合并同类项解方程
人教版七年级数学上册第3章第3节《合并同类项解一元一次方程》课后练习题(附答案)

人教版七年级数学上册第3章第3节《合并同类项解一元一次方程》课后练习题一.选择题1.方程-2x=3的解是()A.x=−32B.x=−23C.x=32D.x=232.方程2x-1=3的解是()A.-1 B.- 2 C.1 D.23.方程x+x=2+2的解是()A.x=1 B.x=-1 C.x=2 D.x=04.方程2x-3x=2+1的解为()A.x=1 B.x=-1 C.x=3 D.x=-3A.B C.1 D.-16.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1C.-3D.3解析:∵2x与x-3的值互为相反数,∴2x+x-3=0,∴x=1.故选B.二.填空题7.已知代数式8x-7与6-2x的值互为相反数,那么x的值等于.8.方程2x-3x=1+2的解为.9.方程:-3x-2x-1=9的解是.10.如果4m-5的值与3m-9的值互为相反数,那么m等于.三.解答题11.解下列方程(1)3x+4x-6x=-2+7.(2)4x-2x=12+4.(3)5x-7x=2+8.(4)2x-3x=5+2(5)2y-5y=7-112.根据以下对话,分别求小红所买的笔和笔记本的价格.答案:1.A 2.D 3.C4.D解析:合并得:-x=3.解得:x=-3.5.A6.B解析:∵2x与x-3的值互为相反数,∴2x+x-3=0,∴x=1.8.x=-3 9.x=-210.2解析:根据题意得:4m-5+3m-9=0,移项合并得:7m=14,解得:m=2.11.解:(1)合并同类项得,x=5.(2)合并得:2x=16,解得:x=8.(3)合并同类项得:-2x=10方程两边同除以-2得:x=-5(4)合并同类项得,-x=7,化系数为1得,x=-7;(5)合并同类项,得-3y=6系数化为1,得y=-212.解:设笔的价格为x元/支,则笔记本的价格为3x元/本。
由题意,10x+5×3x=30解之得x=1.2,3x=3.6答:笔的价格为1.2元/支,则笔记本3.6元/本。
合并同类项解方程练习题

合并同类项解方程练习题
解方程是数学中的基础概念,对于我们提高数学解题能力至关重要。
本文将为大家介绍合并同类项解方程的练习题,帮助大家提升解方程
的能力。
1. 3x + 2y - 4x + 7y = 16
首先,我们将方程中的变量项进行合并:
(3x - 4x) + (2y + 7y) = 16
-x + 9y = 16
2. 2a + 3b + 4a + 5b = 27
同样地,我们将方程中的变量项进行合并:
(2a + 4a) + (3b + 5b) = 27
6a + 8b = 27
3. 5c - 6d + 8c + 9d = 10
这道题中有两个变量项c和d,我们分别合并它们:
(5c + 8c) + (-6d + 9d) = 10
13c + 3d = 10
4. 4x - 3y + 2x - y = -5
合并同类项:
(4x + 2x) + (-3y - y) = -5
6x - 4y = -5
5. 2a - 3b - 4a + 5b = 12
合并同类项:
(2a - 4a) + (-3b + 5b) = 12
-2a + 2b = 12
通过以上的练习题,我们可以看到合并同类项对于解方程的简化起到了重要的作用。
通过将相同变量项进行合并,我们可以更清晰地观察到变量间的关系,从而更容易解出方程中的未知数值。
希望通过这些练习题,大家能够加深对合并同类项解方程的理解,并能在实际应用中熟练地运用。
解方程是数学中的基本技能之一,我们要不断地进行练习和巩固,提高自己的解题能力。
相信只要勤加练习,我们一定能够在解方程问题上取得更好的成绩!。
合并同类项解一元一次方程--教学设计 【完整版】

《合并同类项解一元一次方程》教学设计一、教学目标1、掌握合并同类项解“ax+bx=c”类型的一元一次方程.2、经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
二、重点、难点重点:学会用合并同类项法解“ax+bx=c”类型的一元一次方程。
难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
三、教学过程(一)、衔接旧知,引入课题。
同学们,前面我们学习了用等式的基本性质解一元一次方程,今天我们就来学习另一种解法—合并同类项解一元一次方程。
(出示课题),接着展示本节课的教学目标。
(二)复习巩固1、什么是同类项如何合并同类项2、合并同类项:(1)x-2x+4x(2)5y+y-2y(3)2a-1.5a -0.5a3、温习小学六年级用方程解决实际问题的步骤:审题→设未知数→找等量关系→列方程→解方程→检验→答。
(三)创设问题,探究新知问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机首先让学生读题目。
找出题目中的关键信息有哪些,弄懂题目中的已知量与未知量之间的关系。
提出问题:如何列方程解决这个问题呢师生共同分析解决问题解:设前年购买计算机x台。
可以表示出:去年购买计算机2x 台,今年购买计算机4x台。
你能找出问题中的相等关系吗前年购买量+去年购买量+今年购买量=140台,列方程为:x+2x+4x=140思考:你有办法解这个方程吗如何将方程转化为“x=a”的形式学生观察,思考,教师引导学生说出解题过程。
合并同类项,得:7x=140系数化为1,得:x=20教师演板过程。
思考:上面解方程中“合并同类项”起了什么作用学生思考交流讨论后回答。
解方程中的“合并同类项”起到了“化简”的作用。
即:把含有未知数的项合并,从而把方程转化为“ax=b”,使其更接近“x=a”的形式.(其中a,b是常数)。
(四)例题讲解例1:解方程通过上面解方程,你能总结一下“ax+bx=c”类型的方程解法步骤吗(1)合并同类项;(2)未知数的系数化为1.(五)巩固新知练一练:1、小明在解方程3x –4x=7时,是这样写解的过程的: 3x –4x=7=-x=7=x=-7(1)小明这样写对不对(2)应该怎样写注意:(1).解方程的步骤的格式(2.)合并时的符号问题 练习教材P88:1,解下列方程(1)5x-2x=9(2)21x+23x=7(3)-3x+=10(4)=×3-5(六)课堂小结1.“ax+bx=c”类型方程解法步骤(1)合并同类项;(2)系数化为1.2.用一元一次方程分析并解决实际问题的基本过程:。
3.2.1合并同类项解一元一次方程(教案)

举例:在方程2x + 3 = 7中,将3移项到等号右边时,需要变为-3。
(2)合并同类项时系数的处理:学生在合并同类项时,可能会忽略系数相加减的规则,这是一个难点。
举例:对于方程3x + 4x = 20,学生需注意系数3和4相加得7。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一元一次方程的应用:将实际问题转化为数学模型,并求解,是学生容易感到困惑的地方。
举例:当遇到“小明买了3本书和4本书一共花了20元”这样的问题时,学生需要学会将其转化为方程3x + 4x = 20。
(4)解决含有未知数系数的方程:对于系数不同的方程,学生需要学会通过运算将系数变为相同,然后进行合并同类项。
3.培养学生的数学建模能力:让学生在实际问题中运用一元一次方程,学会将现实问题转化为数学模型,从而增强数学应用意识。
4.培养学生的合作交流能力:通过小组讨论和课堂互动,引导学生分享解题思路,提高合作交流能力,培养团队精神。
三、教学难点与重点
1.教学重点
(1)合并同类项法则的应用:重点在于让学生掌握合并同类项的法则,并能够熟练应用于简化方程,为解一元一次方程打下基础。
具体内容包括以下方程类型的解题方法:
(1)x + a = b
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案

3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
《合并同类项解一元一次方程》评课稿

WORD格式
《合并同类项解一元一次方程》评课稿
今天早上我们数学教研组全体老师听了我校叶灵祥老师七年级
二班的《合并同类项解一元一次方程》一课。
叶老师是我校数学教研
组的老前辈,具有很扎实的教学基本功,教学经验非常丰富。
下面我
谈谈自己对于这节课粗浅的看法。
优点:
叶老师这节课课前准备充分,教学环节齐全,教学效果显著,优
点众多,最让我印象深刻的有以下两个方面:
1.叶老师作为一名老教师,这节课的精神状态极佳,教学富有激情,声音洪亮,表
述准确,令人感到精神振奋。
因此能很好地吸引学生的注意力,课堂效率高。
2.叶老师本节课很好地把握住了七年级学生的心理特点。
课堂语言富有亲和力和极强的启发引导作用,能很好的启发学生思考,引导学生学习,主导作用发挥明显。
同时,教者注重以学生为主体,能够让学生思考探究,经历知识的产生过程,体现了学生的主体地位。
不足:
1.课堂中学生的合作学习较少,可适当增加学生的合作学习。
通过合作学习可以
很好的培养学生的合作意识和团队协作精神。
2.作为一节运算型的数学课,教学中应该再多些课堂练习。
通过练习来进一步巩固所学,提高运算能力。
专业资料整理。
人教版七年级数学上册《合并同类项解一元一次方程》教学设计

3.2解一元一次方程(一)——合并同类项(第1课时)一、内容和内容解析(一)内容一元一次方程的合并同类项解法,用方程模型解决实际问题.(二)内容解析本章的核心内容是“解方程”和“列方程”.方程的解法是初中数学的核心内容,合并同类项是解方程的基本步骤之一.“列方程”在所有方程类问题中占有重要的地位,贯穿于全章始终.从实际背景中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然地反映所讨论的内容是从实际需要中产生.“解方程”就是将复杂的方程向x=a的形式转化,其中化归思想起了指导作用.化归的思想在以后二元一次方程组.一元一次不等式.分式方程.一元二次方程的解法中都有所体现.基于以上分析,确定本节课的教学重点:确定实际问题中的相等关系,建立形如ax+bx=c+d的方程,利用合并同类项解一元一次方程.二、目标和目标解析(一)目标(1)理解合并同类项,会解形如ax+bx=c+d的方程,体会解方程中的化归思想.(2)能够从实际问题中列出一元一次方程,进一步体会方程的作用及应用价值.(二)目标解析(1)达成目标(1)的标志是:知道合并同类项的必要性;给定一个方程,能够准确的进行合并同类项解方程.知道合并同类项的作用可以简化方程,使方程向x=a的形式转化,在此过程中体会化归思想.(2)达成目标(2)的标志是:能够根据问题建立形如ax+bx=c的方程,观察与分析方程的特征,进而能够讨论出通过合并同类项解这类方程;在“列方程”“解方程”的过程中,能够体会方程思想的应用价值.三、学情分析学生已经接触并掌握了合并同类项法则,进一步系统学习解一元一次方程的有关知识。
故本节课只是合并同类项法则在一元一次方程中的延伸。
再者,七年级的学生年龄和认知水平还较低,学生爱表现.有较强的好胜心理等特征,因此,在教学过程中结合学生的这些特征是上好这节课的关键所在。
四、教学手段新课标提倡教学中要重视现代教育技术.要引导学生独立思考.自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的.探索性的数学活动中去.所以本节课充分利用多媒体课件等教学手段创设教学情境,引导学生观察.探索.发现.归纳来激发学生学习兴趣.激活学生思维,以利于突破教学重点和难点,提高课堂教学效益.五、学法指导自主探究法:主动观察→分析→思考→比较→探索→归纳→例题探索→练习挑战→巩固提高→总结.六、目标要求,教学重难点(一)教学目标:1.知识与技能(1)会找相等关系,列一元一次方程;(2)会用合并同类项解ax+bx=c+d型一元一次方程.2.数学思考(1)学习分析问题,找到相等关系,并通过列方程解决问题的方法;(2)通过学习合并同类项解一元一次方程,体会到式子变形的转化作用.3.解决问题体会解方程中的化归思想,会合并同类项解ax+bx=c+d 型方程,进一步认识如何用方程解决实际问题.4.情感态度通过学习“合并同类项”,体会古老的代数中的“对消”和“还原”中“对消”的思想,激发数学学习的热情. 感受数学文化.(二)教学重点:1.找相等关系,列一元一次方程;2.用合并同类项解一元一次方程. (三)教学难点:分析、理解题意,找相等关系列方程,正确地合并同类项,解一元一次方程. 七、教学过程设计 (一)创设情境,提出问题(用课件出示背景资料) 欣赏小诗太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清.通过这节课的学习讨论,相信同学们一定能回答这个问题. (二)回顾旧知,打下伏笔温故知新:首先复习合并同类项法则和等式 性质,然后秀一秀(见练习一题.二题),通过做题的方式,使学生回顾前面学过的知识,给 本节课的学习,做好铺垫作用.(三)介绍数学史,创设情景约公元825年,中亚细亚数学家 阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本为《对消与还原》.“对消”与“还原”是什么意思呢? (四)提出问题,建立模型出示教科书86页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?引导学生思考.交流:独立思考用什么知识解决该问题?先独立思考,再合作交流如何列方程?师生讨论分析:1.设未知数:前年购买计算机x 台2.列代数式:去年购买计算机2x 台, 今年购买计算机4x 台3.分析题意找出等量关系:前年购买量+去年购买量+今年购买量=140台 4.根据等量关系列方程:x+2x+4x=140教师设问:还有其他列法吗?通过探究得出结论: 列法二 列法三教师再设问:如何解上面的方程?如何将方程转化为x=a 的形式?(五)合作探究,归纳方法如何将此方程转化为x =a (a 为常数)的形式?在学生说出“合并同类项”后,教师板演解方程过程:及时归纳得出结论.x+2x+4x=1407x=140X=20活动目的:初步渗透化归思想,采用框图表示解方程,使解法中各步骤先后顺序较清晰,渗透算法程序化的思想.合并同类项系数化为11529x x ()-=32722x x()+=330.510xx ()-+=474.52.535x x ()-=-(六)例题规范,巩固新知出示课本87页例1采用学生叙述,教师板书的师生合作方式完成.(七)基础训练,学以致用 解下列方程:学生练习:学生练习,教师巡视,指导,师生共同讲评,学生改正错误,展台展示错误原因.学生练习:用方程解释小诗解决导入新课时的小诗,起到前后呼应的作用,再次引出历史人物阿尔—花拉子米的“对消”即本节课所学的合并同类项,使学生进一步了解数学的历史渊源. (八)达标检测(限时7分钟)1.下列各组中,两项不能合并同类项的是( )A.3b+(-b)B.-6y+3xC.-a+aD.-20-23 2.方程-10x-6x=-7+15合并同类项得 ,系数活动目的:暴露学生的思维过程,强化合并同类项的作用及解方程的方法.活动目的:提高课堂效率,考查是否达标,及时巩固提高.及时矫正错误.化1得 3.解下列方程:(1) 2x-8x=-11-19 (2) x- x=-7-6 4. 某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?学生独立完成,然后交换批阅,教师点评. (九)课堂小结,知识梳理学生思考,分组讨论,师生共同讲评. 分享你我的收获,这节课你学会了什么? (十)作业课本第91页 习题3.2第1、5、6题 八、板书设计3.2一元一次方程的解法(一)——合并同类项 (第1课时)问题1:活动目的:训练学生的口头表达能力,养成及时归纳总结的良好学习习惯.例1解方程 练习.达标检测练 习一. 合并同类项(1)5x-7x = (2)-3x-5x = (3)9x+6x-11x= (4)-9x+6x-11x= 二.解方程(1)3x = 2 (2)-2x = -3x= x=(3)-3x = 6 (4) - x =x= x=三.解方程1529x x ()-= 32722x x()+=330.510xx ()-+= 474.52.535x x ()-=-四.太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清。
移项合并同类项解方程练习题

移项合并同类项解方程练习题在代数学中,解方程是一种基本的数学技能。
移项合并同类项是解方程中常用的操作步骤之一。
本文将介绍一些移项合并同类项解方程的练习题,帮助读者熟悉和掌握这一技巧。
1. 例题解方程:2x + 3 - 5x + 7 = 10首先,将方程中的同类项按照规则合并。
合并2x和-5x,得到-3x;合并常数项3和7,得到10。
简化后的方程为:-3x + 10 = 10接下来,我们要将方程中的-3x和10移项,使得方程左边只剩下x。
移项的过程如下:-3x + 10 - 10 = 10 - 10简化后的方程为:-3x = 0现在,我们将方程除以系数-3,得到最终的解:x = 0所以,原方程的解为x = 0。
2. 练习题接下来,我们来练习一些移项合并同类项解方程的题目。
(1) 解方程:4x - 7 - 2x + 5 = 3合并同类项,得到2x - 2 = 3。
移项,得到2x = 5。
最终解为x = 2.5。
(2) 解方程:-3y + 2 - 2y + 10 = -8合并同类项,得到-5y + 12 = -8。
移项,得到-5y = -20。
最终解为y = 4。
(3) 解方程:2z + 5 + 3z - 6 = 10合并同类项,得到5z - 1 = 10。
移项,得到5z = 11。
最终解为z = 11/5。
通过反复练习这些题目,我们可以更熟练地掌握移项合并同类项解方程的方法。
当然,在解方程时需要注意一些特殊情况和可能出现的错误,比如分母为零,平方根为负数等等。
在解题过程中,要仔细审题,理清思路,避免犯低级错误。
总结:移项合并同类项是解方程中的重要步骤,通过合并同类项和移项操作,可以简化方程,最终求得方程的解。
通过练习题的解答,读者可以巩固和应用这一技巧,提高解方程的能力。
在解题过程中,要注意特殊情况和错误的可能性,以确保得到正确的解答。
希望本文的讲解和练习对读者有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:从符号和绝对值两方面观察, 这列数有什么规律?
后面的数是前面的数 -3 倍
x 如果设其中一个数为 ,
那么它后面与它相邻的数是____3_x__ 。
例3: 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
其中某三个相邻数的和是-1701,这三个数 各是多少?
x4
例2:解下列方程:
(3)7x 2.5x 3x 1.5x 154 63
解: 合并同类项, 得
(7 2.5 3 1.5)x 60 18
6x -78
系数化为1, 得 解对了吗?
x 13
练习
3 3x 0.5x 10 (4)6m 1.5m 2.5m 3
解: 合并同类项,得 解: 合并同类项,得
2、数学练习册P72-75页
3.2 解一元一次方程(1)
——合并同类项
实验中学
你知道什么 叫方程吗?
活动.定义方程 回顾举例
含有未知数的等式—方 程 你能举出一些 方程的例子吗?
练习:
判断下列式子是不是方程,正确打”√”,错误打”X”:
(1) 1+2=3 ( x )
(4) x 2 1 ( x )
(2) 1+2x=4 ( √ )
x 3x 解: 设这三个相邻数中第1个数为___,那么第2个数就是_____,
第三个数就是___3___(__3__x_)___9_x_。
根据这三个数的和是-1701,得
x 3x 9x 1701
合并同类项,得 7x 1701
系数化为1,得 x 243
所以 3x 729,9x 2187
(5) x+y=2 ( √ )
(3) x+1-3 ( x )
(6) x+2x=9 ( √ )
合并同类项
(1)3x 5x
(2)-3x 7x
(3) y 5 y 2 y (4) 1 x2 y 3 x2 y x2 y
22
解:(1)3x 5x (3 5)x 2x
(2) 3x 7x (3 7)x 4x
设
购买计算机2x台,今年购买计算机4x台,
依题意,得
x + 2x +4x = 140
列
合并同类项,得
7x =140
系数化为1,得
x = 20
解
检验
验
答:前年这个学校购买了计算机20台.
答
例1:解下列方程:
(2)2x 5 x 6 8 2
解: 合并同类项,得
1 x 2 2
系数化为1, 得 解对了吗?
答:这三个数是-243,729,-2187.
检验
练习:(P88页第2题) 某工厂的产值连续增长, 去年是前年的1.5倍,今年是去年的2倍,这三 年的总产值为550万元.前年的产值是多少?
x 解: 设前年的产值是___万元 ,那么去年的产值是
_1_._5_x_万元,今年的产值是__3__x___万元。
x 13.86
1. 你今天学习的解方程有哪些步骤? (1)合并同类项
(2)系数化为1 (等式性质2) 2.列方程解应用题分哪些步骤?
①审:审清题意 ②设:设出合理的未知数 ③找:找出相等关系 ④列:列出方程 ⑤解:求出方程的解 ⑥验:检验答案是否正确 ⑦答:作答
作业
1、课本P91页 第 1、5、6、7、8题
解:设这三个数分别是 x-1, x, x+1. 根据题意得
(x-1)+x+(x+1)=27 去括号,得 x-1+x+x+1=27 合并同类项,得 3x=27 化系数为1,得 x=9
X-1=8, x+1=10
0。
例3: 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···,
2.5x 10
系数化为1,得
x 4
2m 3
系数化为1,得
m 3 2
解对了吗?
(5)3y 4y 25 20 (6)7x 4.5x 2.53 5
解: 合并同类项,得 解: 合并同类项,得
y 45
系数化为1,得
y 45
2.5x 2.5
系数化为1,得
x 1
解对了吗?
例2:三个连续整数的和等于27,求这三个数。
依题意,得
x 1.5x 3x 550
合并同类项,得 5.5x 550
系数化为1,得 x 100
答:前年的产值是100万元.
检验
考考你
一个数,它的三分之二,它的一半, 它的七分之一,它的全部,加起来总共是 33,求这个数。
解:设这个数是x, 依题意,得
2 x 1 x 1 x x 33 327
合并同类项的作用:
合并同类项起到了“化简”的作用, 即把含有未知数的项合并,从而把方 程转化为Ax=B,使其更接近x=a的形 式(其中A、B是常数) .
问题1某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍,前年
这个学校购买了多少台计算机?
审
解:设前年这个学校购买了计算机x台,则去年
相等关系: 前年购买量+去年购买量+今年购买量=140台
列得方程 x + 2x +4x = 140
x 2x 4x 140
合并同类项 根据等式的性质2
7x 140
分析:解方程,就是把
系数化为1 方程变形,变为 x = a
x 20
(a为常数)的形式.
想一想:上面解方程中“合并同类项”起了什么 作用?
(3)y 5y 2 y (1 5 2) y 4 y
(4) 1 x2 y 3 x2 y x2 y (1 3 1)x2 y x2 y
2
2
22
问题1:
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?
分析: 设前年这个学校购买了计算机x台,则去年购买计算机 2___x__台,今年购买计算机__4_x__台,