流体力学课后习题答案
流体力学课后答案

1-2 一盛水封闭容器从空中自由下落,则器内水体质点所受单位质量力等于多少 解:受到的质量力有两个,一个是重力,一个是惯性力。
重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。
假定平板运动引起液体流动的速度分布是线性分布。
当h =10mm 时,求薄平板单位宽度上受到的阻力。
解:平板受到上下两侧黏滞切力T 1和T 2作用,由dyduAT μ=可得 12U 1515T T T AA 0.70.06840.040.010.01U N h h μμδ⎛⎫=+=+=⨯⨯+= ⎪--⎝⎭(方向与u 相反)1-9 某圆锥体绕竖直中心轴以角速度ω=15rad/s 等速旋转,该锥体与固定的外锥体之间的间隙δ=1mm ,其间充满动力粘度μ=0.1Pa ·s 的润滑油,若锥体顶部直径d =0.6m ,锥体的高度H =0.5m ,求所需的旋转力矩M 。
题1-9图解:取微元体,微元面积:θππcos 22dhr dl r dA ⋅=⋅= 切应力: θπσωμμτcos 2rdh r dA dy du dA dT ⋅=⋅=⋅= 微元阻力矩: dM=dT·r阻力矩:2-12 圆柱形容器的半径cm R 15=,高cm H 50=,盛水深cm h 30=,若容器以等角速度ω绕z 轴旋转,试求ω最大为多少时不致使水从容器中溢出。
解:因旋转抛物体的体积等于同底同高圆柱体体积的一半,因此,当容器旋转使水上升到最高时,旋转抛物体自由液面的顶点距容器顶部h’= 2(H-h)= 40cm等角速度旋转直立容器中液体压强的分布规律为0222p gz r p +⎪⎪⎭⎫⎝⎛-=ωρ对于液面,p=p 0 , 则gr z 222ω=,可得出22r gz =ω 将z=h ’,r=R 代入上式得s R gh /671.1815.04.08.92'222=⨯⨯==ω2-13装满油的圆柱形容器,直径cm D 80=,油的密度3/801m kg =ρ,顶盖中心点装有真空表,表的读数为Pa 4900,试求:(1)容器静止时,作用于顶盖上总压力的大小和方向;(2)容器以等角速度120-=s ω旋转时,真空表的读数值不变,作用于顶盖上总压力的大小和方向。
李玉柱流体力学课后题答案 第一章

第一章 绪论1-1 空气的密度31.165kg/m ρ=,动力粘度51.8710Pa s μ-=⨯⋅,求它的运动粘度ν。
解:由ρμ=v 得,55231.8710Pa s 1.6110m /s 1.165kg/m v μρ--⨯⋅===⨯ 1-2 水的密度3992.2kg/m ρ=,运动粘度620.66110m /s v -=⨯,求它的动力粘度μ。
解:由ρμ=v 得,3624992.2kg/m 0.66110m /s 6.5610Pa s μρν--==⨯⨯=⨯⋅ 1-3 一平板在油面上作水平运动,如图所示。
已知平板运动速度V =lm/s ,板与固定边界的距离δ=5mm ,油的粘度0.1Pa s μ=⋅,求作用在平板单位面积上的粘滞阻力。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度为13d 1m/s 200s d 510mu V y δ--===⨯ 由牛顿内摩擦定律d d u yτμ=,可得作用在平板单位面积上的粘滞阻力为 -1d 0.1Pa s 200s 20Pa d u yτμ==⋅⨯= 1-4 有一个底面积为40cm ×60cm 矩形木板,质量为5kg ,以0.9m/s 的速度沿着与水平面成30倾角的斜面匀速下滑,木板与斜面之间的油层厚度为1mm ,求油的动力粘度。
解:建立如下坐标系,沿斜面向下方向为x 轴的正方向,y 轴垂直于平板表面向下。
设油膜内速度为线性分布,则油膜内的速度梯度为:330.9m /s 0.910110mu y -∂==⨯∂⨯1s - 由牛顿内摩擦定律知,木板下表面处流体所受的切应力为:30.910u yτμμ∂==⨯∂ Pa 木板受到的切应力大小与τ相等,方向相反,则匀速下滑时其受力平衡方程为:30.9100.40.659.8sin 30μ︒⨯⨯⨯=⨯从而可得油的动力粘度:0.1134Pa s μ=⋅1-5 上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩M 的表达式。
流体力学课后习题及答案

第二章2-2解:由P gh ρ=得h 水 =Pg ρ水=3350101109.8⨯⨯⨯=5.1m 335010=3.21.6109.8Ph m gρ⨯==⨯⨯四氯化碳四氯化碳 335010=0.37513.6109.8Ph m g ρ⨯==⨯⨯水银水银2-3 解:(1)体积弹性模量 /dpEv d ρρ=+在重力场中流体的压强形式为:dpg dzρ=- d dp gdz Evρρρ∴=-=两边积分,带入边界条件:00,0,z p ρρ===0lnEvp Ev Ev ghρ∴=- 11222212.5*160N F *40000NF L L s F s ==⎛⎫=== ⎪⎝⎭题解:有杠杆原理知:F 所以: 6、如题2-6图所示,封闭容器中盛有ρ=800kg/3m的油,1300h mm =,油下面为水,2500h mm =,测压管中水银液位读数400hmm =,求封闭容器中油面上的压强p 的大小。
解:12g 0p h gh gh ρρρ++-=油水水银12g p gh h gh ρρρ=--水银油水333313.6109.840010109.8500100.8--=⨯⨯⨯⨯-⨯⨯⨯-⨯=44.6110pa ⨯2-7:解:(1)、2224F gh s 10009.81001010101098Nρ--==⨯⨯⨯⨯⨯=2)m 121216G [s h h s h ]1000199109.81.95g Nρ-=⨯⨯=⨯⨯⨯=(-)+02h(3)因为在21h h -处谁对容器有向上的压力2-8,解:由同一液面压强相等可列:(0)()gh sin /6p(0)1239.21/^3p p h l kn m θθπ===∴=液2-9 解:设A 点距左U 形管测压计水银页面高度为H 则B 点距右U 型管测压计水银高度为H+hB A B h gh g H h gh gh gh m ag ρρρρρρA P -P -+P P -P =-=-⨯⨯P 水水水水则(+)=则()=(13600-1000)9.80.3=370442.10,解:选取右侧U 形管汞柱高作为等压面,有:1132()m B P g h h gh gh gh p ρρρρ++-+=+酒汞汞水B p 42.7410pa =-⨯2-11解:左边液面压强与右边液面压强相等知,.66g .66.89g .82g .8211g ⨯+-⨯=⨯+-⨯未知水未知水)()(ρρρρ解得333102.31m kg 103.85⨯=⋅⨯=-未知ρ3m kg -⋅2-12 解:设左支管液面到另一液体分界面的距离为1h ,右支管为2h ,则有:1112222P gh P gh gh ρρρ+=++或121122121221()()P P g h h ghP P gh gh ghρρρρρρ-=--+-=-+=-得 1221()P P h gρρ-=-2-13解:gh P gh ρρ+=水水银P=gh gh ρρ∴-水银水127400.07891.8F PS N∴==⨯=2-14解:以闸门与液面交点为O 点,沿闸门向下方向建立坐标S ,取微元ds ,在面积bds 内,液体压力对链轴取矩()()0.2sin600.2dM ghbds s g s sdsρρ=-+=-+ 所以)0sin 600.2Mgb s sds ρ=-+Q对链轴取矩)cos600.2Q M Q =由力矩平衡得 0Q M M +=化简)1.*1.9320.302Q -=得 26778Q N=()()D 33352.151y y *1132***2*4121232,8832**10*10*12*89.6*10xcC c xc cD c I y sI b a y s d y F g h s ρ=+==========题解:依题意知又即:*16、一个很长的铅垂壁面吧海水和淡水隔开,海水深7m ;试确定淡水多深时壁面所受液体作用力合力为零。
《流体力学》课后习题答案.pdf

得:T1 = t1 + 273 = 50 + 273 = 323K ,T2 = t2 + 273 = 78 + 273 = 351K
根据
p
=
mRT V
,有:
p1
=
mRT1 V1
,
p2
=
mRT2 V2
得: V2 V1
=
p1 p2
T2 T1
=
9.8067 104 5.8840 105
351 323
=
0.18
设管段长度 l,管段表面积: A = dl
单位长度管壁上粘滞力: = A u = dl u − 0 = 3.14 0.025 0.03
l y l
0.001
1-8 解: A = 0.8 0.2 = 0.16m2 ,u=1m/s, = 10mm , = 1.15Pa s
T = A u = A u − 0 = 1.15 0.16 1 = 18.4N
1
=
T1 b
=
A b
u
−0 −h
=
0.7 0.06b b
15 − 0 0.04 − 0.01
=
21N
/m,方向水平向左
下表面单位宽度受到的内摩擦力:
2
=
T2 b
=
Au−0 b h−0
=
0.7 0.06b 15 − 0
b
0.01− 0
= 63N
/m,方向水平向左
平板单位宽度上受到的阻力:
= 1 + 2 = 21+ 63 = 84N ,方向水平向左。
h1 = 5.6m
2.4 解:如图 1-2 是等压面,3-4 是等压面,5-6 段充的是空气,因此 p6 = p5 ,6-7 是等压面,
流体力学课后答案

第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解析:(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρN 15602.07800=⨯==V G γ 1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解析:水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从Pa 提高到Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=Pa ,p 2=Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解析:由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v vv 每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
1-4 图示为一水暖系统,为了防止水温升高时体积膨胀将水管胀裂,在系统顶部设一膨胀水箱,使水有膨胀的余地。
完整版流体力学课后习题作业答案

第四章作业答案4-3水在变直径竖管中流动,已知粗管直径d i =300mm ,流速v i =6m/s 。
两断面相距 3m,为使两断面的压力表读值相同。
试求细管直径(水头损失不计) 。
解:4— 4 变直径管段 AB ,d A =0.2m,d B =0.4m ,高差△ h=1.5m ,测得 p A =30kPa ,p B =40kPa , B 点 处断面平均流速 v B =1.5m/s ,试判断水在管中的流动方向。
解:Ad B 21.5 (0.4)2 6m/sH AZ A 邑2 A0臾兰 4.90md A 20.2g2g 9.8 2gH BZ B -P B240 1.525.69mB1.5 g2g9.819.6H B >H A ,水由B 流向A; 水头损失5.69-4.90=0.79m 4— 5用水银压差计测量水管中的点流速u ,如读值 △ h=60mm ,( 1)求该点流速;(2)3若管中流体是 0.8kg /m 的油,△ h 不变,不计水头损失,则该点的流速是多少?解:(1)u <2g 12.6 h J‘19.6 12.6 0.06 3.85m/s⑵u :2g 12.8 h v'19.6 12.8 0.06 4.34m/s4—6利用文丘里管的喉管处负压抽吸基坑中的积水,已经知道管道直径 d [ 100mm ,喉管直径d 2 50mm ,h 2m ,能量损失忽略不计。
试求管道中流量至少为多大,才能抽出基坑中的积水?p 1p 2解:由题意知,只有当(乙-)(Z 2 -) h 时,刚好才能把水吸上来,由文丘里流gg量计原理有Q k* (z _P L ) (Z 2 ~P ^),其中kv g gP i P i2V i 2g Vi 2Z 2P 2v ?d 2v 1d 12300 62—4.837m 2g235.5mmv 2 9.74m/s22V 2 2g代入数据,有Q 12.7l/s。
4-8管道流动管径为d=150mm,喷嘴出口直径d D=50mm,各点高差h1=2m,h2=4m,h3=3m,不计水头损失,求A、B、C、D各点压强。
流体力学课后习题与答案

第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。
解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
流体力学课后答案

流体力学B 篇题解B1题解BP1.1.1 根据阿佛迦德罗定律,在标准状态下(T = 273°K ,p = 1.013×105Pa )一摩尔空气(28.96ɡ)含有6.022×10 23个分子。
在地球表面上70 km 高空测量得空气密度为8.75×10 -5㎏/m 3。
试估算此处 10 3μm 3体积的空气中,含多少分子数n (一般认为n <106时,连续介质假设不再成立)答: n = 1.82×10 3提示:计算每个空气分子的质量和103μm 3体积空气的质量 解: 每个空气分子的质量为 g 1081.410022.6g 96.282323-⨯=⨯=m设70 km 处103μm 3体积空气的质量为Mg 1075.8)m 1010)(kg/m 1075.8(20318335---⨯=⨯⨯=M323201082.1g1081.4g 1075.8⨯=⨯⨯==--m M n 说明在离地面70 km 高空的稀薄大气中连续介质假设不再成立。
BP1.3.1 两无限大平行平板,保持两板的间距δ= 0.2 mm 。
板间充满锭子油,粘度为μ=0.01Pa ⋅s ,密度为ρ= 800 kg / m 3。
若下板固定,上板以u = 0.5 m / s 的速度滑移,设油内沿板垂直方向y 的速度u (y)为线性分布,试求: (1) 锭子油运动的粘度υ;(2) 上下板的粘性切应力η1、η2 。
答: υ= 1.25×10 – 5 m 2/s, η1=η2= 25N/m 2。
提示:用牛顿粘性定侓求解,速度梯度取平均值。
解:(1 ) /s m 1025.1kg/m800/sm kg 0.0125-3⨯===ρμν (2)沿垂直方向(y 轴)速度梯度保持常数,δμμττ/21u dydu==== (0.01Ns / m 2)(0.5m/s)/(0.2×10-3m)=25N/m 2 BP1.3.2 20℃的水在两固定的平行平板间作定常层流流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.17解:总扬程包括抬水高度及水头损失,
....
5-2有一平底空船,其船底面积Ω为8m2,船舷高h为0.5m,船自重G为9.8kN。现船底破一直径10cm的圆孔,水自圆孔漏入船中,试问经过多少时间后船将沉没。
题5-4图
解:在船沉没的过程中存在
得
∴船沉没过程中水自圆孔漏入的流量是不变的。
另外,当h2=0时,h1’=0.125,则
5-10工厂供水系统,由水泵向A、B、C三处供水,管道均为铸铁管,已知流量Qc=10L/s,qB=5L/s,qA= 10L/s,各管段长l1=350m,l2= 450m,l3=100m,各段直径d1=200mm,
d2=150mm,d3=100mm,整个场地水平,试求水泵出口压强。
闸门右侧水压力:
作用点:
总压力大小:
对B点取矩:
2-16.如图, ,上部油深h1=1.0m,下部水深h2=2.0m,油的重度 =8.0kN/m3,求:平板ab单位宽度上的流体静压力及其作用点。
[解]合力
作用点:
2-19.已知曲面AB为半圆柱面,宽度为1m,D=3m,试求AB柱面所受静水压力的水平分力Px和竖直分力Pz。
自由下落时:
第二章流体静力学
2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强。
[解]
2-3.密闭水箱,压力表测得压强为4900Pa。压力表中心比A点高0.5m,A点在液面下1.5m。求液面的绝对压强和相对压强。
[解]
2-13.如图所示盛水U形管,静止时,两支管水面距离管口均为h,当U形管绕OZ轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax。
5-8虹吸管将A池中的水输入B池,已知长度l1=3m,l2=5m直径d=75mm,两池水面高差H=2m,最大超高h=1.8m,沿程阻力系数λ=0.02,局部损失系数:进口ζa=0.5,转弯ζb=0.2,出口ζc= 1.0,试求流量及管道最大超高断面的真空管度。
题5-8图
解:这样简单短管道水力计算特点,应用公式有:
5.1题
5.3题解:按小孔出流计算出口流量为:
则每水面下降的微段需要的时间为:
故需要时间为:
5.4解:依据题意,为短管出流水力计算问题。
可以先计算短流量,则灌水时间可求。
5.5解:水面最终保持平衡,即说明自流管的流量最终将与两台水泵的抽水量相同。
5.14设并联前的流量为Q1,并联后左管的流量为Q2,则并联后的右管流量为1/2Q2。
[解]由连续性方程:
由伯努利方程:
由动量方程:
[解]水平方向压强分布图和压力体如图所示:
2-20.一扇形闸门如图所示,宽度b=1.0m,圆心角 =45°,闸门挡水深h=3m,试求水对闸门的作用力及方向
[解]水平分力:
压力体体积:
铅垂分力:
合力:
方向:
第三章流体动力学基础
3.1[解]总流量:
断面平均流速:
ቤተ መጻሕፍቲ ባይዱ3.3[解]
3.4.图示管路由两根不同直径的管子与一渐变连接管组成。已知dA=200mm,dB=400mm,A点相对压强pA=68.6kPa,B点相对压强pB=39.2kPa,B点的断面平均流速vB=1m/s,A、B两点高差△z=1.2m。试判断流动方向,并计算两断面间的水头损失hw。
[解]由液体质量守恒知,管液体上升高度与管液体下降高度应相等,且两者液面同在一等压面上,满足等压面方程:
液体不溢出,要求 ,
以 分别代入等压面方程得:
2-15.平面闸门AB倾斜放置,已知α=45°,门宽b=1m,水深H1=3m,H2=2m,求闸门所受水静压力的大小及作用点。
[解]闸门左侧水压力:
作用点:
[解]
假定流动方向为A→B,则根据伯努利方程
其中 ,取
故假定正确。
3.5[解]根据文丘里流量计公式得
3-12.已知图示水平管路中的流量qV=2.5L/s,直径d1=50mm,d2=25mm,,压力表读数为9807Pa,若水头损失忽略不计,试求连接于该管收缩断面上的水管可将水从容器内吸上的高度h。
[解]
题5-25图
解:本题属简单长管道的水力计算,不计流速水头和局部水头损失。
Q1=qA+qB+QC=10+5+10=25L/s
Q2=qB+QC=5+10=15L/s
Q3=QC=10L/s
,
比阻不需修正。
H=k1a1l1Q12+k2a2l2Q22+a3l3Q32
各管段的比阻由表5-5查得,代入上式
H=1.06×9.029×350×0.0252+1.05×41.85×450×0.0152+365.3×100×0.012=10.2m
3.13[解]
3.16[解]v0=v1=v2
x方向的动量方程:
y方向的动量方程:
3.17[解]取射流分成三股的地方为控制体,取x轴向右为正向,取y轴向上为正向,列水平即x方向的动量方程,可得:
y方向的动量方程:
不计重力影响的伯努利方程:
控制体的过流截面的压强都等于当地大气压pa,因此,v0=v1=v2
列断面0-0、1-1伯努力方程
又
1-2.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?
[解]温度变化前后质量守恒,即
又20℃时,水的密度
80℃时,水的密度
则增加的体积为
1-4.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干?
[解]在地球上静止时:
(3)将流段1-2做为隔离体取出,建立图示坐标系,弯管对流体的作用力 的分力为 ,列出 两个坐标方向的动量方程式,得
将本题中的数据代入:
=32.27kN
=7.95kN
33.23kN
水流对弯管的作用力 大小与 相等,方向与F相反。
3-20.如图所示,在河道上修筑一大坝。已知坝址河段断面近似为矩形,单宽流量qV=14m3/s,上游水深h1=5m,试验求下游水深h2及水流作用在单宽坝上的水平力F。假定摩擦阻力与水头损失可忽略不计。
3.18[解]由连续性方程:
伯努利方程:
动量方程:
3-19.在水平放置的输水管道中,有一个转角 的变直径弯头如图所示,已知上游管道直径 ,下游管道直径 ,流量 m3/s,压强 ,求水流对这段弯头的作用力,不计损失。
[解](1)用连续性方程计算 和
m/s; m/s
(2)用能量方程式计算
m; m
kN/m2