高中物理重要二级结论总结
高中物理重要二级结论(全)汇总

高中物理重要二级结论(全)汇总物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F FF +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF ==4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被F1已知F 2的最mF 2的最F 2的最压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。
二、运动学 1匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2)1(::)23(:)12(:1::::321----=n nt t t t n ΛΛ)::3:2:1n Λn ::3:2:1ΛFS 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度 前一半时间v 1,后一半时间v 2。
物理重要二级结论(全)

4.估算原则:串联时,大为主;并联时,小为主。
5.路端电压:纯电阻时 ,随外电阻的增大而增大。
6.并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流小,与它并联的电阻上电流变大。
7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大。
七、静电场:
1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。
2.
3.匀强电场中,等势线是相互平行等距离的直线,与电场线垂直。
4.电容器充电后,两极间的场强: ,与板间距离无关。
八、恒定电流
1.串连电路:总电阻大于任一分电阻;
, ; ,
2.并联电路:总电阻小于任一分电阻;
; ; ;
5.粒子沿直线通过正交电、磁场(离子速度选择器) , 。与粒子的带电性质和带电量多少无关,与进入的方向有关。
十一、电磁感应
1.楞次定律:(阻碍原因)
内外环电流方向:“增反减同”自感电流的方向:“增反减同”
磁铁相对线圈运动:“你追我退,你退我追”
通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”
电流表: ;串联测同一电流,量程大的指针摆角小。
4.电压测量值偏大,给电压表串联一比电压表内阻小得多的电阻;
电流测量值偏大,给电流表并联一比电流表内阻大得多的电阻;
5.分压电路:一般选择电阻较小而额定电流较大的电阻
1)若采用限流电路,电路中的最小电流仍超过用电器的额定电流时;
2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变化范围大(或要求多组实验数据)时;
光滑,相对静止 弹力为零 相对静止 光滑,弹力为零
8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大
高中物理重要二级结论总结

高中物理重要二级结论总结1. 若三个力大小相等方向互成120°,则其合力为零。
2. 几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。
3. 在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等。
即2aT x =∆(可判断物体是否做匀变速直线运动)推广:2)(aT n m x x n m -=- 4. 在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。
即2/t V V =5. 对于初速度为零的匀加速直线运动(1)T 末、2T 末、3T 末、…的瞬时速度之比为:n v v v v n ::3:2:1::::321 =(2) T 内、2T 内、3T 内、…的位移之比为:2222321::3:2:1::::n x x x x n =(3)第一个T 内、第二个T 内、第三个T 内、…的位移之比为:(4)通过连续相等的位移所用的时间之比:()()()1::23:12:1::::321----=n n t t t t n 6. 物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。
7. 对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)8. 质量是惯性大小的唯一量度。
惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。
9. 做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等。
方向与加速度方向一致(即at V =∆)。
10. 做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。
11. 物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。
12. 做匀速圆周运动的的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。
有哪些高中物理的重要二级结论

有哪些高中物理的重要二级结论
想到哪说到哪
1.运动学想不明白就画v-t图,面积代表位移,斜率代表加速度
2.斜面小物块和静力学想不明白就画受力图,重力/支持力/摩擦力/拉力一个都不要少,画的时候问问自己。
如果物块匀速或静止,这几个力经过平移可以形成封闭图形;如果物体匀加速,这几个力通过平移首尾相连,起点指向终点就是ma的大小和方向
3.超重失重想不明白多坐几次电梯,感觉脚下一空时候是失重,感觉脚底被怼是超重
4.电磁场想不明白画轨迹图,画最边界最极端的条件就行,高考在这道题上一般不会让你列函数求极值的
5.选修3-5想不明白就把能量守恒和动量守恒写上,一般会给分。
再结合画v-t图和受力分析你就发现自己做出来了。
6.万有引力题想不明白就想开普勒三定律,离中心天体越近速度越快动能越大势能越小,轨道半长轴越大机械能越大势能越大运动周期越大。
双星是绕在两星之间的一个点转,设个r和R自己算。
7.电学实验直接选分压式,Ra*Rv>Rx^2电流表外接,反之内接。
8.交流电A=311有效值220v交流电,100πt频率50赫兹,每秒变换100次,升压降压U*I功率不变,q=n△φ/R这个注意一下。
9.电容题E=U/d C=Q/U C=ε*ε0*S/d E=σ/ε0这四个式子记住三个就可以,没有做不出来的题
10.电学题沿电场线电势降低,电场线越密库仑力越大加速度越大,切线代表加速度方向,法线连起来是等势面移动不做功。
11.多选题拿不准别选,但是要冲击清北复交的一定要拿得准。
太晚了想不出更多的了,想出来再补充吧。
看了结论一定要多做题多应用啊,不要把物理学成死记硬背的科目啊!。
高中物理常用二级结论

高中物理常用二级结论
1.牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。
其中,F=ma,F为作用力,m为物体质量,a为加速度。
2.功与能:物体的功等于物体受到的力与位移的乘积。
能量可以转化,但总能量守恒。
3.万有引力定律:任何两个物体之间都存在引力,大小与物体质量成正比,与物体之间距离的平方成反比。
4.热力学第一定律:能量守恒,能量不能被创造或者消灭,只能从一种形式转化为另一种形式。
5.电流和电势差:电流是电荷在导体中的流动,电势差是电荷在电场中移动的能量变化。
6.磁感应强度和磁通量:磁感应强度是单位面积垂直于磁场方向的磁通量,磁通量是磁场穿过一个平面的总磁通量。
7.光的折射和反射:光线在光学介质之间传播时会发生折射,反射则是光线遇到光滑表面时的反弹现象。
8.波动理论:波是一种能量传递的形式,具有波长和频率的特性,可以是机械波或者电磁波。
- 1 -。
高中物理二级结论汇总

高中物理二级结论汇总
高中物理二级结论汇总如下:
1. 竖直上抛运动:
1. 上升阶段:只受重力,加速度为g,做匀减速运动。
2. 下降阶段:只受重力,做加速运动,加速度仍为g。
3. 整个过程(往返运动):先减速后加速,整个过程时间比为1:1,
位移大小比为1:3。
2. 平抛运动:
1. 水平方向:匀速直线运动。
2. 竖直方向:自由落体运动,或初速度为零的匀加速直线运动(只考
虑重力的话)。
3. 合速度方向:抛出点正上方时,与水平方向成45度角;不断下落,角度越来越小,速度分解后,平行水平分量不变。
3. 万有引力:
1. 所有物体间引力大小与它们质量的乘积成正比,与它们距离的平方
成反比。
2. 在同一星球上不同高度(或不同纬度)的地方重力加速度不同(向
心加速度与半径成反比)。
3. 物体随倾斜轨道做匀速圆周运动时,受到的万有引力可以分为沿轨
道切线方向的分量和径向分量的力(也叫向心力)。
只有径向的力才
能使物体做匀速圆周运动。
这些只是一部分二级结论,详细的物理二级结论建议您查阅物理教辅
资料或咨询物理老师。
高中物理重要二级结论(全)

物理重要二级结论(全)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。
三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。
2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。
5.物体沿倾角为α的斜面匀速下滑时, μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。
7.绳上的张力一定沿着绳子指向绳子收缩的方向。
8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。
9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F 2。
用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2S n -S n-k = k aT 2a=ΔS/T 2a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =n::3:2:1ΛFF 2的最小值mgF 2的最小值F 2的最小值F 2② 经过1S 0时、2 S 0时、3 S 0时···时间比:③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。
物理重要二级结论(全)

物理重要二级结论(全)一.力物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F大+F小≥F合≥F大-F小。
三个大小相等的力平衡,力之间的夹角为1200。
3.物体沿斜面匀速下滑,则μa=tg。
4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上。
6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理)。
7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。
二.直线运动:1.匀变速直线运动:平均速度:TSSVVVVt2221212时间等分时:SSaTnn-=-12,中间位置的速度:VVVS纸带处理求速度、加速度:TSSVt2212+=,212TSSa-=,(aSSnTn=--12。
2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比1:3:5:……等分位移:相等位移所用的时间之比。
3.竖直上抛运动的对称性:t上=t下,V上=-V下。
4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离。
5.“S=3t+2t2”:a=4m/s2,V0=3m/s。
6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等。
7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短。
船的合运动方向垂直河岸时,过河的位移最短。
8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解。
三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力。
失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理重要二级结论总结1. 若三个力大小相等方向互成120°,则其合力为零。
2. 几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。
3. 在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等。
即2aT x =∆(可判断物体是否做匀变速直线运动)推广:2)(aT n m x x n m -=- 4. 在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。
即2/t V V =5. 对于初速度为零的匀加速直线运动(1)T 末、2T 末、3T 末、…的瞬时速度之比为:n v v v v n ::3:2:1::::321ΛΛ=(2) T 内、2T 内、3T 内、…的位移之比为:2222321::3:2:1::::n x x x x n ΛΛ=(3)第一个T 内、第二个T 内、第三个T 内、…的位移之比为:(4)通过连续相等的位移所用的时间之比:()()()1::23:12:1::::321----=n n t t t t n ΛΛ 6. 物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。
7. 对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动)8. 质量是惯性大小的唯一量度。
惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。
9. 做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等。
方向与加速度方向一致(即at V =∆)。
10. 做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。
11. 物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。
12. 做匀速圆周运动的的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。
13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。
第三定律的内容是所有行星的半长轴三次方跟公转周期的平方的比值都相等,即k T R =2314. 地球质量为M ,半径为R ,万有引力常量为G ,地球表面的重力加速度为g ,则其间存在的一个常用的关系是2gR GM =。
(类比其他星球也适用) 15. 第一宇宙速度(近地卫星的环绕速度)的表达式gR R GM v ==1,大小为s m /9.7,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。
随着卫星的高度h 的增加,v 减小,ω减小,a 减小,T 增加。
16. 第二宇宙速度(脱离速度)skm v 2.112=,这是使物体脱离地球引力束缚的最小发射速度。
17. 第三宇宙速度(逃逸速度)skm v 7.163=,这是使物体脱离太阳引力束缚的最小发射速度。
18. 对于太空中的双星,其轨道半径与自身的质量成反比,其环绕速度与自身的质量的质量成反比。
19. 做功的过程就是能量转化的过程,做了多少功,就表示有多少能量发生了转化,所以说功是能量转化的量度,以此解题就是利用功能关系解题。
20. 滑动摩擦力,空气阻力等做的功等于力和路程的乘积。
21. 静摩擦力做功的特点(1)静摩擦力可以做正功,可以做负功也可以不做功。
(2)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力只起到传递机械能的作用),而没有机械能与其他能量形式的相互转化。
(3)相互摩擦的系统内,一对静摩擦力所做的功的总和等于零。
22. 滑动摩擦力做功的特点(1)滑动摩擦力可以对物体做正功,可以做负功也可以不做功。
(2)一对滑动摩擦力做功的过程中,能量的分配有两个方面:一是相互摩擦的物体之间的机械能的转移;二是系统机械能转化为内能;转化为内能的量等于滑动摩擦力与相对路程的乘积,即相对S f Q ∆⋅=。
23. 若一条直线上有三个点电荷,因相互作用而平衡,其电性及电量的定性分布为“两同夹异,两大夹小”。
24. 匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值。
在任意方向上电势差与距离成正比。
25. 正电荷在电势越高的地方,电势能越大,负电荷在电势越高的地方,电势能越小。
26. 电容器充电后和电源断开,仅改变板间的距离时,场强不变。
27. 两电流相互平行时无转动趋势,同向电流相互吸引,异向电流相互排斥;两电流不平行时,有转动到相互平行且电流方向相同的趋势。
28. 带电粒子在磁场中仅受洛伦兹力时做圆周运动的周期与粒子的速率、半径无关,仅与粒子的质量、电荷和磁感应强度有关。
29. 带电粒子在有界磁场中做圆周运动(1)速度偏转角等于扫过的圆心角。
(2)几个出射方向①粒子从某一直线边界射入磁场后又从该边界飞出时,速度与边界的夹角相等。
②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出——对称性。
③刚好穿出磁场边界的条件是带电粒子在磁场中的轨迹与边界相切。
(3)运动的时间:轨迹对应的圆心角越大,带电粒子在磁场中的运动时间就越长,与粒子速度的大小无关。
(qBm T t θπθ==2) 30. 速度选择器模型:带电粒子以速度v 射入正交的电场和磁场区域时,当电场力和磁场力方向相反且满足BE v =时,带电粒子做匀速直线运动(被选择)与带电粒子的带电量大小、正负无关,但改变v 、B 、E 中的任意一个量时,粒子将发生偏转。
31. 回旋加速器(1)为了使粒子在加速器中不断被加速,加速电场的周期必须等于回旋周期。
(2)粒子做匀速圆周运动的最大半径等于D 形盒的半径。
(3)在粒子的质量、电量确定的情况下,粒子所能达到的最大动能只与D 形盒的半径和磁感应强度有关,与加速器的电压无关(电压只决定了回旋次数)。
(4)将带电粒子在两盒之间的运动首尾相连起来是一个初速度为零的匀加速直线运动,带电粒子每经过电场加速一次,回旋半径就增大一次,故各次半径之比为n ::3:2:1Λ32. 在没有外界轨道约束的情况下,带电粒子在复合场中三个场力(电场力、洛仑磁力、重力)作用下的直线运动必为匀速直线运动;若为匀速圆周运动则必有电场力和重力等大、反向。
33. 在闭合电路中,当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。
34. 滑动变阻器分压电路中,分压器的总电阻变化情况与滑动变阻器串联段电阻变化情况相同。
35. 若两并联支路的电阻之和保持不变,则当两支路电阻相等时,并联总电阻最大;当两支路电阻相差最大时,并联总电阻最小。
36. 电源的输出功率随外电阻变化,当内外电阻相等时,电源的输出功率最大,且最大值r E P m 42=。
37. 导体棒围绕棒的一端在垂直磁场的平面内做匀速圆周运动而切割磁感线产生的电动势ω221BL E = 38. 对由n 匝线圈而构成的闭合电路,由于磁通量变化而通过导体某一横截面的电量R nq ∆Φ= 39. 在变加速运动中,当物体的加速度为零时,物体的速度达到最大或最小——常用于导体棒的动态分析。
40. 安培力做多少正功,就有多少电能转化为其他形式的能量;安培力做多少负功,就有多少其他形式的能量转化为电能,这些电能在通过纯电阻电路时,又会通过电流做功将电能转化为内能。
41. 在t -Φ图象(或回路面积不变时的t B -图象)中,图线的斜率既可以反映电动势的大小,有可以反映电源的正负极。
42. 交流电的产生:计算感应电动势的最大值用ωnBS E m =;计算某一段时间t ∆内的感应电动势的平均值用tn E ∆∆Φ=,而E 不等于对应时间段内初、末位置的算术平均值。
即221E E E +≠,注意不要漏掉n 。
43. 只有正弦交流电,物理量的最大值和有效值才存在2倍的关系。
对于其他的交流电,需根据电流的热效应来确定有效值。
44. 回复力与加速度的大小始终与位移的大小成正比,方向总是与位移方向相反,始终指向平衡位置。
45. 做简谐运动的物体的振动是变速直线运动,因此在一个周期内,物体运动的路程是4A ,半个周期内,物体的路程是2A ,但在四分之一个周期内运动的路程不一定是A46. 每一个质点的起振方向都与波源的起振方向相同。
47. 对于干涉现象(1)加强区始终加强,减弱区始终减弱。
(2)加强区的振幅21A A A +=,减弱区的振幅21A A A -=48. 相距半波长的奇数倍的两质点,振动情况完全相反;相距半波长的偶数倍的两质点,振动情况完全相同。
49. 同一质点,经过)310(Λ、、、==∆n nT t ,振动状态完全相同,经过)310(2Λ、、、=+=∆n T nT t ,振动状态完全相反。
50. 小孔成像是倒立的实像,像的大小由光屏到小孔的距离而定。
51. 根据反射定律,平面镜转过一个微小的角度α,法线也随之转动α,反射光则转过2α。
52. 光有真空射向三棱镜后,光线一定向棱镜的底面偏折,折射率越大,偏折程度越大。
通过三棱镜看物体,看到的是物体的虚像,而且虚像向棱镜的顶角偏移,如果把棱镜放在光密介质中,情况则相反。
53. 光线通过平板玻璃砖后,不改变光线行进的方向及光束的性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关。
54. 光的颜色是由光的频率决定的,光在介质中的折射率也与光的频率有关,频率越大的光折射率越大。
55. 用单色光做双缝干涉实验时,当两列光波到达某点的路程差为半波长的偶数倍时,该处的光互相加强,出现亮条纹;当到达某点的路程差为半波长的奇数倍时,该处的光互相减弱,出现暗条纹。
56. 电磁波在介质中的传播速度跟介质和频率有关;而机械波在介质中的传播速度只跟介质有关。
57. 质子和中子统称为核子,相邻的任何核子间都存着核力,核力为短程力。
距离较远时,核力为零。
58. 半衰期的大小由放射性元素的原子核内部本身的因素决定,跟物体所处的物理状态或化学状态无关。
59. 使原子发生能级跃迁时,入射的若是光子,光子的能量必须等于两个定态的能级差或超过电离能;入射的若是电子,电子的能量必须大于或等于两个定态的能级差。
60. 原子在某一定态下的能量值为21nE E n =,该能量包括电子绕核运动的动能和电子与原子核组成的系统的电势能。
61. 动量的变化量的方向与速度变化量的方向相同,与合外力的冲量方向相同,在合外力恒定的情况下,物体动量的变化量方向与物体所受合外力的方向相同,与物体加速度的方向相同。
62. tP F P t F ∆∆⇒∆=∆⋅=合合这是牛顿第二定律的另一种表示形式,表述为物体所受的合外力等于物体动量的变化率。
63. 碰撞问题遵循三个原则:①总动量守恒②总动能不增加③合理性(保证碰撞的发生,又保证碰撞后不再发生碰撞。