环形分配器

环形分配器

环形分配器

环形分配器的主要功能是把来源于控制环节的时钟脉冲串按一定的规律分配给步进电动机驱动器的各相输入端。环形分配器的输出既是周期性的,又是可逆的。

接受时钟脉冲串和方向电平,输出各相的导通信号,是环形分配器的基本功能。

步进电机驱动系统中,控制器与驱动器之间的联系分为串行控制和并行控制。

串行控制时,控制器输出时钟脉冲串和方向电平,靠驱动器中的环形分配器转换成并行驱动信号驱动,控制各相绕组的导通和截至。时钟脉冲的有无决定了电动机的运行和停止,脉冲的频率决定电机运行的速度,方向电平决定运转的方向。

并行控制时,控制器直接输出各相绕组导通或截至的并行信号,此时环形分配器设在控制器中。

除单纯由软件来代替环形分配器的功能外,不论是串行控制还是并行控制,整个系统必须有环形分配器这个环节

实验十六 脉冲分配器及其应用(优.选)

实验十六脉冲分配器及其应用 一、实验目的 1.熟悉集成时序脉冲分配器的使用方法及其应用。 2.学习步进电动机的环形脉冲分配器的组成方法。 二、实验原理 1.脉冲分配器的作用是产生多路顺序脉冲信号,它可以由计数器和译码器组成,也可以由环形计数器构成,下图中CP端上的系列脉冲经N位二进制计数器和相应的译码器,可 以转变为2N路顺序输出脉冲。 图16-1 脉冲分配器的组成 2.集成时序脉冲分配器CC4017 CC4017是按BCD计数/时序译码器组成的分配器,其引脚图与功能表为: 图16-2 CC4017的引脚图与功能表

3.步进电动机的环形脉冲分配器 下图是三相步进电动机的驱动电路示意图: 图16-3 三相步进电动机的驱动电路示意图 A、B、C分别表示步进电机的三相绕组。步进电机按三相六拍方式运行,即要求步进电机正转时,控制端X=1,使电机三相绕组的通电顺序为 A A B B B C C CA A 要求步进电机反转时,令控制端X=0,电机三相绕组的通电顺序改为 A AC C BC B AB A 下图为由三个JK触发器构成的按六拍通电方式的脉冲环形计数器: 图16-4 六拍通电方式的脉冲环形计数器 要使步进电机反转,通常应加有正脉冲输入控制和反脉冲输入控制端。 此外,要注意的是,由于步进电机三相绕组任何时刻都不得出现A、B、C三相同时通电或同时断电的情况,所以,脉冲分配器的的三路输出不允许出现111和000两种状态,故要给电路加初态预置环节。 三、实验设备与器材 1、数字逻辑电路实验箱。 2、数字逻辑电路实验箱扩展板。 3、数字万用表,双踪示波器,脉冲源。 4、芯片CC4017、CC4013、CC4027、CC4011、CC4085。 四、实验内容及实验步骤

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

步进电机环形分配器

步进电机环形分配器 (1)工作原理 步进电机控制主要有三个重要参数即转速、转过的角度和转向。由于步进电机的转动是由输入脉冲信号控制,所以转速是由输入脉冲信号的频率决定,而转过的角度由输入脉冲信号的脉冲个数决定。转向由环形分配器的输出通过步进电机A、B、C相绕组来控制,环形分配器通过控制各相绕组通电的相序来控制步电机转向。 如图1给出了一个双向三相六拍环形分配器的逻辑电路。电路的输出除决定于复位信号RESET外,还决定于输出端Q A、Q B、Q C的历史状态及控制信号-EN使能信号、CON正反转控制信号和输入脉冲信号。其真值表如表1所示。 图1 步进电机环形分配器 表1 真值表

(2)程序设计 程序设计采用组合逻辑设计法,由真值表可知: 当CON=0时,输出Q A、Q B、Q C的逻辑关系为: 当CON=1时,输出Q A、Q B、Q C的逻辑关系为: 当CON=0,正转时步进机A、B、C相线圈的通电相序为: 当CON=1,反转时各相线圈通电相序为: Q A、Q B、Q C的状态转换条件为输入脉冲信号上升沿到来,状态由前一状态转为后一状态,所以在梯形图中引入了上升沿微分指令。 PLC输入/输出元件地址分配见表2。 表2 PLC输入/输出元件地址分配表 根据逻辑关系画出步进电机机环形分配器的PLC梯形图,如图2所示。 CON10 Z EN CLK A B C A B C 1ΦΦ100100 01↑101110 01↑001010 01↑011011 01↑010001 01↑110101 01↑100100 PLC IN代号PLC OUT代号 X0CLK Y0Q A X1EN Y1Q B X2RESET Y2Qc X3CON

环形振荡器

环形振荡器 设计要求: 设计一环形振荡器,频率在120KHz 左右,尽量降低振荡频率和电源电压的相关性。 设计: 环形振荡器是有奇数个反相器构成的环形回路。电路如下图所示: 本设计中,由于振荡频率要求在120KHz 的低频,根据提供的工艺,寄生电容和电阻都很小,要实现如此之低的振荡频率需要非常多的反相器串联,电路冗长庞大。所以采用需要外加阻容元件降低工作频率。电路如下图所示。 反相器内部电路: 本设计要求尽量降低振荡频率和电源电压的相关性。造成这个相关性的原因主要来自电路的寄生电阻电容: 1. 对管的输出电阻Rn 或Rp 。 2 ()2n n THN VDD R KP W VDD V L =-可见VDD 越大,此电阻越小,振荡频率越高。 2. 寄生电容Cgd ,Cgs 。这两个参数对电源的相关性较小,但是也受一定的影响。 可见, 要有效降低振荡频率和电源电压的相关性,可采用外部的远大于寄生参数的元件来吸收寄生参数以达到目的。经分析,电路受电源影响较大的是对管的输出电阻Rn 或Rp, 它们的阻值大约为几千欧,这里,把外部的电阻取在400K 可以有效地降低相关性。根据振荡频率120KHz ,计算出τ=0.00833ms ,每一级的平均时延为/3τ=0.00278ms ,需要的电容

大小为3C R τ ==6.94pF 。这里设计的反相器输出端本身就有800fF 的电容,再考虑到寄生 电阻,电容,这里将外接电容的值取为5.5pF 。 Spice 网表文件: * Waveform probing commands .probe .options probefilename="ring_my1.dat" + probesdbfile="E:\Program Files\Tanner EDA\S-Edit\tutorial\schematic\ring_my1.sdb" + probetopmodule="ring_my1" .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" tt .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" resistor .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" bjt .SUBCKT inv in out Gnd Vdd c2 out Gnd 800ff m1p out in Vdd Vdd pmos L=5u W=12u mn1 out in Gnd Gnd nmos L=5u W=8u .ENDS * Main circuit: ring_my1 C1 N3 Gnd 5.5pF C2 N2 Gnd 5.5pF C3 a7 Gnd 5.5pF Xinv7 a7 OUT Gnd Vdd inv Xinv_1 N3 N5 Gnd Vdd inv Xinv_2 N2 N1 Gnd Vdd inv .print tran OUT R4 N2 OUT 400K TC=0.0, 0.0 R5 N1 N3 400K TC=0.0, 0.0 R6 N5 a7 400K TC=0.0, 0.0 .tran 50n 14000000n start=800000n VCC Vdd GND PWL (0 5 8000000n 4.5 9000000n 4 10000000n 3.5 11000000n 3 12000000n 2.5 13000000n 2) * End of main circuit: ring_my1 这里用的仿真软件是Tanner 系列的T-Spice 。 仿真:

实训八 脉冲分配器及其应用

实训八 脉冲分配器及其应用 一、实验目的 1、熟悉集成时序脉冲分配器的使用方法及其应用 2、学习步进电动机的环形脉冲分配器的组成方法 二、实验原理 1、脉冲分配器的作用是产生多路顺序脉冲 信号,它可以由计数器和译码器组成,也可以 由环形计数器构成,图11-1中CP 端上的系列 脉冲经N 位二进制计数器和相应的译码器,可 以转变为2N 路顺序输出脉冲。 2、集成时序脉冲分配器CC4017 图11-1 脉冲分配器的组成 CC4017是按BCD 计数/时序译码器组成的分配器。 其逻辑符号及引脚功能如图11-2所示。功能如表11-1 图11-2 CC4017的逻辑符号 CO — 进位脉冲输出端 CP — 时钟输入端 CR — 清除端 INH — 禁止端 Q 0~Q 9 — 计数脉冲输出端

CC4017的输出波形如图11-3。 图11-3 CC4017的波形图 CC4017应用十分广泛,可用于十进制计数,分频,1/N 计数(N=2~10只需用一块,N>10可用多块器件级连)。图11-4所示为由两片CC4017组成的60分频的电路。 图11-4 60分频电路

3、步进电动机的环形脉冲分配器 图11-5所示为某一三相步进电动机的驱动电路示意图。 图11-5 三相步进电动机的驱动电路示意图 A、B、C分别表示步进电机的三相绕组。步进电机按三相六拍方式运行,即要求步进电机正转时,控制端X=1,使电机三相绕组的通电顺序为 A—→A B—→B—→B C—→C—→C A 要求步进电机反转时,令控制端X=0,三相绕组的通电顺序改为 A—→A C—→C—→B C—→B—→A B 图11-6所示为由三个JK触发器构成的按六拍通电方式的脉冲环形分配器,供参考。 图11-6 六拍通电方式的脉冲环行分配器逻辑图

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

硬件脉冲环形分配器的设计

数控 数显 硬件脉冲环形分配器的设计 河北省农业工程学校 孙继山 在对一台数控机床维修中,发现其步进电动机 的环形分配器损坏,在原配件买不到的情况下,我用 D触发器和与非门电路进行代换,取得了成功。下 面将电路设计过程作一介绍。 1.根据电机的相数,选择D触发器的数量。一 个触发器控制步进电动机的一相。我们所用的步进 电动机是三相电动机,需用三个D触发器,分别用 F A、F B、F C表示。其状态分别用Q A、Q B、Q C表示。 2.根据步进电动机的通电方式,列出带方向控 制的真值表。三相步进电动机的通电方式有三相单 三拍、三相双三拍和三相单双六拍。由原电路集成 块YB013的3、4接高电平说明其工作在单双六拍。 用D作为方向控制,D=1电机正转、D=0电机反 转。列出的真值表如表1。 表1 真值表 D Q A N Q B N Q C N Q A N+1Q B N+1Q C N+1 1100110 1110010 1010011 1011011 1001101 1101100 0100101 0101001 0001011 0011010 0010110 0110100 3.根据真值表,利用卡诺图得每个触发器的次 态方程。以F A为例,画出卡诺图,由真值表添入数 值后结果如图1。 D Q A n Q B n Q C n000111 10 00x0 01 0110x1 1111x0 10x100 图1 卡诺图 经化简得: Q A n+1=D Q C n+DQ B n=D Q C n D Q B n Q B n+1和Q C n+1可用同样方法得出。也可根据三相电路的对称性,由Q A n+1的表达式推出: Q B n+1=D Q C n D Q B n Q C n+1=D Q B n DQ A n 4.对照D触发器的特性方程:Q n+1=D,得到每个触发器的驱动方程: D A=D Q C n D Q B n D B=D Q A n D Q C n D C=D Q B n D Q A n 5.由驱动方程画出脉冲分配器电路如图2。 图2 脉冲分配器电路 图3 原电路接线图 6.应用:原电路接线如图3所示。图中8031单片机用P1口的三根口线P1 0、P1 1、P1 2实现对环分电路的控制,其中: P1 0:方向控制输出端,接至代换电路的D端。 P1 1:输出控制信号,可用其封锁代换电路的CP 脉冲。 P1 2:环分电路复位控制,接至代换电路的R。代换电路的CP脉冲直接接8155定时器的定时输出。 (收稿日期:2000-12-15) ! 11 ! 数控 数显 机床电器2001No.6

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

环形振荡器版图设计

实验三:环形振荡器版图设计 一、实验目的 1、使用现有的布局实例创建新的布局; 2、仿真提取版图; 二、实验要求 1、打印出DRC报告; 2、输出CMOS环形振荡器的后置仿真结果,包括瞬态响应、振荡频率和平均功率。 三、实验工具 Virtuoso 四、实验内容 1、创建CMOS环形振荡器电路原理图; 2、创建CMOS环形振荡器的版图; 3、后仿真(Post-layout simulation,PLS)。

1、创建CMOS环形振荡器的电路原理图 在library manager界面选中lab1(自己创建的库),并点击菜单栏上的file->new->cell view,创建CMOS环形振荡器的电路原理图。 图1 CMOS环形振荡器电路原理图的创建 因为CMOS环形振荡器是由几个CMOS反相器组成的,在前面两个实验中已经创建好了CMOS反相器的电路原理图,所以可以直接调用CMOS反相器,在schematic editing窗口利用快捷键’i’打开添加实例窗口,选择之前所创建的CMOS反相器,如图2所示,连续放置5个。 图2 添加CMOS反相器 将5个CMOS反相器一次首尾相连,接着创建一个输出引脚,放置在最后一个CMOS反相器后,并通过wire将它们连接起来,具体如图3所示:

图3 CMOS环形振荡器电路原理图 2、创建CMOS环形振荡器的版图 与创建CMOS反相器的版图类似,也是在library manager窗口先选中lab1,在选择file->new->cell view,在弹出的窗口中输入环形振荡器的信息如图4所示: 图4 CMOS环形振荡器版图的创建 在layout editing中添加5个CMOS反相器,并将它们摆放在一起,中间的金属正好相接,如图5所示: 图5 CMOS环形振荡器版图

第4章_组合逻辑电路习题解答

习题 写出图所示电路的逻辑表达式,并说明电路实现哪种逻辑门的功能。 习题图 解:B A B A B A B A B A F ⊕=+=+= 该电路实现异或门的功能 分析图所示电路,写出输出函数F 。 习题图 解:[]B A B B B A F ⊕=⊕⊕⊕=)( 已知图示电路及输入A 、B 的波形,试画出相应的输出波形F ,不计门的延迟. 解:B A B A B A AB B AB A AB B AB A F ⊕=?=???=???= 由与非门构成的某表决电路如图所示。其中A 、B 、C 、D 表示4个人,L=1时表示决议通过。 (1) 试分析电路,说明决议通过的情况有几种。 (2) 分析A 、B 、C 、D 四个人中,谁的权利最大。 习题图 解:(1)ABD BC CD ABD BC CD L ++=??= (2) A C & & & & L B A =1 =1 =1 F F A B F B A

(3)根据真值表可知,四个人当中C 的权利最大。 分析图所示逻辑电路,已知S 1﹑S 0为功能控制输入,A ﹑B 为输入信号,L 为输出,求电路所具有的功能。 习题图 解:(1)011011)(S S B S A S S B S A L ⊕⊕+⊕=⊕⊕?⊕= (2) (3)当S 1S 0=00和S 1S 0=11S 1S 0=01时,该电路实现两输入或非门,当S 1S 0=10时,该电路实现两输入与非门。 (2) A 10

电路逻辑功能为:“判输入ABC 是否相同”电路。 已知某组合电路的输入A 、B 、C 和输出F 的波形如下图所示,试写出F 的最简与或表达式。 习题图 解:(1)根据波形图得到真值表: C AB BC A C B A F ++= 、设∑= )14,12,10,9,8,4,2() ,,,(m D C B A F ,要求用最简单的方法,实现的电路最简单。 1)用与非门实现。 2)用或非门实现。 3) 用与或非门实现。 解:1) (1)将逻辑函数化成最简与或式并转换成最简与非与非式。 F C B A F

实训报告正弦波振荡器设计multisim

实训报告正弦波振荡器设计multisim

高频电路(实训)报告 项目:正弦波振荡器仿真设计班级:级应电2班 姓名:周杰 学号: 14052 2 摘要

自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论.................................................................................... 错误!未定义书签。 2、方案的确定 ........................................................................ 错误!未定义书签。 3、工作原理、硬件电路的设计和参数的计算 ..................... 错误!未定义书签。 3.1 反馈振荡器的原理和分析.............................................. 错误!未定义书签。 3.2. 电容三点式振荡单元 .................................................... 错误!未定义书签。 3.3 电路连接及其参数计算 ................................................. 错误!未定义书签。 4、总体电路设计和仿真分析................................................. 错误!未定义书签。 4.1组建仿真电路................................................................. 错误!未定义书签。 4.2仿真的振荡频率和幅度 ................................................. 错误!未定义书签。 5、参数调整对比/结论........................................................... 错误!未定义书签。附录.......................................................................................... 错误!未定义书签。附录Ⅰ元器件清单 .................................................................. 错误!未定义书签。附录Ⅱ电路总图 ...................................................................... 错误!未定义书签。

5相环形分配器

步进电机论文:五相混合式步进电动机环形分配器的设计 2012年1月21日 五相混合式步进电机环形分配器的设计 徐殿国王宗培(哈尔滨工业大学) l引言 五相混合式步进电机具有许多优良的性能,因此在国内外都得到了较大发展,其驱动技术也取得了很大进步[1]。由于五相混合式步进电动机系统的研制和开发历史不长,电机驱动电源中的环形脉冲分配器专用芯片目前尚未见到,国内外厂家生产的五相混合式步进电动机驱动电源中的环形脉冲分配器大都是由数字逻辑集成电路或EPROM存贮器构成的[2.3]。由于电机的运行节拍和运行方式较多,采用这些方式设计的环形脉冲分配器结构复杂、功能较少、可靠性不高。近年来随着逻辑可编程器件的出现,为逻辑电路的设计提供了极大的灵活性,因此完全可以用逻辑可编程器件(例如PAL、GAL等)设计步进电动机的环形脉冲分配器。本文给出由两片GAL16V8构成的五相混合式步进电动机环形脉冲分配器的设计方法。 2五相混合式步进电机的励磁方式及环形脉冲分配逻辑 根据五相混合式步进电机韵工作原理,可以得到如表1所示的励磁方式。可见五相混合式步进电机的励磁方式很多,但是运行节拍只有两种即整步10拍和半步20拍。尽管该电机的励磁方式很多,但从电机运行的平稳陛和获得最大合成转矩的角庋出发,表1五相混合式步进电动

机的励磁方式常采用4-4相通电方式作为整步运行方式,4-5相通电方式作为半步运行方式。整步运行方式中的5-5相通电方式虽较4-4相通电方式的合成转矩大,但由于驱动电源中采用桥式电路时存在上下桥臂换向容易引起短路而较少采用。本文给出的是4-4相通电方式和5-5相通电方式的环形脉冲分配器设计方法。 根据五相混合式步进电机的合成转矩矢量图[4],可以得到4-5相励磁方式和4-4相励磁方式下的逻辑通电状态变化顺序,如表2所示。与之对应的功放电路形式如图1所示。表2中的“1”代表功率管导通,“0”代表功率管关断。其中正转的逻辑通电状态变化顺序 为。 表2中序号为奇数的逻辑通电状态即为4-4相励磁方式。

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器)L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可

环形振荡器

集成电路设计实践报告 题目:基于Cadence的反相器设计 班级: 学号: 姓名: 1.关于Cadence EDA软件

Cadence EDA软件是当前在各类工作站上广泛使用的一种功能最为完备的电子设计自动化辅助工具,其布局/布线工具与电路仿真工具的性能超群,世界上绝大多数IC生产厂商都可以直接接收由它们生成的IC版图和仿真结果。 对于全定制的设计,首先应输入电路原理图,然后对其要完成的功能进行仿真,以便对设计功能进行验证并对设计参数进行优化。仿真结束后,进行电路的IC版图设计,设计完成后要进行版图的设计规则检查和设计参数的提取,以检查版图设计是否符合工艺要求。完成了版图的设计后,还要将版图电路与原理图电路进行对比,即LVS(Layout Versus Schematic)。确定无误后,用从版图中提取的包括各种寄生参数在内的数据进行所谓的后仿真(Post Simulation),该后仿真能够比较好地反映IC制造完成后电路的实际工作情况。一旦仿真结果满足设计要求,就可以将版图数据提交给生产厂商进行流片生产。 2.反相器设计 2.1实验目的 1、掌握用Composer绘制倒相器的电路图; 2、掌握用Analog Artist进行倒相器的电路仿真。 3、通过Vrtuoso工具进行倒相器的版图设计,尺寸按照要求绘制; 4、对倒相器的版图进行DRC、ERC、LVS验证。 2.2实验步骤 2.2.1反相器原理图的绘制 1 在终端提示符下,键入icfb&,启动Cadence EDA软件。 2 在弹出的Library Manager窗口中执行File->New->Library,将会弹出如下图所示的窗口,在Name栏中输入设计库的名字,然后还需要为设计选择一个已经存在的工艺库。具体做法是点击Attach to existing tech library前面的按钮,然后选择相应的工艺文件,当然在进行电路设计及仿真时也可以不选定工艺文件,最后点击OK。 3、在Library Manager窗口中先选择刚才新建立的库,再在菜单文件选项中选择执行File->New->Cell View选择工具栏中的“添加元件”,弹出添加元件的窗口,点击Add Instance窗口中的Browse,会弹出Component Browser窗口,选定Library为analogLib,并使得Flatten的复选框选中,一些常用的元器件就在Analoglib库中列出来了。

高频正弦波振荡器地设计

农林大学学院 课程设计报告 课程名称:数字信号处理课程设计 课程设计题目:高频正弦波振荡器设计与仿真姓名: 系:计算机系 专业:电子信息工程 年级: 学号: 指导教师: 职称: 2015年12月30日

高频正弦波振荡器的设计 目录 目录 (1) 摘要: (2) 一、设计要求 (3) 二、总体方案设计 (3) 三、工作原理说明 (3) 1、振荡器概念 (3) 2、静态工作点的确定 (4) 3、振荡器的起振检查 (4) 4、高频功率放大器 (5) 5、电路设计原理框图如图1所示。 (5) 四、电路设计 (6) 1、正弦波振荡器的设计 (6) 2、高频功率放大器的设计 (9) 五、性能的测试 (11) 1振荡器振荡频率为2MHz (11) 2振荡器振荡频率为4MHz (11) 3高频功率放大器电路 (12) 4输出功率 (13) 六、结论、性价比 (13) 七、课设体会及合理化建议 (14) 八、参考文献 (14)

摘要: 本次课程设计通过对课本知识的运用,简单介绍了高频正弦波振荡器的设计方法,主要应用LC振荡电路产生正弦波,再经高频功率放大器进行功率放大,并用仿真软件进行仿真,以及对其性能进行测试,经过反复的调试最终得到满足课题要求的电路。 关键词:正弦波;振荡器;高频功率放大器。

一、设计要求 设计要求: 1. 选择合适的高频正弦波振荡器形式; 2. 从理论上分析振荡器的各个参数及起振条件; 3. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。 主要技术指标:电源电压12V,工作频率2M-4MHz,输出电压1V,频率稳定度较高。 二、总体方案设计 该课程设计主要涉及了振荡器的相关容还有高频功率放大器的容,正弦波振荡器非常具有实用价值,通过该课题的研究,可以加深对振荡器以及丙类高频功率放大器的了解。 三、工作原理说明 1、振荡器概念 振荡器主要分为RC,LC振荡器和晶体振荡器。其中电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,现在很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。 振荡器的作用主要是将直流电变交流电.它有很多用途.在无线电广播和通信设备中产生电磁波.在微机中产生时钟信号.在稳压电路中产生高频交流电.。 题目要求产生高频正弦波,所以选用电容三点式电路,进一步考虑从而选用并联改进型电容三点式振荡器(西勒电路),因为它具有输出波形不易失

嵌入式 步进电机(环形分配器)

课程数控实验 题目基于LPC2114的直流电机控制系统学院信息工程学院 专业13计算机测控 学号3113002316、3113002317、 3113002318、3113002319 姓名谢志鹏、杨光、叶国康、曾晖

基于LPC2114的步进电机控制器 一.实验要求 1.用一片LPC2000处理器或单片机设计步进电机驱动器,实现脉冲环形分配器和放大驱动电路功能,驱动步进电机运行。 2.用另外一片LPC2000处理器设计数控系统,设置步进电机步进运动方向选择开关、电位器输入步进运动速度、键盘输入步进运动步数,设置运动脉冲和方向信号输出给步进电机驱动器,实现对步进电机的运动控制信号给定。 二.实验原理 1.LPC2103部分(步进电机驱动部分): (1)脉冲输入:利用LPC2103芯片的脉宽调制器(PWM)产生占空比为50%的方波信号。 (2)正反转:把L297的CW/CCW接到LPC2103的一个引脚,通过控制该引脚电平的高低即可实现控制电机正反转。 (3)步进步数控制:把步进电机控制器的定时器0设置成捕获计数模式,当捕获到一个脉冲时,TC 加1,直到TC等于给定步数时,停止方波输出。 2.LPC2114(信号输入部分) (1)步进运动速度输入:通过调节电位器,再经过LPC2114的AD转换,得到电位器触点的电压值。将电压值按照一定的比例换算成速度值,通过串口发送到LPC2103(步进电机控制器),以改变方波的频率。 (2)步进步数输入:通过键盘输入步进步数,将结果通过串口发送到LPC2103(步进电机控制器)。

三.硬件电路 图3.1 电路图 L297是步进电机控制器,适用于双极性两相步进电机或单极性四相步进电机的控制,可有半步、整步和波状三种驱动模式。片内斩波电路允许开关式控制绕组电流。该器件的一个显著特点是仅需时钟、方向和模式输入信号。步进电机所需相位由电路内部产生,大大减轻了的负担。 L297的引脚端功能如下: ◆引脚端10(使能端EN)为芯片的片选信号,高电平有效; ◆引脚端20(复位RST),低电平有效; ◆引脚端19(HALF/FULL)和引脚端17(CW/CCW)都通过上拉电阻链接到高电平; ◆引脚端18(时钟输入CLK)的最大输入时钟频率不能超过5KHz,控制时钟的频率,即可控制电机转 动速率; ◆引脚端19(HALF/FULL)决定电机的转动方式,HALF/FULL=0,电机按整步方式运转,HALF/FULL=1,

脉冲与数字电路模拟试题第1套及答案讲义

1 数字电子技术(第2版) 第一套 A 卷 一、单选题(每题1分) 1. 回差是( B )电路的特性参数。 A 时序逻辑 B 施密特触发器 C 单稳态触发器 D 多谐振荡器 2. 石英晶体多谐振荡器的主要优点是( B )。 A 电路简单 B 频率稳定度高 C 振荡频率高 D 振荡频率低 3. 对TTL 与非门多余输入端的处理,不能将它们( B )。 A 与有用输入端并联 B 接地 C 接高电平 D 悬空 4. TTL 与非门的关门电平是0.8V ,开门电平是2V ,当其输入低电平为0.4V ,输入高电平 为3.2V 时,其低电平噪声容限为( C ) A 1.2V B 1.2V C 0.4V D 1.5V 5. 逻辑函数ACDEF C AB A Y +++=的最简与或式为( B ) A .C A Y += B. B A Y += C. AD Y = D. AB Y = 6. 在什么情况下,“与非”运算的结果是逻辑0。 ( D ) A .全部输入是0 B. 任一个输入是0 C. 仅一个输入是0 D. 全部输入是1 7. 组合逻辑电路( D )。 A 一定是用逻辑门构成的 B 一定不是用逻辑门构成的 C 一定是用集成逻辑门构成的 D A 与B 均可 8. 已知逻辑函数的真值表如下,其表达式是( C )

2 A .C Y = B .AB C Y = C .C AB Y += D .C AB Y += 图2202 9. 要把不规则的矩形波变换为幅度与宽度都相同的矩形波,应选择( C )电路。 A 多谐振荡器 B 基本RS 触发器 C 单稳态触发器 D 施密特触发器 10. 所谓三极管工作在倒置状态,是指三极管( C )。 A 发射结正偏置,集电结反偏置 B 发射结正偏置,集电结正偏置 C 发射结反偏置,集电结正偏置 D 发射结反偏置,集电结反偏置 11. TTL 与非门的关门电平为0.8V ,开门电平为2V ,当其输入低电平为0.4V ,输入高电 平为3.5V 时,其输入高电平噪声容限为( D )。 A 1.1 V B 1.3V C 1.2V D 1.5V 12. 下图电路,正确的输出逻辑表达式是( A )。 A . CD A B Y += B . 1=Y C . 0=Y D . D C B A Y +++=

实验六RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:126O f RC 起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到的波形变化情况及相应的Rf值。 实验现象Rf值V o波形 停振 起振 幅值增加 波形失真 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

单片机处理的带延时的软件环形分配器程序

编制基于MCS51系列单片机汇编语言的能够实现3相6拍软件环形分配器正反转运行功能的程序。 正反转的识别由开关K7识别,设K7连接8031的P1.7,而三相电机的A、B、C通电状态由P1.0、P1.1、P1.2三条口线控制。 开关K7闭合,P1.7=1, 接正转,实现:A→AB→B→BC→C→CA→A 开关K7断开,P1.7=0, 接反转,实现:A→AC→C→CB→B→BA→A 硬件电路如图: ORG 0000H SJMP START ORG 0030H TABLE: DB 01H DB 03H DB 02H DB 06H DB 04H DB 05H ORG 0040H START:MOV SP, #60H SETB P1.7 JB P1.7, ZZH SJMP FZH ZZH: MOV DPTR, #TABLE

MOV R0, #0H LOOP1: MOV A, R0 MOVC A, @A+DPTR ORL P1, A ACALL DELAY CJNE R0, #05H, NEXT1 MOV R0, #0H SJMP LOOP1 NEXT1: INC R0 SJMP LOOP1 FZH: MOV DPTR, #TABLE MOV R0, #0H LOOP2: MOV A, R0 MOVC A, @A+DPTR ORL P1, A ACALL DELAY CJNE R0, #0H, NEXT2 MOV R0, #05H SJMP LOOP2 NEXT2: DEC R0 SJMP LOOP2 DELAY: MOV R7, #10H

DELAY1: MOV R6, #0FFH DELAY2: MOV R5, #0FFH DELAY3: DJNZ R5, DELAY3 DJNZ R6, DELAY2 DJNZ R7, DELAY1 RET END

相关文档
最新文档