第二章 稳态导热-1.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
稳态导热
t 0
稳态导热时,物体的温度不随时间发生变化,即
物体的物性为常数,导热微分方程的形成如下:
2t 2t 2t qv 2 2 0 2 x y z
在没有内热源的情况下:
2 2 2 t t t 2 t 2 2 2 0 x y z
q t1 t 2
1

t 2 t3
1
2

t3 t 4
t1
2
3
t2 t3
3
q
1 t2 t1 q 1 3 t3 t 4 q 3 2 t3 t 2 q 2
t4
11
3)接触热阻: 实际的两个固体表面之间不可能完全接触,只能是 局部的、甚至存在点接触,如图所示。只有在界面 上那些真正接触的点上,温度才是相等的。 当未接触的空隙中充满空气或其它气体时,由于气 体的热导率远远小于固体 ,就会对两个固体间的导热 过程产生附加热阻Rc,称之为接触热阻。 由于接触热阻的存在,使导热过程中两个接触表面 之间出现温差tc。
d dt 0 (1 bt) 0 dx dx
b 2 0 (t t ) c1 x c2 2
最后可求得其温度分布
t w1 t w2 b 2 b 2 t t (t w1 t w1 ) 2 2 b 1 2 (t w1 t w2 ) x
2
2
t1 b<0 t2 0 δ
λ =λ 0(1+bt) b>0
d t 当b 0时 : 0 (下凹) 2 dx dห้องสมุดไป่ตู้2t 当b 0时 : 0 (直线) 2 dx 2 d t 当b 0时 : 0 (上凹) 2 dx
2
x
7
温度分布曲线的凹向取决于系 数b的正负。 当b>0,λ=λ0(1+bt),随着t增大,b<0 λ增大,即高温区的导热系数大 于低温区。Q=-λA(dt/dx),所以 高温区的温度梯度dt/dx较小, 而形成上凸的温度分布。
t1 t2 0 δ
λ =λ 0(1+bt) b>0
x
当b<0,λ=λ0(1+bt),随着t增大,λ减小,高温区的温度梯度 dt/dx较大。
8
2) 多层平壁的一维稳态导热
多层平壁:由几层不同材料组成 例:房屋的墙壁 — 白灰内层、 水泥沙浆层、红砖(青砖) 主体层等组成 假设各层之间接触良好, 可以近似地认为接合面上 各处的温度相等
t t t t c ( ) ( ) ( ) Φ x x y y z z

t1 t2
根据上面的条件可得:
t 0 ( ) x x
控制 方程
d 2t dx 2

0
3
x
dt 0 2 dx x 0, t t1 x , t t2
1
§2 一维稳态导热
1 通过平壁的导热
条件:平壁、一维稳态导热(x方向) 长和宽 ≥ 10 厚度 内容:热流量计算、温度分布。
1)温度分布 已知平壁的壁厚为,两个表面温度: 分别维持均匀而恒定的温度t1和t2,即 边界条件:
x 0 : t t1 x : t t2
2
a 几何条件:单层平板; b 物理条件:、c、 已知;无内热源 c 时间条件:稳态导热 : t 0
0.0651 0.000105 275
0.0940 W/(m k)
q
0.0940 (t1 t 2 ) (500 50) 423 W/m 2 0.1
2
完整的数学描写
直接积分,得:
dt c1 t c1 x c2 dx t2 t1 c1 带入边界条件: c2 t1
t
t2 t1

x t1
4
t2 t1 线性 t x t1 分布 带入Fourier 定律 d t t t 2 1 dx
9 2019/1/5
q
t1 t 2
1

t 2 t3
1
2

t3 t 4
t1
t2 t3
2
3
3
q t4
由和分比关系
q
1
1
+ 2
t1 t 4
2

3
3
t1
r1
t2 r2
t3
r3
t4
推广到n层壁的情况:
q t1 t n 1
i i 1 i
n
10
层间分界面温度
13
例 一锅炉炉墙采用密度为 300kg/m3 的水泥珍珠岩制 作,壁厚 = 100 mm,已知内壁温度t1=500℃,外壁 温度 t2=50℃,求炉墙单位面积、单位时间的热损失。 [解] 材料的平均温度为: t = (t1 + t2)/2 = (500 + 50)/2 = 275 ℃ 查得:
{}W/(mk) 0.0651 0.000105 {t}C
x t2 Δt
t1
t
12
【例】 有一砖砌墙壁,厚为 0.25m 。已知内外壁面
的温度分别为 25℃和 30℃。试计算墙壁内的温度 分布和通过的热流密度。
解:由平壁导热的温度分布
t
t2 t1

x t1
代入已知数据可以得出墙壁内 t=25+20x的温度分布表达式。
从附录查得红砖的λ=0.87W/(m℃),于是可以 计算出通过墙壁的热流密度 q (t1 t2 ) 17.4W / m2
6
b t t w1 1 t t w1 2 x b t w2 t w1 1 t t w2 w1 2
二次曲线方程
2
d t b dt b dt 2 dx 1 bt dx 0 dx
t 2 t1 t q t ( A )
r
R A
热阻分析法适用于一维、
稳态、无内热源的情况
5
无内热源,λ不为常数(是温度的线性函数)
( 0 1 bt )
λ0、b为常数
dt 0 (1 bt) c1 dx
相关文档
最新文档