o .解:tan 452cos30sin 60+-o o o=12+ 3分=1--------------------------------------------------------------------------- 4分=1.--------------------------------------------------------------- 5分 14.证明:在△ABE 和△ADC 中,∵ AB •AC=AD •AE∴ AB AD =AEAC ----------------------------------------------------------------2分又∵ ∠1=∠2, -------------------------------------------------------------------3分 ∴ △ABE ∽△ADC (两对应边成比例,夹角相等的两三角形相似)--4分 ∴ ∠C =∠E . ---------------------------------------------------------------------- 5分(说明:不填写理由扣1分.) 15.解:223y x x =--2(1)4x =--. ------------------------------------------------------------------- 2分 顶点坐标为(1,4-). --------------------------------------------------------------- 3分 对称轴方程为 1x =. --------------------------------------------------------------- 4分 图象(略).------------------------------------------------------------------------------ 5分16.解:在⊙O 中,∵45A ∠=o, 45D ∠=o.----------------------------------------------1分 ∵BD 为⊙O 的直径, 90BCD ∠=o. ---------------------------------------------2分 ∴ △BCD 是等腰直角三角形.∴sin 45BC BD =⋅o.---------------------------4分∵2BD =, ∴22BC =⨯=.---------------------------------------------5分 17.答:AD BFDB FC=成立.----------------------------------------------------------------------- 2分 理由:在△ABC 中,∵ DE ∥BC ,∴ EC AE DB AD =.--------------------------------------------------------3分∵ EF ∥AB ,∴ECAE FC BF =.--------------------------------------------------------- 4分∴ FCBF DB AD =.------------------------------------------------------------------------- 5分18.解:在△ABC 中,∠B =90°,5cos 7A =,∴57AB AC =. 设 5,7AB x AC x ==.-------------------------------------------------------------- 1分 由勾股定理 得26BC x =.----------------------------------------------------------2分 在Rt △DBC 中,∵∠BDC =60°,42BD =∴tan 6042346BC BD =⋅==o.------------------------------------------3分 ∴ 2646x = .解得 2x =.-------------------------------------------------------4分 ∴ 714AC x ==.--------------------------------------------------------------------------5分四、解答题(本题共20分,每小题5分) 19.解:(1)树状图列举所有可能出现的结果:(2) ∵ 所有可能出现的结果有6个, 且每个结果发生的可能性相等,其中(1)、(2)班恰好依次..排在第一、第二道的结果只有1个, ∴ (12P 、班恰好依次排在第一、第二道)=61.------------------------------------------ 5分20.解:依题意得,90CDB BAE ABD AED ∠=∠=∠=∠=︒,∴四边形ABDE 是矩形 ,∴ 1.5.DE AB == --------------------------------- 1分 在Rt BDC △中,sin ,CDCBD BC∠=---------------------------------------------- 2分 又∵ 20BC = ,60CBD ∠=o,∴ 3sin 6020103CD BC =⋅︒== . ----------------------------------------- 3分 ∴103 1.517.3 1.519CE CD DE =+=≈+≈ . ------------------------------ 4分 答:此时风筝离地面的高度大约19米 . -------------------------------------------------- 5分21.(1)证明:∵直径AB 平分»CD, ∴AB ⊥CD . --------------------------------------------1分∵BF ⊥AB ,∴CD ∥BF . --------------------------------------------2分 (2)连结BD .∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,tan BDA AD=. 在⊙O 中,∵ A C ∠=∠. ∴7tan tan BD A C AD ===. 又6AD =,∴ 7767BD AD === --------------------------- 3分 在Rt △ADB 中, 由勾股定理 得8AB =.∴⊙O 的半径为 142AB =. ----------------------------------------------------- 4分 在Rt △ADB 中,∵DE AB ⊥,∴AB DE AD BD ⋅=⋅.∴673782DE ⨯==. ∵直径AB 平分»CD,∴237.CD DE ==-------------------------------------- 5分22. 解:解法一:如图所示建立平面直角坐标系. --------------------------- 1分此时,抛物线与x 轴的交点为C (100,0)-,D (100,0).设这条抛物线的解析式为(100)(100)y a x x =-+.---------------------- 2分 ∵ 抛物线经过点B (50,150), 可得 150(50100)(50100)a =-+ . 解得 501-=a . ------------------------- 3分 ∴ )100)(100(501+--=x x y .即 抛物线的解析式为 2120050y x =-+.--------------------------- 4分 顶点坐标是(0,200)∴ 拱门的最大高度为200米. -------------------------------------- 5分解法二:如图所示建立平面直角坐标系. -------------------------------- 1分设这条抛物线的解析式为2ax y =.--------------------------------- 2分 设拱门的最大高度为h 米,则抛物线经过点).,100(),150,50(h D h B -+-可得 22100,15050.h a h a ⎧-=⎪⎨-+=⎪⎩ 解得,.200501⎪⎩⎪⎨⎧=-=h a .----------------------- 4分∴ 拱门的最大高度为200米.-------------------------------------- 5分五、解答题(本题共22分,第23小题7分,第24小题7分,第25小题8分) 23.解:(1)由题意有22[(21)]4()1m m m ∆=----=>0.∴ 不论m 取何值时,该二次函数图象总与x 轴有两个交点.----------2分(2)令0y =,解关于x 的一元二次方程22(21)0x m x m m --+-=,得 x m =或1x m =-.∵ 1x >2x ,∴1x m =,21x m =-.∴mm m x x y 111112=--=-=. 画出my 1=与2y =的图象.如图, 由图象可得,当m ≥21或m <0时,y ≤2.----------------------------------7分24.(1)证明:∵ 弦CD ⊥直径AB 于点E , ∴ »»AD AC =. ∴ ∠ACD =∠AFC .又 ∵ ∠CAH =∠FAC ,∴ △ACH ∽△AFC (两角对应相等的两个三角形相似).--------------1分(2)猜想:AH ·AF =AE ·AB .证明:连结FB .∵ AB 为直径,∴ ∠AFB =90°.又∵ AB ⊥CD 于点E ,∴ ∠AEH =90°.∴AEH AFB ∠=∠. ∵ ∠EAH =∠FAB ,∴ △AHE ∽△ABF .∴ AFAB AE AH =. ∴ AH ·AF =AE ·AB .------------------------------------------------- -----3分(3)答:当点E 位于OA 的中点(或12AE OA =)时,△AEC 的面积与△BOD 的面积之比为1:2 .证明:设 △AEC 的面积为1S ,△BOD 的面积为2S .∵ 弦CD ⊥直径AB 于点E , ∴ 1S =CE AE ⋅21,2S =DE BO ⋅21. ∵E 位于OA 的中点,∴2OA AE =.又AB 是⊙O 的直径,∴ 2OB OA AE ==. ∴12121222AE CE S CE S DEAE DE ⨯⋅==⨯⋅. 又 由垂径定理知 CE =ED ,∴ 1212S S =. ∴ 当点E 位于OA 的中点时,△AEC 的面积与△BOD 的面积之比为1:2 . -------------------------------------------------7分25. 解:(1)如图,∵ 圆以点A (3,0)为圆心,5为半径,∴ 根据圆的对称性可知 B (-2,0),C (8,0).连结AD .在Rt △AOD 中,∠AOD =90°,OA =3,AD =5,∴ OD =4.∴ 点D 的坐标为(0,-4).设抛物线的解析式为24y ax bx =+-,又 ∵抛物线经过点C (8,0),且对称轴为3x =, ∴ 3264840.b a a b ⎧-=⎪⎨⎪+-=⎩, 解得 1,43.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴所求的抛物线的解析式为 423412--=x x y .---------------------------------2分 (2)存在符合条件的点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.分两种情况.Ⅰ:当BC 为平行四边形的一边时,必有 EF ∥BC ,且EF =BC =10.∴ 由抛物线的对称性可知,存在平行四边形1BCEF 和平行四边形2CBEF .如(图1).∵E 点在抛物线的对称轴上,∴设点E 为(3,e ),且e >0.则F 1(-7,t ),F 2(13,t ).将点F 1、F 2分别代入抛物线的解析式,解得 754t =. ∴F 点的坐标为)475,7(1-F 或)475,13(2F . Ⅱ:当BC 为平行四边形的对角线时,必有AE =AF ,如(图2).∵ 点F 在抛物线上,∴ 点F 必为抛物线的顶点. 由22131254(3)4244y x x x =--=--, 知抛物线的顶点坐标是(3,254-). ∴此时F 点的坐标为)425,3(3-F . ∴ 在抛物线上存在点F ,使得以点B 、C 、E 、F 为顶点的四边形是平行四边形.满足条件的点F 的坐标分别为:)475,7(1-F ,)475,13(2F ,)425,3(3-F . ---------------------------------------------------- 8分。

北京市密云区2020届初三二模数学试题及答案

北京市密云区2020届初三二模数学试题及答案

北京市密云区2020届初三二模考试数学试卷2020.6考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2B..铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.港珠澳大桥作为世界首例集桥梁、隧道和人工岛于一体的超级工程,创下了多项“世界之最”.它是世界上总体跨度最长的跨海大桥,全长55000米.其中海底隧道部分全长6700米,是世界最长的公路沉管隧道和唯一的深埋沉管隧道,也是我国第一条外海沉管隧道.其中,数字6700用科学记数法表示为()A.67×102B.6.7×103C.6.7×104D.0.67×1042.第二十四届冬季奥林匹克运动会将于2022年在北京举行,北京将成为历史上第一座既举办过夏奥会,又举办过冬奥会的城市.下面的图形是各届冬奥会会徽中的部分图案,其中是.轴对称图形,但不是..中心对称图形的是()A.B.C.D.3.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误..的是()A.CD=DE;B.AB= DE;C.;D.CE= 2AB.4.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()A.(a+b)2=a2+2ab+b2B.(a+b)2=a2+2ab-b2C.(a-b)2=a2-2ab+b2D.(a-b)2=a2-2ab-b212CE CDDCBAab ababba5. 如图,在数轴上,点B 在点A 的右侧. 已知点A 对应的数为-1,点B 对应的数为m .若在AB 之间有一点C ,点C 到原点的距离为2,且AC -BC=2,则m 的值为( ) A. 4 B .3 C .2 D .16. 如果x 2+2x -2=0,那么代数式 的值为( ) A .-2 B .-1 C .1 D .27.新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争 分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下: 抽检数量n /个 20 50 100 200 500 1000 2000 5000 10000 合格数量m /个 19 46 93 185 459 922 1840 4595 9213 口罩合格率 0.9500.9200.9300.9250.9180.9220.9200.9190.921下面四个推断合理的是( )A .当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B .由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C .随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D .当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.921.8. 如图,点C 、A 、M 、N 在同一条直线l 上.其中,△ABC 是等腰直角三角形,∠B=90°,四边形MNPQ 为正方形,且AC =4,MN =2,将等腰Rt △ABC 沿直线l 向右平移.若起始位置为点A 与点M 重合,终止位置为点C 与点N 重合. 设点A 平移的距离为x ,两个图形重叠部分的面积为y ,则y 与x 的函数图象大致为( )mn244212+-+-⋅-x xx x x x二、填空题(本题共16分,每小题2分)9.分解因式:= .10.若 在实数范围内有意义,则实数x 的取值范围是 .11. 如图,已知菱形ABCD ,通过测量、计算得菱形ABCD 的面积 约为 cm 2.(结果保留一位小数)12.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的四个外角,若 ∠A =120°,则∠1+∠2+∠3+∠4= °.13. 已知“若a >b ,则ac <bc ”是真命题,请写出一个满足条件的c 的值是 .14. 如图,小军在A 时测量某树的影长时,日照的光线与地面 的夹角恰好是60°,当他在B 时测量该树的影长时,日照的光 线与地面的夹角是30°,若两次测得的影长之差DE 为4m ,则树的高度为 m .(结果精确到0.1,参考数据: , )15. 已知:点A 、点B 在直线MN 的两侧.(点A 到直线MN 的距离小于点B 到直线MN 的距离). 如图,(1)作点B 关于直线MN 的对称点C ;(2)以点C 为圆心, 的长为半径作⊙C ,交BC 于点E ;(3)过点A 作⊙C 的切线,交⊙C 于点F ,交直线MN 于点P ; (4)连接PB 、PC .根据以上作图过程及所作图形,下列四个结论中: ① PE 是⊙C 的切线; ② PC 平分EF ; ③ PB=PC=PF ; ④ ∠APN=2∠BPN . 所有正确结论的序号是 .2312ax a -4x -BC 213 1.732≈2 1.41416. 某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.下表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了.七巧拼图 趣题巧解 数学应用魔方复原 折算后总分 甲 66 95 68 乙 66 80 60 68 70 丙6690806880据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x 和y ,请用含x 和y 的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为 ;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得 分.三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.计算:.18. 解不等式组:5323142x x x -≥⎧⎪⎨-<⎪⎩ .19.在 ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于点E ,求∠DAE 的度数.20.已知关于x 的一元二次方程x 2+2x+m -4=0有两个实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求出此时方程的根.1318536tan 303-︒⎛⎫-+-- ⎪⎝⎭项目得分项目学生21. 如图,在△AOC 中,OA=OC ,OD 是AC 边中线. 延长AO 至点B ,作∠COB 的角平分线OH ,过点C 作CF ⊥OH 于点F . (1)求证:四边形CDOF 是矩形;(2)连接DF ,若 ,CF=8,求DF 的长.22.在平面直角坐标系xOy 中,直线l :y=x+b 与反比例函数在第一象限内的图象交于点A (4,m ).(1)求m 、b 的值;(2)点B 在反比例函数的图象上,且点B 的横坐标为1. 若在直线l 上存在一点P (点P 不与点A 重合),使得AP ≤AB ,结合图象直接写出点P 的横坐标x p 的取值范围.23.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,点D 在⊙O 上,AC 平分∠BAD ,过点C 的切线交直径AB 的延长线于点E ,连接AD 、BC . (1)求证:∠BCE =∠CAD ;(2)若AB =10,AD =6,求CE 的长.53cos =A 4y x=24.“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a .甲、乙两校学生样本成绩频数分布表及扇形统计图如下:甲校学生样本成绩频数分布表(表1) 乙校学生样本成绩扇形统计图(图1)b .甲、乙两校学生样本成绩的平均分、中位数、众数、方差如下表所示:(表2)其中,乙校20名学生样本成绩的数据如下:54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91 请根据所给信息,解答下列问题:(1)表1中c = ;表2中的众数n = ;(2)乙校学生样本成绩扇形统计图(图1)中,70≤m <80这一组成绩所在扇形的圆心角度数是 度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ; (4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为 人.25. 有这样一个问题:探究函数的图象与性质. 文文根据学习函数的经验,对函数 的图象与性质进行了探究. 下面是文文的探究过程,请补充完整:(1)函数 的自变量x 的取值范围是 ;成绩m (分) 频数 频率 50≤m <60 a 0.10 60≤m <70 b c 70≤m <80 4 0.20 80≤m <90 7 0.35 90≤m ≤1002 d 合计201.0学校 平均分 中位数 众数 方差 甲 76.7 77 89 150.2 乙78.180n135.331412y x x =-+31412y x x =-+31412y x x =-+(2)下表是y与x的几组对应值:则m的值为;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)请你根据探究二次函数与一元二次方程关系的经验,结合图象直接写出方程的正数根约为 .(结果精确到0.1)26. 在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C.点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后,恰好经过B、C两点.(1)求k的值和点C的坐标;(2)求抛物线C1的表达式及顶点D的坐标;(3)已知点E是点D关于原点的对称点,若抛物线C2:y=ax2-2(0a≠)与线段AE恰有一个公共点,结合函数的图象,求a的取值范围.x……y……3-2-32-1-12-0121322312-5851692471611516-m5316-3-52 31412x x-=-27.已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.28.在平面直角坐标系xOy中,点A的坐标为(x1,y1),点B的坐标为(x2,y2),且x1x2,y1=y2.给出如下定义:若平面上存在一点P,使△APB是以线段AB为斜边的直角三角形,则称点P为点A、点B的“直角点”.(1)已知点A的坐标为(1,0).①若点B的坐标为(5,0),在点P1(4,3)、P2(3,-2)和P3(2,)中,是点A、点B的“直角点”的是;②点B在x轴的正半轴上,且AB = ,当直线y=-x+b 上存在点A、点B的“直角点”时,求b的取值范围;(2)⊙O的半径为r,点D(1,4)为点E(0,2)、点F(m,n)的“直角点”,若使得△DEF与⊙O有交点,直接写出半径r的取值范围.备用图3yxO-1-2-3-4-5-6-75432164321-1-2-3-4-6-55622yxO-1-2-3-4-5-6-75432164321-1-2-3-4-6-556备用图图1北京市密云区2020届初三二模考试数学试卷参考答案及评分标准2020.06一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 选项BCCABACD二、填空题(本题共16分,每小题2分)9.3a (x +2)(x -2); 10. ; 11.1.8(±0.1); 12.300°; 13.-1(答案不唯一,负数即可); 14.3.5 ; 15.①②④; 16.80x +60y =70-20(或80x +60y =50); 90.三、解答题(本题共68分.第17~22题,每题各5分;第23~26题,每题各6分;第27、28题,每题各7分)说明:与参考答案不同,但解答正确相应给分. 17. 原式= ………………………………4分………………………………5分18.解:由①得:x ≥1 ………………………………2分由②得:x <3 ………………………………4分不等式组的解集:1≤x <3 ………………………………5分19.解:∵DB=DC ,∠C=70°∴∠DBC=∠C=70° ………………………………2分∵ ABCD 中,AD//BC ∴∠ADB=∠DBC=70° ………………………………3分323532--+-=334-=4x ≥336)35(32⨯--+-∵AE ⊥BD∴∠AED=90° ………………………………4分∴在△AED 中,∠DAE=20° (5)分20.(1)解:a =1,b =2,c =m -4∴△=b 2-4ac ……………………………………………………1分=22-4(m -4)= 20-4m∵一元二次方程x 2+2x+m -4=0有两个实数根,∴20-4m ≥0 …………………………………………… 2分m ≤5. …………………………………………… 3分(2)解:当m=1时,x 2+2x -3 = 0. …………………………………………… 4分解得x 1=1,x 2=-3. (答案不唯一) ……………………………………………… 5分21.(1)证明:∵在△AOC 中,OA=OC ,OD 是AC 边中线∴OD ⊥AC , OD 平分∠AOC∴∠ODC =90°,∠COD= ∠AOC ………1分∵ OH 平分∠COB ,∴∠COF= ∠COB ,∵∠AOC+∠COB=180°,∴ ∠COD+∠COF=90°,即∠DOF=90° (2)分∵CF ⊥OH∴∠CFO =90°∴四边形CDOF 是矩形 ……………………………3分(2)解:∵OA=OC ,2121∴∠A=∠ACO∵CD//OF∴∠ACO=∠COF∴ ∴ ……………………………4分∴设OF=3x ,OC=5x ,则CF=4x∵CF=8∴x=2∴OC=10∴在矩形CDOF 中,DF=OC=10 (5)分22. 解:(1)∵ 经过点A (4,m ) ∴m=1 ………………………………1分∴A (4,1),∵y=x+b 经过点A (4,1)∴4+b=1b=-3 ……………………2分(2)1≤x p ≤7且x p ≠4 (5)分23.(1)证明:连接OC (1)分∵CE 是⊙O 的切线∴OC ⊥CE∴∠OCB +∠BCE=90°∵AB 是⊙O 的直径∴∠ACB =90°∴∠CAB +∠OBC=90°∵OC=OB∴∠OCB =∠OBC ,∴∠CAB =∠BCE …………………………………2分∵AC 平分∠DAB35OF OC =35COS COF COSA ∠==4y x =∴∠CAD =∠CAB∴∠CAD=∠BCE …………………………………3分(2)解:连接BD (4)分∵ AB 是⊙O 的直径∴∠ADB=90°,∵AB=10,AD=6∴BD=8∵AC 平分∠DAB∴CD=BC∴OC ⊥BD ,DH=BH=4 (5)分∴OH=3∵OC ⊥CE∴BD//CE∴△OHB ~△OCE∴∴∴………………………………6分24.解:(1)c =0.25,n=87; (2)分(2)54° (3)分(3)甲,因为该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求; (5)分(4)550人 ………………………………6分25.(1)x 取任意实OH BH OC CE =345CE =203CE =数 ………………………………1分(2) ………………………………2分(3)………………………………4分(4)0.3或2.7 ………………………………6分26.(1)解:∵直线y=kx +3经过点B (3,0)∴3k+3=0k=-1 ………………………………1分∴y=-x +3与y 轴的交点,即为点C (0,3) (2)分(2)解:∵抛物线y=x 2+bx+c 经过点B (3,0)和点C (0,3)∴ y=x 2+bx+3∴ 9+3b +3=0b=-4∴抛物线C 1的函数表达式为y = x 2-4x+3 (3)分∴y =(x -2)2-1∴顶点D 的坐标为(2,-1) (4)分(3)解:∵点E 是点D 关于原点的对称点∴点E 的坐标为(-2,1)当y=ax 2-2经过点E (-2,1)时,a =当y=ax 2-2经过点A (1,0)时,a =252m =-433∴a 的取值范围是 ≤a <2 (6)分27 . (1) ①………………………………2分② 证明:∵∠C=60°,∠DBN=60°∴∠C =∠DBN∵∠DBN +∠ABD=180°∴∠C+∠ABD=180°在四边形ACDB 中,∠CDB+∠BAC=180°∵∠BAC +∠MAC=180°∴∠CDB=∠MAC ………………………………4分(2) BC =3时,对于任意一点C ,总有AB+BD=3 (5)分证明:连接BC ,在直线MN 上截取AH=BD ,连接CH∵∠MAC=∠CDB ,AC =CD∴………………6分∴∠ACH=∠DCB ,CH=CB∵∠DCB +∠ACB=∠ACD=60°∴∠HCB=∠ACH+∠ACB=60°∴△HCB 是等边三角形.∴BC =BH=BA+BD =3. ………………………………7分28.(1)① P 2 ,DCB ACH ∆≅∆P 3 ………………………………2分② ∵A (1,0), AB =∴线段AB 的中点C (,0)∴点A 、B 的“直角点”在以点C 为圆心,的长为半径的⊙C 上∴当直线y=-x+b 与⊙C 相切于点D ,与两坐标轴相交于点M 、N 时,∵∠M=45°,CD =∴CM=2 ………………………………3分∴OM=OC+CM= +1+2= +3,∴ON=OM= +3即b=+3 ……4分同理:当直线y=-x+b 与⊙C 相切于点E 时,CH=2∴OH=OC - CH= -1即b= -1综上所述:……………5分(2)………………7分21+22123b -≤≤+229r ≤≤222222222。

2024年北京密云区初三九年级上学期期末数学试题和答案

2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。

北京市密云区2021-2022学年第一学期期末初三数学答案

北京市密云区2021-2022学年第一学期期末初三数学答案

密云区2021—2022学年度第一学期期末考试初三数学试卷参考答案及评分标准 2022.01一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.30°; 10.y 1<y 2 ; 11.4;12.y =x 2-5(答案不唯一); 13.3π; 14.15.130°;16.①②④.三、解答题(本题共68分.第17~22每题5分;第23~26每题6分;第27、28题,每题各7分) 说明:与参考答案不同,但解答正确相应给分.17.解:原式 ………………………………4分………………………………5分18.(1) ………………………………3分(2)证明:OB= OC ………………………………4分同弧所对的圆周角相等 ………………………………5分124=-3=3=OD CB A PF E19.(1)解: y =x 2-4x +3y =x 2-4x +22-22+3 ………………………………2分y =(x -2)2-4+3y =(x -2)2-1 ………………………………3分(2)………………………………5分20.证明:∵BD 平分∠ABC ,∴∠ABC=2∠ABD ……………………………1分∵∠ABC=2∠C∴∠ABD=∠C ……………………………3分∵∠A=∠A ……………………………4分∴△ABD ∽△ACB ……………………………5分21.解:在△BDC 中,∠C = 90°∵∠BDC = 45°∴△BDC 是等腰直角三角形∴CD=BC=6 ……………………………1分在R t △ABC 中, ∴ ……………………………2分∴ AB =10 ……………………………3分∴ AC =8 ……………………………4分∴ AD=AC -CD =8-6=2 ……………………………5分D C B A 3sin 5A =635BC AB AB ==22.(1)解:设反比例函数表达式为 ………………………………1分 ∵其图象经过点A (4,1)∴k =4 ………………………………2分∴反比例函数表达式为 ………………………………3分(2)0<x <4 ………………………………5分23.(1)证明:在平行四边形ABCD 中,AB//CD ,AD//BC∴∠DCE=∠BEC ,∠A+∠B=180° ………………………………1分∵∠DFE+∠DFC=180°又∵∠DFE=∠A∴∠DFC=∠B ………………………2分 ∴△DCF ∽△CEB(2)解:∵△DCF ∽△CEB∴∠CDF=∠ECB ………………………………3分∴tan ∠CDF= tan ∠ECB=过点E 作EH ⊥CB 交CB 延长线于点H在R t △CEH 中∵∴设EH=x ,CH=2x∴CE= ∵CE=∴x=3,则有EH=3,CH=6 ………………………………5分∵BC=4∴BH=6-4=2在R t △EBH 中,BE= ………………………………6分(0)k y k x =≠4y x=1212EH CH =5x351324. 解:连接BC ,过点A 作AD ⊥BC 于点D在R t △ABD 中∵AB=12,∠BAD=45° ………………………………1分∴ sin45°=即∴BD = ………………………………3分∴BD =AD=在R t △ACD 中,∠DAC=30° ∴tan30°= 即∴DC = ………………………………5分∴BC= ∴此时独象距离象群 公里 \………………………………6分25. (1)证明:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E∴BC=BD∴∠CAB=∠DAB= ∠CAD ………………………………1分∵AM 是∠DAF 的平分线∴∠DAM= ∠DAF ………………………………2分∵∠CAD+∠DAF=180°∴∠DAB+∠DAM=90°即∠BAM=90°,AB ⊥AM∴AM 是⊙O 的切线 ………………………………3分(2)解:∵AB ⊥CD ,AB ⊥AM∴CD//AM∴∠ANC=∠OCE=30° ………………………………4分在R t △OCE 中,OC =2∴OE=1,CE= ………………………………5分∵AB 是⊙O 的直径,弦CD ⊥AB 于点E∴CD=2 CE= ………………………………6分BD AB2122BD =6262DCAD 3362DC =266226+6226+121232326.(1)解:y =x 2-2ax +b 与y 轴相交于点(0,-3)∴y =x 2-2ax -3 ………………………………1分∵抛物线的图象经过点(1,-4)∴1-2a -3=-4∴ a =1∴ y =x 2-2x -3 …………………………2分(2)解: …………………………3分 (3)解:当a=0时 当a>0时 当a<0时此时, ,x 1+x 2=0; 此时, ,x 1+x 2>0; 此时, ,x 1+x 2<0;∴综述所述,a>0 ………………………………6分27.(1)………………………………1分(2)解:在正方形ABCD 中,∠DAB=∠ABC=∠D =90°,AD =AB .∵AF ⊥AE∴∠F AE =90°……………………………… 4分∴∠F AE =∠DAB∴∠F AE -∠BAE =∠DAB -∠BAE即∠F AB =∠DAE ………………………………2分2221b ax a a -=-=-=⨯12x x =12x x <12x x >∵∠ABF =∠D=90°∴ ………………………………3分∴AF=AE∴△AEF 是等腰直角三角形∴∠AEF=45° ………………………………4分(3)解:数量关系为CF =aCE ………………………………5分过点E 作EM//CF 交AC 于点M∴∠MEH=∠EFC ,∠MEC=∠D=90°∵∠MHE=∠CHF∴△MEH ∽△CFH∴ …………………6分 ∵∠ACD=45°∴△MEC 是等腰直角三角形∴ME=EC∴ 即CF =aCE ……………………………… 7分28.(1)点E ; ……………………………… 1分(2)① 90°;② 30°或150°; ……………………………… 4分(3)解: ∵过不在同一条直线上的三点确定一个圆,∴A 、B 、N 三点共圆,且过A 、B 两点的圆有无数个,圆心在直线x=3上.即:点N 的位置为过A 、B 两点的圆与y 轴的交点.设过A 、B 两点的圆为⊙M ,半径为r.当r<3时,y 轴与⊙M 无交点,不符题意舍去.如图:当r=3时,y 轴与⊙M 交于一点,此时y 轴与⊙M 相切,切点即为点N.●当r>3时,y 轴与⊙M 1交于两点,此时y 轴与⊙M 1相交,交点设为N 1、N 2.连接AM 、BM 、AN 、BN 、AM 1、BM 1、AN 1、BN 1。

初中数学 密云第一学期末初 三 数 学 考试考试卷及答案

初中数学 密云第一学期末初  三 数  学  考试考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列四组线段中,是成比例线段的是()A.5cm ,6cm,7cm,8cm B.3cm ,6cm,2cm,5cmC.2cm ,4cm,6cm,8cm D.12cm ,8cm,15cm,10cm试题2:两个三角形周长之比为9∶5,则面积比为()A.9∶5 B.81∶25 C.3∶ D.不能确定试题3:在△ABC中,∠C =90º,若cos B= ,则∠B的值为().A.300 B.600 C.450 D. 900试题4:如右图,C是⊙O上一点,O为圆心,若∠C=40°,则∠AOB为()A.20°B.40° C.80°D.160°试题5:若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A.点A在圆外B. 点A在圆上C. 点A在圆内D.不能确定试题6:将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A. y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2试题7:一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A.B.C.D.试题8:如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A B CD试题9:若5x=8y,则x :y = .试题10:已知:如图,DE∥BC,AE = 5,AD = 6,DB = 8 ,则EC=______.试题11:如果圆的半径为6, 那么60°的圆心角所对的弧长为______.试题12:如图,在标有刻度的直线上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆.……,按此规律,连续画半圆,则第4个半圆的面积是第3个半圆面积的倍。

北京市2020初三数学九年级上册期末试题和答案

北京市2020初三数学九年级上册期末试题和答案
33.如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.
34.已知:如图,抛物线y=﹣x2+2x+3交x轴于点A、B,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.
18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.
19.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB= ,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;
20.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
24.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.
25.如图, , ,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1∶QB1的值为___.
三、解答题
31.(1)解方程: ;(2)计算:
32.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).
(1)则b=,c=;
(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;
(3)在所给坐标系中画出该二次函数的图象;
(4)根据图象,当-3<x<2时,y的取值范围是.
A. B. C. D.
7.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则

2024届北京市密云区数学九年级第一学期期末检测试题含解析

2024届北京市密云区数学九年级第一学期期末检测试题含解析

2024届北京市密云区数学九年级第一学期期末检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.如图,在四边形ABCD 中,90DAB ︒∠=,AD BC ∥,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B .24C .22D .132.如图,ABC 中,90C ∠=︒,13AB =,12AC =,则sin A =( )A .1213B .513C .512D .1353.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为x =﹣1.给出四个结论:①b 2>4ac ;②2a +b =0;③a ﹣b +c =0;④5a <b .其中正确的有( )A.1个B.2个C.3个D.4个5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为( )A.2 B.3 C.4 D.66.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.一元二次方程3x2﹣x=0的解是()A.x=13B.x1=0,x2=3 C.x1=0,x2=13D.x=08.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A.13B.12C.22D.349.下列说法正确的是( )A .了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为2=3S 甲,2=4S 乙,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生10.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(每小题3分,共24分)11.如图,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为____.12.如图,AB 是O 的直径,30B ∠=︒,弦6AC =,ACB ∠的平分线交O 于点D ,连接AD ,则阴影部分的面积是________.(结果保留π)13.已知关于x 的二次函数y =ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点坐标为(m ,0).若2<m <5,则a 的取值范围是_____.14.分式方程22124x x x -=--的解为______________. 15.已知点15,4A y ⎛⎫-⎪⎝⎭、()21,B y 在二次函数23y x =+的图像上,则1y ___2y .(填“>”、“=”、“<”) 16.如图,若点P 在反比例函数y =﹣3x(x <0)的图象上,过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,则矩形PMON 的面积为_____.17.若圆锥的母线长为4cm ,其侧面积212cm π,则圆锥底面半径为 cm .18.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只.三、解答题(共66分)19.(10分)某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A 检票通道的概率是 ;(2)求甲乙两人选择的检票通道恰好相同的概率.20.(6分)已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示: x ...1- 0 1 2 3 ... y ... 0 3 43 0 ... (1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)结合图像,直接写出当23x -<<时,y 的取值范围.21.(6分)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°.判断△ABC 的形状,并证明你的结论;22.(8分)如图,AC 是平行四边形ABCD 的对角线,BAC DAC ∠=∠.(1)求证:四边形ABCD 是菱形;(2)若2AB =,23AC =,求菱形ABCD 的面积.23.(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x 元(0<x <60)元,销售利润为w 元,请求出w 关于x 的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.24.(8分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC =10米,∠ABC =∠ACB =36°,改建后顶点D 在BA 的延长线上,且∠BDC =90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)(参考数据:si n18°≈0.31,cos18°≈0.1.tan18°≈0.32,sin 36°≈0.2.cos36°≈0.81,tan36°≈0.73)25.(10分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T 恤获利9000元,那么第二个月的单价应是多少元?26.(10分)如图,点C 在以AB 为直径的O 上,ACB ∠的平分线交O 于点D ,过点D 作AB 的平行线交CA 的延长线于点E .(1)求证:DE 是O 的切线;(2)若6AC =,8BC =,求DE 的长度.参考答案一、选择题(每小题3分,共30分)1、C【分析】证明ABC DAE ∽,得出AB BC DA AB =,证出2AD BC =,得出22AB BC AD BC BC =⨯=⨯22BC =,因此2AB BC =,在Rt ABC △中,由三角函数定义即可得出答案.【题目详解】∵AD BC ∥,90DAB ︒∠=,∴18090ABC DAB ︒︒∠=-∠=,90BAC EAD ︒∠+∠=,∵AC BD ⊥,∴90AED ︒=∠,∴90ADB EAD ︒∠+∠=,∴BAC ADB ∠=∠,∴ABC DAB ∽, ∴AB BC DA AB=, ∵12BC AD =, ∴2AD BC =,∴2222AB BC AD BC BC BC =⨯=⨯=,∴2AB BC =, 在Rt ABC △中,2tan 22BC BC BAC AB BC∠===; 故选:C .【题目点拨】 本题考查了平行线的性质、相似三角形的判定与性质以及解直角三角形的应用等知识;熟练掌握解直角三角形,证明三角形相似是解题的关键.2、B【分析】由题意根据勾股定理求出BC ,进而利用三角函数进行分析即可求值.【题目详解】解:∵ABC 中,90C ∠=︒,13AB =,12AC =,∴222213125BC AB AC =-=-=, ∴5sin 13BC A AB ==. 故选:B.【题目点拨】本题主要考查勾股定理和锐角三角函数的定义及运用,注意掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3、B【解题分析】连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【题目详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB =12∠FOB=70°, ∵FO =BO ,∴∠OFB =∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【题目点拨】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 4、B【解题分析】由图象与x轴有交点,可以推出b2-4ac>0,即b2>4ac,①正确;由对称轴为x==-1可以判定②错误;由x=-1时,y>0,可知③错误.把x=1,x=﹣3代入解析式,整理可知④正确,然后即可作出选择.【题目详解】①∵图象与x轴有交点,对称轴为x==﹣1,与y轴的交点在y轴的正半轴上,又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故本选项正确,②∵对称轴为x==﹣1,∴2a=b,∴2a-b=0,故本选项错误,③由图象可知x=﹣1时,y>0,∴a﹣b+c>0,故本选项错误,④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理得5a+c=b,∵c>0,即5a<b,故本选项正确.故选:B.【题目点拨】本题考查了二次函数图像与各系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.5、D【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.【题目详解】因为,BD=3,S △BCD =1•2CD BD =3, 所以,1•332CD =, 解得,CD=2,因为,C(2,0)所以,OD=4,所以,B (4,3)把B(4,3)代入y=k x ,得k=12, 所以,y=12x所以,S △AOC =162xy = 故选D【题目点拨】本题考核知识点:反比例函数. 解题关键点:熟记反比例函数性质.6、A【解题分析】解:∵二次函数y=ax 2﹣bx+2的图象开口向上,∴a >0;∵对称轴x=﹣2b a<0, ∴b <0;因此﹣a <0,b <0∴综上所述,函数y=﹣ax+b 的图象过二、三、四象限.即函数y=﹣ax+b 的图象不经过第一象限.故选A .7、C【解题分析】根据题意对方程提取公因式x,得到x( 3x-1)=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x 的值.【题目详解】∵3x 2﹣x=0,∴x(3x ﹣1)=0,∴x=0或3x ﹣1=0,∴x 1=0,x 2=,故选C .【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.8、B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【题目详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形ABCD .则AEF 是等腰直角三角形,设AE x =,则AF x =,2EF x =2x . 则正方形的边长是(22)x +. 则正八边形的面积是:(2221(22)44122x x x ⎡⎤+-=⎣⎦, 阴影部分的面积是:2212[(22)2]2(21)2x x x x -⨯=. ()2221241122x x++=, 故选:B .【题目点拨】 本题考查了几何概率的求法:一般用阴影区域表示所求事件(A );首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.9、C【分析】全面调查与抽样调查的优缺点:①全面调查收集的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果数据的个数是偶数,中间两数的平均数就是中位数,一组数据中出现次数最多的数据叫做众数.【题目详解】解:A .了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A 错误;B .甲、乙两人跳远成绩的方差分别为2=3S 甲,2=4S 乙,说明甲的跳远成绩比乙稳定,B 错误;C .一组数据2,2,3,4的众数是2,中位数是2.5,正确;D .可能性是1的事件在一次试验中可能会发生,D 错误. 故选C . 【题目点拨】 本题考查了统计的应用,正确理解概率的意义是解题的关键.10、B【解题分析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故正确;C 、是轴对称图形,不是中心对称图形.故错误;D 、不是轴对称图形,也不是中心对称图形.故错误.故选B .点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、17【分析】连接BE ,由菱形和折叠的性质,得到AF=EF ,∠C=∠A=60°,由cos ∠C=12,12CE BC =,得到△BCE 是直角三角形,则32BE BC =,则△BEF 也是直角三角形,设菱形的边长为m ,则EF=m FB -,32BE m =,由勾股定理,求出FB=18m ,则78EF m =,即可得到cos ∠EFB 的值. 【题目详解】解:如图,连接BE ,∵四边形ABCD 是菱形,∴AB=BC=CD ,∠C=∠A=60°,AB ∥DC ,由折叠的性质,得AF=EF ,则EF=AB -FB ,∵cos ∠C=1cos602︒=, ∵点E 是CD 的中线, ∴12CE BC =, ∴1cos 2C C E BC ∠==, ∴△BCE 是直角三角形,即BE ⊥CD ,∴BE ⊥AB ,即△BEF 是直角三角形.设BC=m ,则BE=sin 60BC ︒=, 在Rt △BEF 中,EF=m FB -,由勾股定理,得:222FB BE EF +=,∴222()2FB m FB +=-, 解得:18FB m =, 则78EF m =, ∴118cos 778m FB EFB EF m ∠===; 故答案为:17. 【题目点拨】本题考查了解直角三角形,特殊角的三角函数值,菱形的性质,折叠的性质,以及勾股定理的运用,解题的关键是正确作出辅助线,构造直角三角形,从而利用解直角三角形进行解题.12、918π-【分析】连接OD ,求得AB 的长度,可以推知OA 和OD 的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=AOD AOD S S -△扇形.【题目详解】解:连接OD ,∵AB 为O 的直径,∴90ACB ∠=︒,∵30B ∠=︒,∴212AB AC ==, ∴162OA OD AB -==, ∵CD 平分ACB ∠,90ACB ∠=︒,∴45ACD ∠=︒,∴290AOD ACD ∠=∠=︒,∴11661822AOD S OA OD =⋅=⨯⨯=△, ∴22116=944AOD S OD =π=π⨯π扇形, ∴阴影部分的面积918AOD AOD S S =-π-△扇形.故答案为:918π-.【题目点拨】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式. 13、15<a 12<或﹣5<a <﹣1. 【分析】首先可由二次函数的表达式求得二次函数图象与x 轴的交点坐标,可知交点坐标是由a 表示的,再根据题中给出的交点横坐标的取值范围可以求出a 的取值范围.【题目详解】解:∵y =ax 1+(a 1﹣1)x ﹣a =(ax ﹣1)(x +a ),∴当y =0时,x =﹣a 或x =1a, ∴抛物线与x 轴的交点为(﹣a ,0),(1a ,0), 由题意函数与x 轴的一个交点坐标为(m ,0)且1<m <5,∴当a >0时,1<1a <5,即15<a 12<; 当a <0时,1<﹣a <5,即﹣5<a <﹣1;故答案为15<a 12<或﹣5<a <﹣1. 【题目点拨】本题综合考查二次函数图象与与x 轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.14、1x =-;【解题分析】方程两边都乘以(x+2)(x-2)得到x (x+2)-2=(x+2)(x-2),解得x=-1,然后进行检验确定分式方程的解. 【题目详解】解:22124x x x -=-- 去分母得x (x+2)-2=(x+2)(x-2),解得x=-1,检验:当x=-1时,(x+2)(x-2)≠0,所以原方程的解为x=-1.故答案为x=-1.【题目点拨】本题考查解分式方程:先去分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入分式方程进行检验,最后确定分式方程的解.15、>【分析】把两点的坐标分别代入二次函数解析式求出纵坐标,再比较大小即可得解. 【题目详解】54x =-时,21525733341616y ⎛⎫=-+=+= ⎪⎝⎭, 1x =时,2213134y =+=+=, ∵73941616-=>0, ∴12y y >;故答案为:>.【题目点拨】本题考查了二次函数的性质及二次函数图象上点的坐标特征,用求差法比较大小是常用的方法.16、1【分析】设PN =a ,PM =b ,根据P 点在第二象限得P (﹣a ,b ),根据矩形的面积公式即可得到结论.【题目详解】解:设PN =a ,PM =b ,∵P 点在第二象限,∴P (﹣a ,b ),代入y =3x中,得k=﹣ab=﹣1,∴矩形PMON的面积=PN•PM=ab=1,故答案为:1.【题目点拨】本题考查了反比例函数的几何意义,即S矩形PMON=K17、3【解题分析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l=2305srπ==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=622lπππ==3cm,18、1.【分析】直接利用概率公式计算.【题目详解】解:设袋中共有小球只,根据题意得635x=,解得x=1,经检验,x=1是原方程的解,所以袋中共有小球1只.故答案为1.【题目点拨】此题主要考查概率公式,解题的关键是熟知概率公式的运用.三、解答题(共66分)19、(1)14;(2)14.【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【题目详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:B (B ,A ) (B ,B ) (B ,C ) (B ,D ) C(C ,A ) (C ,B ) (C ,C ) (C ,D ) D (D ,A ) (D ,B ) (D ,C ) (D ,D )共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D )∴P (E )=416=14. 【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.20、(1)2(1)4y x =--+或2y x 2x 3=-++;(2)画图见解析;(3)54y -<≤.【分析】(1)利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(1,4),则可设顶点式y=a (x-1)2+4,然后把点(0,3)代入求出a 即可;(2)利用描点法画二次函数图象;(3)根据x=2-、3时的函数值即可写出y 的取值范围.【题目详解】解:根据题意可知, 二次函数的顶点坐标为(1,4),∴设二次函数的解析式为:2(1)4y a x =-+,把(0,3)代入得:1a =-;∴2(1)4y x =--+;∴解析式为:2(1)4y x =--+或2y x 2x 3=-++. (2)如图所示:(3)当2x =-时,2(21)45y =---+=-;当3x =时,2(31)40y =--+=;∵抛物线的对称轴为:1x =,此时y 有最大值4;∴当23x -<<时,y 的取值范围为:54y -<≤.【题目点拨】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的图象与性质.21、见解析.【分析】利用圆周角定理可得∠BAC=∠CPB ,∠ABC=∠APC ,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC 的形状;【题目详解】解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是弧BC 所对的圆周角,∠ABC 与∠APC 是弧AC 所对的圆周角,∴∠BAC=∠CPB ,∠ABC=∠APC ,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°=∠ACB ,∴△ABC 为等边三角形.【题目点拨】本题考查了圆周角定理、等边三角形的判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.22、(1)见解析;(2)【分析】(1)由平行四边形的性质得出∠DAC=∠BCA ,再由已知条件得出∠BAC=∠BCA ,即可得出AB=BC ,进而证明是菱形即可;(2)连接BD 交AC 于O ,证明四边形ABCD 是菱形,得出AC ⊥BD ,12AO OC AC ===OB=OD=12BD ,由勾股定理求出OB ,得出BD ,▱ABCD 的面积=12AC•BD ,即可得出结果. 【题目详解】(1)证明:如图,在平行四边形ABCD 中,∵DC AB ∥,∴DCA CAB ∠=∠,又∵BAC DAC ∠=∠,∴DCA DAC ∠=∠,∴DA DC =,∴平行四边形ABCD 是菱形.(2)解:如图,连接DB ,与AC 交于O由(1)四边形,ABCD 是菱形,∴90BOA ∠=,132AO OC AC ===, 在Rt ABO ∆中,()22231OB =-=, ∴22BD OB ==,∴菱形ABCD 的面积为2323212⨯⨯=. 【题目点拨】本题考查了平行四边形的性质、等腰三角形的判定、勾股定理、菱形面积的计算;熟练掌握平行四边形的性质,证明四边形是菱形是解决问题的关键.23、(1)w =﹣10x 2+1300x ﹣30000;(2)最大利润是1元,此时玩具的销售单价应定为65元.【分析】(1)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可; (2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【题目详解】(1)根据题意得:w =[600﹣10(x ﹣40)](x ﹣30)=﹣10x 2+1300x ﹣30000;(2)w =[600﹣10(x ﹣40)](x ﹣30)=﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+1.∵a =﹣10<0,∴对称轴为x =65,∴当x =65时,W 最大值=1(元)答:商场销售该品牌玩具获得的最大利润是1元,此时玩具的销售单价应定为65元.【题目点拨】本题考查了二次函数的应用,得出w 与x 的函数关系式是解题的关键.24、1.9米【解题分析】试题分析:在直角三角形BCD 中,由BC 与sinB 的值,利用锐角三角函数定义求出CD 的长,在直角三角形ACD 中,由∠ACD 度数,以及CD 的长,利用锐角三角函数定义求出AD 的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.2=5.9, ∵在Rt △BCD 中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD ﹣∠ACB=54°﹣36°=18°,∴在Rt △ACD 中,tan ∠ACD=, ∴AD=CD•tan ∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD 的长约为1.9米.考点:解直角三角形的应用25、第二个月的单价应是70元.【解题分析】试题分析:设第二个月降价x 元,则由题意可得第二个月的销售单价为(80)x -元,销售量为(20010)x +件,由此可得第二个月的销售额为(80)(20010)x x -+元,结合第一个月的销售额为80200⨯元和第三个月的销售额为40[800200(20010)]x ⨯--+元及总的利润为9000元,即可列出方程,解方程即可求得第二个月的销售单价. 试题解析:设第二个月的降价应是x 元,根据题意,得:80×200+(80-x )(200+10x )+40[800-200-(200+10x )] -50×800=9000,整理,得x 2-20x+100=0,解得x 1=x 2=10,当x=10时,80-x=70>50,符合题意.答:第二个月的单价应是70元.点睛:这是一道有关商品销售的实际问题,解题时需注意以下几点:(1)进货成本=商品进货单价×进货数量;(2)销售金额=商品销售单价×销售量;(3)利润=销售金额-进货成本;(4)若商品售价每降价a 元,销量增加b 件,则当售价降低x 元时,销量增加:bx a件. 26、(1)见解析;(2)354【分析】(1)连接OD ,由AB 为O 的直径得到∠ACB=90︒,根据CD 平分∠ACB 及圆周角定理得到∠AOD=90︒,再根据DE ∥AB 推出OD ⊥DE ,即可得到DE 是O 的切线; (2)过点C 作CH ⊥AB 于H ,CD 交AB 于M ,利用勾股定理求出AB ,再利用面积法求出CH ,求出OH ,根据△CHM ∽△DOM 求出HM 得到AM ,再利用平行线证明△CAM ∽△CED ,即可求出DE.【题目详解】(1)如图,连接OD ,∵AB 为O 的直径,∴∠ACB=90︒,∵CD 平分∠ACB ,∴∠ACD=45︒,∴∠AOD=90︒,即OD ⊥AB ,∵DE ∥AB ,∴OD ⊥DE ,∴DE 是O 的切线;(2)过点C 作CH ⊥AB 于H ,CD 交AB 于M , ∵∠ACB=90︒,6AC =,8BC =,∴22226810AC BC +=+=,∵S △ABC =1122AC BC AB CH ⋅⋅=⋅⋅, ∴CH=68 4.810⨯=, ∴22226 4.8 3.6AC CH -=-=, ∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90︒,∠HMC=∠DMO, ∴△CHM ∽△DOM, ∴CH HM CM DO OM DM== ∴CM DM = 4.824525HM OM ==,2449CM CD =, ∴HM=2435, ∴AM=AH+HM=307, ∵AB ∥DE, ∴△CAM ∽△CED, ∴2449AM CM ED CD ==, ∴DE=354.【题目点拨】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE的长度,根据此思路相应的添加辅助线进行证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密云区2019-2020学年度第一学期期末一、选择题 (本题共16分,每小题2分) 下面各题均有四个选项,其中只有一个..选项是符合题意的. 1.已知 ,则 的值是( )A .B .C .D .2.抛物线 的顶点坐标是( )A .(0, -2)B .(-2, 0)C .(0, 2)D .(2, 0)3.在Rt △ABC 中,∠C =90°,若 ,则∠B 的度数是( )A .30°B .45°C .60°D .75°4.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法错误的是....( ). A .当a < 5时,点B 在⊙A 内B .当1< a < 5时,点B 在⊙A 内C .当a < 1时,点B 在⊙A 外D .当a > 5时,点B 在⊙A 外6.已知反比例函数的表达式为 ,它的图象在各自象限内具有 y 随x 的增大而增大的特点,则k 的取值范围是( ).A .B .C .D . 34x y =x yy+477437732y k x=+22y x =-sin 12A =2k <-2k≤-2k >-2k ≥-7.如图,在⊙O 中,弦BC // OA ,AC 与OB 相交于点M ,∠C=20°,则∠MBC 的度数为( ).A .30°B .40°C .50°D .60°8.如图,矩形ABCD 是由三个全等矩形拼成的,AC 与DE 、EF 、FG 、HG 、HB 分别交于点P 、Q 、K 、M 、N ,设△EPQ 、△GKM 、△BNC 的面积依次为S 1、S 2、S 3.若S 1+S 3=30,则S 2的值为( ). A .6 B .8 C .10 D .12二、填空题(本题共16分,每小题2分)9. 如图,直线a // b // c ,点B 是线段AC 的中点,若DE =2,则DF 的长度为 .10.若边长为2的正方形内接于⊙O ,则⊙O 的半径是 .11.在二次函数中,y 与x 的部分对应值如下表:x ...... -1 0 1 2 3 4 ...... y......-7-2mn-2-7......则m 、n 的大小关系为m n .(填“”,“”或“”)12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值是 .>=<2(0)y ax bx c a =++≠FE D CB A cb a13.如图,铁道口的栏杆短臂长为1米,长臂长为16米.当短臂端点下降0.5米时,长臂端点升高 米.14.如图,反比例函数 的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标 .15.如图,矩形ABCD 中,AB =1,AD = A 为圆心,AD 的长 为半径做弧交BC 边于点E ,则图中DE 的弧长是 .16.已知:∠BAC .(1)如图,在平面内任取一点O ;(2)以点O 为圆心,OA 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作线段DE 的垂线交⊙O 于点P ; (4)连接AP ,DP 和PE .根据以上作图过程及所作图形,下列四个结论中:① △ADE 是⊙O 的内接三角形; ② AD=DP=PE ; ③ DE=2PE ; ④ AP 平分∠BAC . 所有正确结论的序号是 .三、解答题(共68分,其中17~22题每题5分,23~26题每题6分,27、28题每题7分)17.计算: .k y x=1019()245322-︒+(-)218.已知:在△ABC 中,点D 、点E 分别在边AB 、AC 上,且DE // BC ,BE 平分∠ABC . (1)求证:BD=DE ;(2)若AB=10,AD=4,求BC 的长.19.已知二次函数y = x 2 -4x + 3.(1)用配方法将y = x 2 -4x + 3化成y = a (x - h )2 + k 的形式; (2)在平面直角坐标系xOy 中,画出该函数的图象.(3)结合函数图象,直接写出y <0时自变量x 的取值范围 .20. 已知:如图,在⊙O 中,弦AB 、CD 交于点E ,AD=CB .求证:AE=CE .21.已知:在△ABC 中,AB=AC ,AD BC 于点D ,分别过点A 和点C 作BC 、AD 边的平行线交于点E .(1)求证:四边形ADCE 是矩形;(2)连结BE ,若 ,AD = ,求BE 的长.⊥1cos 2ABD ∠=23OEDCBA-1-2-3-4-1-2-3-4O12344321x y22.某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.23.在平面直角坐标系中,直线 y = x 与反比例函数的图象交于点A (2,m ).(1)求m 和k 的值;(2)点P (x P ,y P )是函数 图象上的任意一点,过点P 作平行于x 轴的直线,交直线y=x 于点B .① 当y P = 4时,求线段BP 的长;② 当3BP ≥时,结合函数图象,直接写出点P 的纵坐标y P 的取值范围.24.已知:如图,⊙O 的直径AB 与弦CD E ,且E 为CD 中点,过点B 作CD 的平行线交弦AD 的延长线于点F . (1)求证:BF 是⊙O 的切线;(2)连结BC ,若⊙O 的半径为2,tan ∠BCD= ,求线段AD 的长.43(0)k y x x=>(0)k y x x=>xy112345–1–2–3–4–52345–1–2–34o25.如图,点E 是矩形ABCD 对角线AC 上的一个动点(点E 可以与点A 和点C 重合),连 接BE .已知AB =3cm ,BC =4cm .设A 、E 两点间的距离为xcm ,BE 的长度为ycm .某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表: (cm)x1 1.52 2.53 3.54 5(cm)y2.53 2.42 2.412.682.943.26(说明:补全表格时相关数值保留一位小数......) (2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图 象.(3)结合画出的函数图象,解决问题:当BE =2AE 时,AE 的长度约为 cm . (结果保留一位小数........)3.004.00yx123445321O26. 在平面直角坐标系xOy 中,抛物线2258y ax ax a =-++(0a ≠). (1)写出抛物线顶点的纵坐标 (用含a 的代数式表示);(2)若该抛物线与x 轴的两个交点分别为点A 和点B ,且点A 在点B 的左侧,AB =4. ① 求a 的值;② 记二次函数图象在点 A ,B 之间的部分为W (含 点A 和点B ),若直线 y kx b =+ (0k ≠)经过(1,-1),且与 图形W 有公共点,结合函数图象,求 b 的取值范围.27. 已知:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 为BC 边中点.点M 为线段B C 上的一个动点(不与点C ,点D 重合),连接AM ,将线段AM 绕点M 顺时针旋转90°,得到线段ME ,连接E C .(1)如图1,若点M 在线段BD 上.① 依据题意补全图1;② 求∠MCE 的度数.(2)如图2,若点M 在线段CD 上,请你补全图形后,直接用等式表示线段AC 、CE 、CM 之间的数量关系 .xy112345–1–2–3–4–52345–1–2–3–4–5o图1图228.在平面直角坐标系xOy 中,⊙O 的半径为r (r >0).给出如下定义:若平面上一点P 到圆心O 的距离d ,满足1322r d r ≤≤,则称点P 为⊙O 的“随心点”. (1)当⊙O 的半径r =2时,A (3,0),B (0,4),C (32-,2),D (12,12-)中,⊙O 的“随心点”是 ;(2)若点E (4,3)是⊙O 的“随心点”,求⊙O 的半径r 的取值范围;(3)当⊙O 的半径r =2时,直线y=- x+b (b ≠0)与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在⊙O 的“随心点”,直接写出b 的取值范围 .备用图密云区2019—2020学年度第一学期期末考试初三数学试卷参考答案及评分标准2020.01一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.4; 10.; 11.= ; 12.; 13.8;1214.满足的第三象限点均可,如(-1,-2) ; 15.π; 16.①④.三、解答题(本题共68分.第17~22题,每题各5分;第23~26题,每题各6分;第27、28题,每题各7分)说明:与参考答案不同,但解答正确相应给分. 17,原式=………………………………4分=5-1+1=5 ………………………………5分18.(1)证明: ∵DE // BC ,∴∠DEB=∠EBC ………………………1分∵ BE 平分∠ABC ∴∠DBE=∠EBC ………………………2分∴∠DEB=∠DBE ∴BD=DE ………………………3分(2) 解:∵AB=10,AD=4∴BD=DE=6 ∵DE // BC ∴△ADE∽△ABC ………………………4分∴∴∴BC=15 ………………………5分 19.(1)2y x =42232212+-⋅+ADABDEBC =4106BC =………………………………2分(2)………………………………3分(3) 1 < x <3 ………………………………5分20. 证明:连接AC ………………………………1分∵AD=CB ∴AD=CB ………………………………2分∴∠ACD=∠CAB ………………………………4分∴AE=CE ………………………………5分21.(1)证明:∵AE // BC ,CE // AD ∴ 四边形ADCE 是平行四边形 …………………………1分∵AD BC , ∴∠ADC=90°, ∴ 平行四边形ADCE 是矩形 … ……………………………2分(2)解:在Rt △ABD 中,∠ADB =90° ∵ 2(2)1y x =--⊥1cos 2ABD ∠=∴∴设BD=x ,AB=2x∴AD= ∵AD =∴x=2∴BD=2 ……………………………4分∵AB=AC ,AD BC∴BC=2BD=4∵矩形ADCE 中,EC=AD= ∴BE=……………………………5分22.解:设y=ax 2+4(0a ≠) ………………………………2分∵ 图象经过(-2,2.4)∴ 4a +4=2.4a = -0.4 ………………………………4分∴ 表达式为y = -0.4x 2+4 ………………………………5分23.(1)解:m =2,k =4 ………………………………2分(2)①解:当y P = 4时点P 和点B 的纵坐标都为4∴ 将y =4分别代入到和y=x , ∴P (1,4),B (4,4)∴BP =3 ………………………………4分 ② y P ≥4或0<y P ≤1 ………………………………6分12BDAB =3x 274y x =23⊥2324.(1)证明:∵ ⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点 ∴ AB CD , ∠AED=90° ………………………………1分∵ CD // BF∴ ∠ABF =∠AED =90°∴ ABBF ………………………………2分∵ AB 是⊙O 的直径∴ BF 是⊙O 的切线 ………………………………3分(2)解:连接BD∴∠BCD =∠BAD ………………………………4分∵ AB 是⊙O 的直径∴∠ADB=90°∵ tan ∠BCD= tan ∠BAD= ∴∴设BD =3x ,AD =4x∴AB =5x ………………………………5分 ∵ ⊙O 的半径为2,AB =4∴5x =4,x =∴AD =4x =………………………………6分25. 解:(1)2.5; ………………………………2分(2)画图象……………………………34BD AD =45165⊥43⊥…5分(3)1.2(1.1—1.3均可) ………………………………6分26. (1)4a +8 ………………………………1分(2)①解:∵抛物线的对称轴是x =1又∵ 抛物线与x 轴的两个交点分别为点A 和点B ,AB =4∴ 点A 和点B 各距离对称轴2个单位∵ 点A 在点B 的左侧∴A (-1,0),B (3,0) (3)分∴将B (3,0)代入2258y ax ax a =-++∴9a -6a +5a+8=0 a=-1 ………………………………4分②当 y kx b =+(0k ≠)经过(1,-1)和A (-1,0)时, 当 y kx b =+(0k ≠)经过(1,-1)和B (3,0)时, ∴………………………………6分27 . (1) ① 补全图1:………………………………2分10k b k b +=-⎧⎨-+=⎩12b =-130k b k b +=-⎧⎨+=⎩32b =-1322b b ≥-≤-或D C AB M② 解:过点M 作BC 边的垂线交CA 延长线于点F∴ ∠FMC =90°∴ ∠FMA+∠AMC=90°∵将线段AM 绕点M 顺时针旋转90°,得到线段ME∴∠AME=90°∴ ∠CME+∠AMC=90°∴∠FMA= ∠CME3分在Rt △FMC 中,∠FCM=45°∴∠F=∠FCM=45°∴FM=MC ………………………………4分在△FMA 和△CME 中∴∴ ∠MCE=∠F=45°(2)AC CE -= ……………7分28.(1)A ,C ………………………………2分(2)∵点E (4,3)是⊙O 的“随心点”∴OE =5,即d =5若, ∴r =10 ………………………………3分若 ,FM MC FMA CME AM ME =⎧⎪∠=∠⎨⎪=⎩FAM CME ∆≅∆125r =352r =………………………………4分∴………………………………5分(3) ………………7分103r =10310r ≤≤321132b b -≤≤-≤≤或。

相关文档
最新文档