第2章-导热理论基础以及稳态导热

合集下载

传热学-第二章 导热基本定律及稳态导热第一讲-动力工程

传热学-第二章 导热基本定律及稳态导热第一讲-动力工程
大多数液体(分子量M不变): T
液体的热导率随压力p的升高而增大 p
2-3 导热微分方程式及单值性条件
理论解析的基本思路
简化
物理问题
数学模型
求解
热流量
温度场
导热定律
控制方程 定解条件
q -grad T [W m2 ]
建立导热体内的温度分布计算模型是导热理论 的首要任务
理论基础:傅里叶定律 + 热力学第一定律
导入与导出微元体净热量:
qx dxdydz d
x
[J]
d 时间内、沿 y 轴方向
导入与导出微元体净热量:
qy dxdydz d
y
[J]
d 时间内、沿 z 轴方向导
入与导出微元体净热量:
qz dxdydz d
z
[J]
D. 导入与导出净热量:
[] ( qx qy qz )dxdydzd
[J]
dQx qx dydz d [J]
B. d 时间内、沿 x 轴方向、
经 x+dx 表面处dydz导出的热量:
dQxdx qxdx dydz d [J]
qxdx
qx
qx x
dx
C. d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
[J]
d 时间内、沿 x 轴方向
2、推导过程 在导热体中取一微元体,能量平衡分析 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中:
[导入与导出净热量] + [内热源发热量] = [热力学能的增加]
数学模型建立基本思路 能量平衡分析
(1)导入与导出微元体的净热量

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。

2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。

① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。

2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。

2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。

若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。

3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。

传热学-第2章-导热的理论基础

传热学-第2章-导热的理论基础
温度是标量,因而温度场是标量场
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性

传热学第二章--稳态导热精选全文

传热学第二章--稳态导热精选全文

t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属

第二章--稳态热传导(导热理论基础)

第二章--稳态热传导(导热理论基础)
具有稳态温度场的导热过程我们常称之为稳态导热;具有非稳态温 度场的导热过程我们常称之为非稳态导热。
2021/3/10
2
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
2>.等温面与等温线:(温度场习惯上用等温面图或等温线图来表 示,如图2-1)
等温线
a.等温面:同一时刻温度场中所有 温度相同的点构成的面。
第二章 稳态热传导(导热理论 基础)
一、概述 二、傅里叶(J.Fourier)定律 三、导热系数 四、导热微分方程 五、导热微分方程的单值性条件 六、解决一具体导热问题的一般步骤
2021/3/10
1
导热理论基础
一、概述:
一般我们认为:导热是发生在物体中的宏观现象,故将物质看作是 连续介质。
导热基础理论的主要任务:
3
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
3>.温度梯度gradt:两等温面间的温差△t与其法线方向
的距离△n比值的极限。在单位距离内温度沿法线方
向上的变化值最大、最显著,此时的温度变化率称
之为温度梯度。即: gr a lid m n ttn n n t
n 0
t+△t t t-△t
2.傅里叶(J.Fourier)定律:
在导热现象中,单位时间内通过给定面积的传热量,正比例于该处 垂直导热方向的截面面积及此处的温度梯度,其数学表达式为:
q g A g rrW a a / W m 2 d dtt
几点问题:
1>.负号表示热量传递指向温度降低的方向,与温度梯度方向相反。
2>.温度梯度是引起物体内热量传递的根本原因。

第二章 导热的基本定律及稳态导热

第二章 导热的基本定律及稳态导热

第二章导热的基本定律及稳态导热从本章开始将深入的讨论三种热量传递方式的基本规律。

研究工作基本遵循经典力学的研究方法,即提出物理现象、建立数学模型而后分析求解的处理方法,对于复杂问题亦可在数学模型的基础上进行数值求解或试验求解。

采用这种方法,我们就能够达到预测传热系统的温度分布和计算传递的热流量的目的。

导热问题是传热学中最易于用数学方法处理的热传递方式。

因而我们能够在选定的研究系统中利用能量守恒定律和傅立叶定律建立起导热微分方程式,然后针对具体的导热问题求解其温度分布和热流量。

最后达到解决工程实际问题的目的。

2-1 导热的基本概念和定律1温度场和温度梯度1.1温度场由于热量传递是物质系统内部或其与环境之间能量分布不平衡条件下发生的无序能量的迁移过程,而这种能量不平衡特征,对于不可压缩系统而言,可以用物质系统的温度来表征。

于是就有“凡是有温差的地方就有热量传递”的通俗说法。

因此,研究系统中温度随时间和空间的变化规律对于研究传热问题是十分重要的工作。

按照物理上的提法,物质系统内各个点上温度的集合称为温度场,它是时间和空间坐标的函数,记为yxft=2-1(τz),,,式中,t—为温度; x,y,z—为空间坐标; -- 为时间坐标。

如果温度场不随时间变化,即为稳态温度场,于是有yxft=2—2(z,),稳态温度场仅在一个空间方向上变化时为一维温度场,t=2—3f)(x稳态导热过程具有稳态温度场,而非稳态导热过程具有非稳态温度场。

1.2等温面温度场中温度相同点的集合称为等温面,二维温度场中则为等温线,一维则为点.取相同温度差而绘制的等温线(对于二维温度场)如图2-1所示,其疏密程度可反映温度场在空间中的变化情况。

等温面不会与另一个等温面相交,但不排除十分地靠近,也不排除它可以消失在系统的边界上或者自行封闭。

这就是等温面的特性。

1.3温度梯度温度梯度是用以反映温度场在空间的变化特征的物理量。

按照存在温差就有热传的概念,沿着等温面方向不存在热量的传递。

传热学(第二章)

传热学(第二章)

⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
边界条件:r=r1时,t=t1;r=r2时,t=t2 对(2-25)式积分两次,得其通解: t = c1 ln r + c2 将边界条件代入通解,确定积分常数
t2 − t1 t −t c2 = t1 − ln r 2 1 ln( r2 / r ) ln( r2 / r ) 1 1 t −t t = t1 + 2 1 ln( r / r ) (2-26) 1 ln( r2 / r ) 1 dt λ t1 − t2 q = −λ = (2-27) dr r ln( r2 / r ) 1 c1 =
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁、圆筒壁、球壳和其他变截面物体的导热 通过平壁、圆筒壁、
• 1∂ ∂T 1 ∂ ∂T ∂ ∂T ∂T (λr + 2 (λ ) + (λ ) + Φ = ρcp ∂τ r ∂r ∂r) r ∂ϕ ∂ϕ ∂z ∂z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 − t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁。内、外半径为r1、r2,其内外表面均匀 恒定温度为t1、t2,球壁内的温度仅沿半径变化,等温面是同心球面。 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等。 Φ = −4πr2λ dr dr ⇒Φ 2 = −4πλdt r

2-4第二章导热基本定律及稳态导热

2-4第二章导热基本定律及稳态导热

t )
hP(t
-t

0
x x
Ac
令: t t
m
hP const
Ac
导热微分方程变为:
d 2
dx 2
m2
λ为常数
方程的通解为:
c1emx c2emx
§2-4 通过肋片的导热 c e c e m长x江大学机械工程学m院x 1 2 School of Mechanical Engineering
长江大学机械工程学院
School of Mechanical Engineering
作业 1-1、1-9、1-12、1-17
知识回顾:
1.通过平壁的稳态导热
长江大学机械工程学院
School of Mechanical Engineering
q t t 2 1
单层(λ= const)
2 ql
1
Φ 2 rlq tw1 tw2
tf1 tf2
ln(r2 r1)
2 l
1 ln r2 1
2 r1h1 2 r1 2 r2h2
长江大学机械工程学院
School of Mechanical Engineering
3.变截面或变热导率的导热问题
Φ (t)A(x) dt x2 dx t2 (t)dt (t2 t1)
x 0,t t0, 0
c1emx c2emx
c2
0
emH emH emH
等截面直肋内的温度分布:

0
ch[m(H x)] ch(mH )
sinh x ex ex 2
cosh x ex ex 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 2 -1 导热基本定律 一 、温度场 (Temperature field) 1 、概念 温度场是指在各个时刻物体内各点温度 分布的总称。 由傅立叶定律知,物体的温度分布是坐 标和时间的函数:
t f x, y, z,
其中 x, y , z 为空间坐标, 为时间坐标。

2 、温度场分类 1 )稳态温度场(定常温度场)
料称各向异性材料。此类材料 必须注明方
向。相反,称各向同性材料。
§ 2-2 导热微分方程式及定解条件
由前可知:
( 1 )对于一维导热问题,根据傅立叶定 律积分,可获得用两侧温差表示的导热量。 ( 2 )对于多维导热问题,首先获得温度 场的分布函数,然后根据傅立叶定律求得空 间各点的热流密度矢量。
一 、导热微分方程 1 、定义:根据能量守恒定律与傅立叶定律 ,建立导热物体中的温度场应满足的数学表 达式,称为导热微分方程。
d 时间内、沿 x 轴方向导入与导出微元体净热量
d x d x dx qx dxdydzd x
d 时间内、沿 y 轴方向导入与导出微元体净热量
d y d y dy qy y dxdydzd
d 时间内、沿 z 轴方向导入与导出微元体净热量
综上说明: ( 1 )导热问题仍然服从能量守恒定律; ( 2 )等号左边是单位时间内微元体热力学能的 增量(非稳态项); ( 3 )等号右边前三项之和是通过界面的导热使 微分元体在单位时间内 增加的能量 ( 扩散 项 ) ; ( 4 )等号右边最后项是源项; ( 5 )若某坐标方向上温度不变,该方向的净导 热量为零,则相应的扩散项即从导热微分方程中消 失。
t2
0 x δ
q 是该处的热流密度矢量。
负号是因为热流密度 与温度梯度的方向不 一致而加上
t q gradt n n
dt t1
n dn t t+dt
傅里叶定律可表述为: 系统中任一点的热流 密度与该点的温度梯 度成正比而方向相反
t2
0 δ x
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
②导热系数为常数 、无内热源
t 2t 2t 2t a( 2 2 2 ) x y z
③导热系数为常数 、稳态
t t t 2 2 0 2 x y z
2 2 2
·
④导热系数为常数 、稳态 、无内热源
2t 2t 2t 2 2 0 2 x y z
三、其他坐标下的导热微分方程
对于圆柱坐标系
q t 2 t 1 t 1 2 t 2 t a( 2 2 2) v r r r 2 z c r
对于球坐标系
q t 1 2 t 1 t 1 2t a[ 2 (r ) 2 (sin ) 2 ] v r r sin c r r r sin 2 2
q
——热流密度(单位时间内通过单位
面积的热流量) t ——物体温度沿 x 轴方向的变化率 x
当物体的温度是三个坐标的函数时,其形 式为: t q gradt n n
gradt 是空间某点的温度梯度;
n dt t1 dn t t+dt
n 是通过该点等温线上的
法向单位矢量,指向温 度升高的方向;
d z d z dz qz dxdydzd z
[导入与导出净热量]:
qx q y qz d d ( )dxdydzd x y z
傅里叶定律:
t q x x
t q y y
t q z z
t t t d [ ( ) ( ) ( )]dxdydzd x x y y z z
第二章 导热的基本定律稳态导热
§2-1 导热的基本概念和定律 §2-2 导热微分方程 §2-3 一维稳态导热
§2-4 通过肋片的导热分析
1 、重点内容: ① 傅立叶定律及其应用; ② 导热系数及其影响因素;
③ 导热问题的数学模型。
2 、掌握内容:一维稳态导热问题的分析解法 3 、了解内容:多维导热问题
不同物质的导热性能不同:
金属 非金属
固体 液体 气体
纯铜 398w / m C
大理石 2.7w / m C
0˚C时: 冰 2.22w / m C
水 0.551w / m C 蒸汽 0.0183 / m C w
2 、保温材料(隔热、绝热材料)
二、傅里叶定律的严格表述 在导热现象中,单位时间内通过给定截面所 传递的热量,正比例于垂直于该截面方向上
的温度变化率,而热量传递的方
向与温度升高的方向相反,即 ~ t A x
t 数学表达式: A x
3 )傅里叶定律用热流密度表示:
t q x
(负号表示热量传递方向与温度升高方向相反) 其中
t+Δ t
t t-Δ t
q gradt
负号是因为热流密度 与温度梯度的方向不 一致而加上 傅里叶定律可表述为: 系统中任一点的热流 密度与该点的温度梯 度成正比而方向相反
dt t1
n dn t t+dt
t2
0 δ x
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
把导热系数小的材料称保温材料。
我国规定:≤350 ℃ 时,≤ 0.12w/mk
保温材料导热系数界定值的大小反映了一个国家保
t
温材料的生产及节能的水平。越小,生产及节能的
水平越高。
我国50年代 90年代 GB427-92
0.23W/mk 0.12w/mk
80年代 GB4272-84 0.14w/mk
2、 d时间微元体内热源的发热量
v qv dxdydzd
3、微元体在d时间 内焓的增加量
c t dxdydzd
d v=
将以上各式代入热平衡关系式,并整理得:
t t t t c ( ) ( ) ( ) qv x x y y z z
三、导热系数(导热率、比例系数)
1、定义
傅利叶定律给出了导热系数的定义 : q / gradt w/m· ℃
导热系数在数值上等于单位温度梯度作用下单位 时间内单位面积的热量。 导热系数是物性参数,它与物质结构和状态密切 相关,例如物质的种类、材料成分、温度、湿度、 压力、密度等,与物质几何形状无关。 它反映了物质微观粒子传递热量的特性。
t f ( x, y, z, )
若物体温度仅一个方向有变化,这种情况 下的温度场称一维温度场。
t 稳态温度场 0
非稳态温度场
稳态导热 ( Steady-state conduction ) 非稳态导热 (Transient conduction)
t 0
三维稳态温度场:
一维温度场:
同一种物质的导热系数也会 因其状态参数的不同而改变, 因而导热系数是物质温度和 压力的函数。 一般把导热系数仅仅视为温 度的函数,而且在一定温度 范围还可以用一种线性关系 来描述
0 (1 bT)
3、各向异性材料 指有些材料(木材,石墨)各向结构
不同,各方向上的 也有较大差别,这些材
2 、导热微分方程的数学表达式 导热微分方程的推导方法,假定导热物体是 各向同性的。
§2-2导热微分方程(Heat Diffusion Equation) 一、导热微分方程的推导
傅里叶定律:
q gradt
建立导热微分方程,可以揭示连续温度场随空间坐 标和时间变化的内在联系。 理论基础:傅里叶定律 + 能量守恒方程
保温材料热量转移机理 ( 高效保温材料 )
高温时:
( 1 )蜂窝固体结构的导热 ( 2 )穿过微小气孔的导热 更高温度时: ( 1 )蜂窝固体结构的导热 ( 2 )穿过微小气孔的导热和辐射
超级保温材料 采取的方法: ( 1 )夹层中抽真空(减少通过导热而造成 热损失) ( 2 )采用多层间隔结构( 1cm 达十几层) 特点:间隔材料的反射率很高,减少辐 射换热,垂直于隔热板上的导热系数可达: 10 - 4w/mk
d vv= d
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方 向、经 x 表面导入的热量:
d x qx dydzd
d 时间内、沿 x 轴方 向、经 x+dx 表面导出 的热量:
d xdx qxdx dydzd
q x dx q x qx dx x
等温面上没有温差,不会有热 传递。 不同的等温面之间,有温差, 有导热
温度梯度是用以反映温度场在空间的变化特征的 物理量。
系统中某一点所在的等温面与相邻等温面 之间的Байду номын сангаас差与其法线间的距离之比的极限 为该点的温度梯度,记为gradt。
t t t t t gradt Lim n i j k n 0 n n x y z
(Steady-state conduction)
是指在稳态条件下物体各点的温度分布不随 时间的改变而变化的温度场称稳态温度场, 其表达式:
t f ( x, y, z )
2 )非稳态温度场(非定常温度场) (Transient conduction) 是指在变动工作条件下,物体中各点的温 度分布随时间而变化的温度场称非稳态温 度场,其表达式:
定义:根据能量守恒定律与傅立叶定律,
建立导热物体中的温度场应满足的数学 表达式,称为导热微分方程。
假设:(1) 所研究的物体是各向同性的连续介质 (2) 热导率、比热容和密度均为已知 (3) 物 体 内 具 有 均 匀 分 布 内 热 源 ; 强 度 qv [W/m3]; qv 表示单位体积的导热体在单位时间内 放出的热量 导热体内取一微元体,根据能量守恒定律, 单位时间净导入微元体的热量d 加上微元体内热 v 源生成的热量 应等于微元体焓的增加量
相关文档
最新文档