人教版高中数学选修1-1椭圆练习题

合集下载

人教A版高中数学选修一椭圆单元练习卷.docx

人教A版高中数学选修一椭圆单元练习卷.docx

高中数学学习材料鼎尚图文*整理制作高二文科班选修1-1——椭圆单元练习卷㈠ 选择题(每小题5分,共计50分):⒈已知椭圆1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .7⒉中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( )A. 22143x y += B. 22134x y += C. 2214x y += D. 2214y x += ⒊与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( )A1858014520125201202522222222=+=+=+=+y x D y x C y x B y x ⒋椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C.5D. 5-⒌若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( )A. 12B. 22C. 2D. 2⒍椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( )A. 221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += ⒎椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。

A 16x 2+9y 2=1B 16x 2+12y 2=1C 4x 2+3y 2=1D 3x 2+4y 2=1⒏椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( )(A)450 (B)600 (C)900 (D)1200⒐椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为…… ( )A. 4 B . 2 C. 8 D . 23⒑已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )(A )2 3 (B )6 (C )4 3 (D )12㈡填空题:(每小题5分,共计20分)⒒方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ ⒓过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_____________⒔设(5,0)M -,(5,0)N ,△MNP 的周长是36,则M NP ∆的顶点P 的轨迹方程为_______ ⒕如图:从椭圆上一点M 向x 轴作垂线, 恰好通过椭圆的左焦点1F ,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM , 则该椭圆的离心率等于_____________㈢解答题:(每小题10分,共计30分)xyABM O F 1⒖已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程。

人教A版高中数学选修一高中选修1-1《2.1椭圆》测试题

人教A版高中数学选修一高中选修1-1《2.1椭圆》测试题

例题:
例1、求符合下列条件的椭圆的标准方程:
(1)经过点(-3,0)、(0,-2);
(2)长轴的长等于20,离心率等于0.6
(3)经过点22,0,0,5
P Q 例2点,M x y 与定点4,0F 的距离和它到直线25:4l x
的距离之比是常数4
5,求点M 的轨迹.
习题:1.在椭圆10042522y x 中,a= ,b= ,焦距是
焦点坐标是 ,______.
焦点位于________轴上2.如果方程
1m y 4x 22表示焦点在X 轴的椭圆,则实数m 的取值范围是.
2、求适合下列条件的椭圆的标准方程
(1).a=4,b=1,焦点在x 轴上.(2).a=4,c=15,焦点在坐标轴

(3)、长轴长是短轴长的3倍,且经过点3,0
P (4)、焦距是8,离心率等于0.8
3.P 为椭圆1162522y
x 上一点,P 到一个焦点的距离为4,则P 到另
一个焦点的距离为
4.椭圆
191622y x ,过焦点F 1的直线交椭圆于A,B 两点,则2ABF 的
周长为
4.已知△ABC 的一边长6BC ,周长为16,求顶点A 的轨迹方程.。

人教新课标版(A)高二选修1-1 2.1.1椭圆及其标准方程(一)同步练习题

人教新课标版(A)高二选修1-1 2.1.1椭圆及其标准方程(一)同步练习题

人教新课标版(A )高二选修1-1 2.1.1 椭圆及其标准方程(一)同步练习题【基础演练】题型一:椭圆的定义平面内与两个定点1F 、2F 距离的和等于常数(大于|F F |21)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,请根据以上知识解决以下1~4题。

1. 到两定点1F (-2,0)和2F (2,0)的距离之和为4的点M 的轨迹是A. 椭圆B. 线段C. 圆D. 以上都不对2. 椭圆125y 9x 22=+的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则△2ABF 的周长是A. 20B. 12C. 10D. 6 3. 椭圆1y 25x 22=+上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为A. 5B. 6C. 7D. 84. 命题甲:动点P 到两定点A 、B 的距离之和()为常数且a ,0a a 2|PB ||PA |>=+; 命题乙:P 点的轨迹是椭圆,则命题甲是命题乙的A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分又不必要条件题型二:椭圆的标准方程椭圆的两种标准方程1b y a x 2222=+,1bx a y 2222=+中都有:(1)0b a >>;(2)222b a c -=或222c b a +=;(3)焦点坐标(c ±,0)或(0,c ±);(4)2x 与2y 所对应的分母,哪个大,焦点就在哪个轴上,请用以上知识解决以下5~8题。

5. 椭圆116y 32x 22=+的焦距等于A. 312B. 8C. 6D. 46. 若方程1a y ax 222=-表示焦点在y 轴上的椭圆,则a 的取值范围是A. 0a <B. 0a 1<<-C. 1a <D. 无法确定7. 椭圆0ab by ax 22=++(0b a <<)的焦点坐标是A. ()0,b a -±B. ()0,a b -±C. ()b a ,0-±D. ()a b ,0-±8. 椭圆112y 13x 22=+上一点到两个焦点的距离和为A. 26B. 24C.134D. 132题型三:椭圆的标准方程的应用 紧扣标准方程的两种方式,焦点位置取决于两个分母哪个大,特别注意看似非标准形式的标准形式,如11k y kx 222=--,这说明01k <-,另外注意c 2|PF ||PF |21>+的约束条件,请用以上知识解决以下9~10题。

人教新课标版(A)高二选修1-1 2.1.3椭圆的几何性质(一)同步练习题

人教新课标版(A)高二选修1-1 2.1.3椭圆的几何性质(一)同步练习题

人教新课标版(A )高二选修1-1 2.1.3 椭圆的几何性质(一)同步练习题【基础演练】题型一:由椭圆的方程研究椭圆的性质 椭圆的几何性质请根据以上知识解决以下1~4题。

1. 椭圆6y x 622=+的长轴的端点坐标是A. (-1,0)、(1,0)B. (-6,0)、(6,0)C. (6-,0)、(6,0)D. (0,6-)、(0,6)2. 已知椭圆1b y a x 2222=+与椭圆116y 25x 22=+有相同的长轴,椭圆1by a x 2222=+的短轴长与椭圆19x 21y 22=+的短轴长相等,则A. 25a 2=,=2b 16B. 9a 2=,25b 2=C. 25a 2=,9b 2=或9a 2=,25b 2=D. 25a 2=,9b 2=3. 点A (a ,1)在椭圆12y 4x 22=+的内部,则a 的取值范围是A. 2a 2<<-B. 2a -<或2a >C. 2a 2<<-D. 1a 1<<-4. 求椭圆25y x 2522=+的长轴和短轴的长、焦点和顶点坐标。

题型二:由椭圆的几何性质求椭圆的方程 (1)充分利用椭圆的几何性质,以及a 、b 、c 间的数量关系,并结合平面几何知识,求出基本参数a 、b 、c 的值,进而求出椭圆的标准方程。

(2)利用椭圆的几何性质求标准方程的一般步骤是:①求基本参数a 、b ;②确定焦点所在的坐标轴;③写出方程,请根据以上知识解决以下5~7题。

5. 已知椭圆1by a x :C 2222=+与椭圆18y 4x 22=+有相同的离心率,则椭圆C 的方程可能是A. ()0m m 4y 8x 222≠=+B. 16x 2164y 2=+C. 12y 8x 22=+D. 以上都不可能6. 椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是A. 19y 16x 22=+或116y 9x 22=+B. 19y 25x 22=+或19x 25y 22=+C. 116y 25x 22=+或116x 25y 22=+D. 椭圆的方程无法确定7. 已知椭圆中心在原点,焦点在x 轴上,从焦点看短轴两个端点的视角为直角,且焦点到长轴上较近的端点的距离是510-,求椭圆的方程。

高二数学选修1-1椭圆练习卷

高二数学选修1-1椭圆练习卷

高二数学选修1-1椭圆练习卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.-12的绝对值是()3.如图M1-1所示几何体的主视图是()4.如图M1-2,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是()5.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为() A.y=x2-1 B.y=x2+1C.y=(x-1)2 D.y=(x+1)26.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<-1 B.-1<a<32C.-32<a<1 D.a>327.下列图形中,既是轴对称图形又是中心对称图形的是()8.如图M1-3,已知D,E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()9.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是()A.平行四边形B.矩形C.菱形D.梯形10.如图M1-4,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是()二、填空题(本大题共6个小题,每小题4分,共24分)11.使式子m-2有意义的最小整数m是________________________________________________________________________.12.若代数式-4x6y与x2ny是同类项,则常数n的值为__________.13.如图M1-5,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为__________.14.若A(x1,y1)和B(x2,y2)在反比例函数y=2x的图象上,且0<x1<x2,则y1与y2的大小关系是y1________y2.15.如图M1-6,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为____________.16.如图M1-7,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=__________.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1.18.如图M1-8,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.观察下列等式:第1个等式:a1=11×3=12×;第2个等式:a2=13×5=12×;第3个等式:a3=15×7=12×;第4个等式:a4=17×9=12×;……请解答下列问题:(1)按以上规律列出第5个等式:a5=____=____;(2)用含有n的代数式表示第n个等式:an=____=____(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为________________________________________________________________________;(2)点A1的坐标为________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为________.21.如图M1-10,直线y=2x-6与反比例函数y=kxx>0的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.22.如图M1-11,小山岗的斜坡AC的坡度是tanα=34,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数。

高中数学新人教A版选修1-1课堂测试椭圆及其标准方程

高中数学新人教A版选修1-1课堂测试椭圆及其标准方程

课时跟踪检测(六) 椭圆及其标准方程层级一学业水平达标2 2务+ y = 1上一点P 到焦点F 1的距离为3,则点P 到另一焦点F 2的距离为( )25 4B . 7解析:选B 根据椭圆的定义知,|PF i |+ |PF 2| = 2a = 2X 5= 10,因为 |PF 1|= 3,所以 |PF 2| = 7.2 22.若椭圆X + y= 1的焦距为2,m 4B . 3的距离之和|PA|+ |PB|= 2a (a>0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的A .充分不必要条件B .必要不充分条件D .既不充分又不必要条件•••甲是乙的必要条件.这是因为:仅当2a>|AB|时,P 点轨迹才是椭圆;而当2a = |AB|时,P 点轨迹是线段 AB ; 当2a<|AB|时,P 点无轨迹,.••甲不是乙的充分条件. 综上,甲是乙的必要不充分条件.2 24.如果方程X 2+ J = 1表示焦点在x 轴上的椭圆,则实数 a 的取值范围是()a a + 6 A . a>3B . av — 2C . a>3 或 a<— 2D . a>3 或一6<a< — 2-a 2 — a — 6>0, a< — 2 或 a>3, 解析:选D 由a 2>a + 6>0得所以a +6>o ,a>—6,所以 a>3 或—6<a< — 2.5 .已知P 为椭圆C 上一点,F 1, F 2为椭圆的焦点,且|F 1F 2|= 2 3,若|PF 1|与|PF 2|的 等差中项为|F 1F 2|,则椭圆C 的标准方程为()解析:选C由题意得 c = 1, a 2= b 2 + c 2.当m>4时, m = 4+ 1= 5; 当m<4时, 4= m + 1,二 m = 3.解析:选B 利用椭圆定义.若 P 点轨迹是椭圆,则|PA|+ |PB|= 2a (a>0 ,常数), 则m 的值为(3.命题甲:动点 P 到两定点A ,C .充要条件反过来,若 常数)是不能推出P 点轨迹是椭圆的.22=i2 X解析:选 B 由已知2C=|F1F2|= 2 c= 3.••• 2a = |PF11+ |PF 2|= 2|F 1F 2= 4 3, a= 2 3. —b2= a2—C2= 9.2 2 2 2故椭圆C的标准方程是令+ y= 1或x+ y= 1.12 9 9 122 26.已知F1, F2为椭圆25 + * = 1的两个焦点,过F1的直线交椭圆于A, B两点.若|F2A|+ |F2B|= 12,则|AB| = __________ ,解析:由直线AB过椭圆的一个焦点F1,知AB| = |F 1A|+ |F1B|,•••在△ F2AB 中,|F2A|+ |F2B|+ |AB|= 4a= 20, 又|F2A汁|F2B|= 12,. |AB|= 8. 答案:87•已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为2 2解析:法一:依题意,可设椭圆C的方程为字+器=1(a>b>0),且可知左焦点为 F '(—2,0).C= 2, C= 2,从而有/ 解得1I2a = |AF|+ AF ' |= 3 + 5 = 8, l a = 4.又a2= b2+ C2,所以b2= 12,2 2故椭圆C的标准方程为士+ ± = 1.16 122 2法二:依题意,可设椭圆C的方程为字+器=1(a>b>0),4+ 活=1, 2 2 2则心b解得b2= 12或b2=—3(舍去),从而a2= 16.b2= 4,2 2所以椭圆C的标准方程为-+ y= 1.16 12答案:2 2話+y=1.石+ 9 =22X , y•9 + 12=22X y―+.4845i C1 D2 2或45+48=18.椭圆的两焦点为 F i (— 4,0), F 2(4,0),点P 在椭圆上,若△ PF 1F 2的面积最大为12,则椭圆方程为 ___________ .解析:如图,当P 在y 轴上时 △ PF 1F 2的面积最大,又T c = 4,「. a 2= b 2 + c 2 = 25.2 2•椭圆的标准方程为x5+9 = i.2 2答案:25+9 =19•求符合下列条件的椭圆的标准方程.2 2⑵过点(一3,2)且与椭圆9 + 丁 = 1有相同的焦点.解:(1)设所求椭圆方程为 mx 2 + ny 2= 1(m>0, n>0, m ^ n).•••椭圆过点于,3和^3^, 1 ,m= 1, 解得 1n= i2•••所求椭圆的标准方程为x 2+ y =1.92 2(2)由题意得已知椭圆 :+ 4 = 1中a = 3,b = 2, 且焦点在 x 轴上,•c 2= 9— 4= 5.2 2•设所求椭圆方程为虽+ 占 =1.a a — 5 •••点(—3,2)在所求椭圆上, + 4= 1. • a ' 2= 15 或 a ' 2= 3(舍去).a a — 52 2•••所求椭圆的标准方程为 15+1o =1.2 210.已知椭圆 字+ b 2= 1(a>b>0)的焦点分别是 F 1(0, (1)求椭圆的标准方程;⑵设点P 在这个椭圆上,且|PF 1| —|PF 2| = 1,求/ F 1PF 2的余弦值.•••h 8b = 12,.・.b = 3.2m •36 2+ n • 32= 1, [m/+ n 42= 1,1), F 2(0,1),且 3a 2= 4b 2.解:⑴依题意,知c 2= 1,又c 2= a 2— b 2,且3a 2 = 4b 2, 所以 a 2— 3a 2 = 1,即 ga 2= 1,所以 a 2= 4, b 2= 3,4 422故椭圆的标准方程为y +x = 1.4 3(2)由于点P 在椭圆上,所以|PF i |+ |PF 2| = 2a = 2X 2= 4. 又|PF i |— |PF 2| = 1,所以 |PF i |= 5, |PF 2| = 2.色'21 i3— 2怎丿十Q 丿 2 3又|F i F 2|= 2c = 2,所以由余弦定理得 cos / F i PF 2=厂3—=牙 2 X ;X - 2 2故/ F i PF 2的余弦值等于3.5的点的轨迹是椭圆所以B 错误;C 中,点 M(5,3)到 F i , F 2 两点的距离之和为 ,5+ 4 2+ 32+ . 5 — 4 2+ 32= 4 10>|F i F 2|= 8,则其轨迹是椭圆,所以C 正确;D 中,轨迹应是线段 F 1F 2的垂直平分线,所以 D 错误.故选C.x 2 y 2 一一2.椭圆—+扌=1的焦点为F i , F 2, P 为椭圆上的一点, 已知PF i PF 2 = 0,则厶F 1PF 2的面积为()B . 12C . 10解析:选 A •••苹 P F != 0,「. PF i 丄 PF 2. •- |PF i |2+ |PF 2|2= |F i F 2|2 且 |PF i |+ |PF 2|= 2a. 又 a = 5, b = 3,「. c = 4,层级二应试能力达标1.下列说法中正确的是( )A .已知 F i ( — 4,0), F 2(4,0),平面内到 是椭圆F i , F 2两点的距离之和等于8的点的轨迹B .已知 F i ( — 4,0), F 2(4,0),平面内到 是椭圆F i ,F 2两点的距离之和等于6的点的轨迹C •平面内到点 F i (— 4,0), F 2(4,0)两点的距离之和等于点 M(5,3)到F i ,F 2的距离之和F i (— 4,0), F 2(4,0)距离相等的点的轨迹是椭圆中,l F i F 2= 8,则平面内到F i , F 2两点的距离之和等于是线段,所以A 错误;D .平面内到点解析:选C A 8的点的轨迹B 中,到F i , F 2两点的距离之和等于 6,小于|F i F 2|,这样的轨迹不存在,|PF 『+ |PF 『=64, ① …|PF i |+ |PF 2|= 10.②②2—①,得 2|PF i | |PF 2|= 36, •- |PF i | |PF 2|= 18,1•••△ F 1PF 2 的面积为 S = 2 |PF i | |PF 2|= 9.3 .若a€ \o , n,,方程x 2sin a+ y 2cos a= 1表示焦点在y 轴上的椭圆,则 a 的取值范围是()B. 0, nC.p , n )2 22Xx sin a+ y cos a= 1 可化为—+1sin a cos a1.因为椭圆的焦点在 y 轴上,所以>=L>0,即sin a >cos a >0.又a€ 0,,所以承a <ncos a sin a .24 22 24.已知P 为椭圆25+ ^6=1上的一点,M , N 分别为圆(x + 3)2 + /= 1和圆(x — 3)2 + y 2=4上的点,贝U |PM|+ |PN|的最小值为()A . 5B . 7C . 13D . 15解析:选B 由题意知椭圆的两个焦点F 1, F 2分别是两圆的圆心: 且|PF 1|+ |PF 2|= 10,从而 |PM|+ |PN|的最小值为 |PF 1|+ |PF 2|— 1 — 2= 7.5.若椭圆2kx 2+ ky 2= 1的一个焦点为(0, — 4),贝V k 的值为 _________ .2 2解析:易知 心0,方程2kx 2 + ky 2= 1变形为y + x = 1,1 丄k 2k2 26.已知椭圆C : 9 +: = J 点M 与C 的焦点不重合.若分别为 A , B ,线段MN 的中点在 C 上,贝U |AN|+ |BN|= __________ ,解析:取MN 的中点G , G 在椭圆C 上,因为点M 关于C 的焦点F 1, F 2的对称点分别为 A , B ,A. 解析:选A 易知sin a 0, cos a 0,方程1 1 所以 k -2k = 16, 1 解得k =32.答案:丄32M关于C的焦点的对称点1 1 故有 l GF i |= 2|AN|, |GF 2|= Q IBNI ,所以 |AN|+ |BN|= 2(|GF i |+ |GF 2|)= 4a = 12. 答案:127.已知点P 在椭圆上,且P 到椭圆的两个焦点的距离分别为5,3.过P 且与椭圆的长轴垂直的直线恰好经过椭圆的一个焦点,求椭圆的标准方程.2 2 2 2予 + b = 1(a>b>0)或 含=1(a>b>0), 由已知条件得僞=所以 b 2= a 2- c 2= 12.b 2依题意有-=3,得b 2= 12.a8.如图在圆C : (x + 1)2+ y 2= 25内有一点 A(1,0). Q 为圆C 上一点,AQ 的垂直平分线与 C , Q 的连线交于点 M ,求点M 的轨迹方程.解:如图,连接 MA.由题意知点 M 在线段CQ 上, 从而有 |CQ|= |MQ| + |MC|. 又点M 在AQ 的垂直平分线上,于是所求椭圆的标准方程为2 X+ 16 122 2(=1 或 16 2X , + = 1. 12则|MA|= |MQ|,故 |MA|+ |MC| = |CQ|= 5. 又 A(1,0), C(- 1,0),故点M 的轨迹是以(1,0), (- 1,0)为焦点的椭圆,解:法一:设所求的椭圆方程为 解得a =4,|c = 2,于是所求椭圆的标准方程为 216+2 2 2挣1或16吃=1.法二:设所求的椭圆方程为 2 2 2 2予+ y 2= 1(a>b>0)或字 + f 2= 1(a>b>0),两个焦点分别为F 1,F 2.由题意知 2a = |PF 1|+ |PF 2| = 3+ 5= 8,所以 a = 4.2 2在方程筲b 2=1中,令x= ± 得 |y|=f ;2 2 在方程»詁=1中,令y = 乂,得 |x|= a.47P1且2a= 5,故a= 2, A 1, b2= a2- c2= 25- 1=2 2故点M的轨迹方程为X+ y= 1.25 214 4 21 ~4。

2017-2018年人教A版选修1-1《2.1-1椭圆》练习含答案

2017-2018年人教A版选修1-1《2.1-1椭圆》练习含答案

第二章 2.1-1椭圆A 级 基础巩固一、选择题1.(2016·浙江宁波高二检测)已知椭圆x 216+y 2b 2=1过点(-2,3),则其焦距为 ( D )A .8B .12C .23D .4 3[解析] 把点(-2,3)代入x 216+y 2b 2=1,得b 2=4,∴c 2=a 2-b 2=12.∴c =23,∴2c =4 3.2.(2015·广东文)已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m = ( B )A .2B .3C .4D .9[解析] ∵椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),∴c =4=25-m 2,∴m 2=9,∴m =3,选B .3.已知F 1、F 2是椭圆x 216+y 29=1的两个焦点,过点F 2的直线交椭圆于点A 、B ,若|AB |=5,则|AF 1|+|BF 1|= ( A )A .11B .10C .9D .16[解析] 由方程知a 2=16,∴2a =8,由椭圆定义知,|AF 1|+|AF 2|=8,|BF 1|+|BF 2|=8,∴|AF 1|+|AF 2|+|BF 1|+|BF 2|=|AF 1|+|BF 1|+|AB |=16,∴|AF 1|+|BF 1|=11,故选A .4.(2016·山东济宁高二检测)设P 是椭圆x 216+y 212=1上一点,P 到两焦点F 1、F 2的距离之差为2,则△PF 1F 2是 ( B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形[解析] 由椭圆定义,知|PF 1|+|PF 2|=2a =8. 又|PF 1|-|PF 2|=2,∴|PF 1|=5,|PF 2|=3. 又|F 1F 2|=2c =216-12=4,∴△PF 1F 2为直角三角形.5.对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的 ( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] 若方程mx 2+ny 2=1的曲线是椭圆,则m >0,n >0,从而mn >0,但当mn >0时,可能有m =n >0,也可能有m <0,n <0,这时方程mx 2+ny 2=1不表示椭圆,故选B .6.(2016·贵州贵阳高二检测)已知两点F 1(-1,0)、F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是 ( C )A .x 216+y 29=1B .x 216+y 212=1C .x 24+y 23=1D .x 33+y 24=1[解析] ∵|F 1F 2|是|PF 1|与|PF 2|的等差中项,∴|PF 1|+|PF 2|=2|F 1F 2|=4>|F 1F 2|,动点P 的轨迹为以F 1、F 2为焦点的椭圆,∴2a =4,2c =2,∴a =2,c =1,∴b 2=3,方程为x 24+y 23=1.二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为4和2,则椭圆的标准方程为 x 29+y 28=1 .[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =4a -c =2,∴⎩⎪⎨⎪⎧a =3c =1,∴b 2=a 2-c 2=9-1=8,∴椭圆方程为x 29+y 28=1.8.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆方程是 x 215+y 210=1 .[解析] 因为焦点坐标为(±5,0),设方程为x 2a 2+y 2a 2-5=1,将(-3,2)代入方程可得9a 2+4a 2-5=1,解得a 2=15,故方程为x 215+y 210=1.三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1.当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.B 级 素养提升一、选择题1.椭圆x 2m +y 24=1的焦距是2,则m 的值是 ( C )A .5B .3或8C .3或5D .20[解析] 2c =2,∴c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故答案为C .2.设椭圆的标准方程为x 2k -3+y 25-k =1,若其焦点在x 轴上,则k 的取值范围是 ( C )A .k >3B .3<k <5C .4<k <5D .3<k <4[解析] 由题意得k -3>5-k >0,∴4<k <5.3.若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a 、b 满足 ( C ) A .a 2>b 2 B .1a <1bC .0<a <bD .0<b <a [解析] 将方程变为标准方程为x 21a +y 21b =1,由已知得,1a >1b >0,则0<a <b ,选C .4.(2016·安徽师大附中高二检测)F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为 ( C )A .7B .74C .72D .752[解析] 由已知得a =3,c = 2. 设|AF 1|=m ,则|AF 2|=6-m ,∴(6-m )2=m 2+(22)2-2m ·2 2 cos 45°, 解得m =72.∴6-m =52.∴S △AF 1F 2=12×72×22sin 45°=72,故选C .5.(2016·长沙模拟)设椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,P 是椭圆上的一动点,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为 ( C )A .3B .3或32C .32D .6或3[解析] 由题意可得该椭圆短轴顶点与两焦点的连线的夹角是60°,所以该点P 不可能是直角顶点,则只能是焦点为直角顶点,此时△PF 1F 2的面积为12×2c ×b 2a =32.二、填空题6.若椭圆x 25+y 2m =1的一个焦点坐标为(0,1),则实数m 的值为__6__.[解析] 由题意知,c =1,∴m -5=1,∴m =6.7.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=__2__;∠F 1PF 2的大小为__120°__.[解析] 由椭圆定义,|PF 1|+|PF 2|=2a =6, ∴|PF 2|=2,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=16+4-2816=-12.∴∠F 1PF 2=120°.8.(2016·广西南宁高二检测)已知△ABC 的顶点B 、C 在椭圆x 24+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是__8__.[解析] 如图所示,F 为椭圆的左焦点,A 为其右焦点,△ABC 的周长=|AB |+|BC |+|AC |=|AB |+|BF |+|AC |+|CF |=4a =8.C 级 能力提高1.根据下列条件,求椭圆的标准方程. (1)经过两点A (0,2)、B (12,3);(2)经过点(2,-3)且与椭圆9x 2+4y 2=36有共同的焦点. [解析] (1)设所求椭圆的方程为x 2m +y 2n =1(m >0,n >0,且m ≠n ),∵椭圆过A (0,2)、B ⎝⎛⎭⎫12,3. ∴⎩⎨⎧0m +4n =114m +3n =1, 解得⎩⎪⎨⎪⎧m =1n =4.即所求椭圆方程为x 2+y 24=1.(2)∵椭圆9x 2+4y 2=36的焦点为(0,±5),则可设所求椭圆方程为x 2m +y 2m +5=1(m >0),又椭圆经过点(2,-3),则有4m +9m +5=1,解得m =10或m =-2(舍去), 即所求椭圆的方程为x 210+y 215=1.2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20, 又c =100-64=6,∴在△F 1PF 2中,由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144,∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.。

高中数学选修1_1测试题与答案

高中数学选修1_1测试题与答案

数学试题(选修1-1)一.选择题(本大题共12小题,每小题3分,共36分) 1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件2. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .73.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y xB .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 5.双曲线121022=-y x 的焦距为( B ) A .22 B .24 C .32 D .346. 设x x x f ln )(=,若2)(0='x f ,则=0x ( )A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .2B .3C .12D .13 8..函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .09.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.抛物线x y 102=的焦点到准线的距离是( )A .25B .5C .215 D .10 13.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、若方程
22153x y k k +=---表示焦点在x 轴的椭圆,则实数k 的取值范围是_______
2、椭圆5522=+ky x 的一个焦点是)2,0(,则_____________=k
3、若椭圆
2215x y m +=的离心率5e =,则m 的值是_________
4、直线143
x y +=与椭圆221169x y +=相交于,A B 两点,该椭圆上点P 使PAB ∆的面积等于6,这样的点P 共有_______个
5、椭圆22
193
x y +=的焦点为21,F F ,点P 在椭圆上,如果线段1||PF 的中点在y 轴上,那么1||PF 是2||PF 的________倍
6、已知椭圆22
1259
x y +=的两焦点12,F F ,过2F 的直线交椭圆于点,A B ,若||8AB =,则11||||_________AF BF +=
7、与椭圆22
143
x y +=具有相同的离心率且过点(2,的椭圆的标准方程是_______
8、P 是椭圆14
92
2=+y x 上的点,12,F F 是两个焦点,则12||||PF PF ⋅的最大值_______=最小值_________=
9、椭圆36942
2=+y x 内有一点(1,1)P ,过P 的弦恰被P 平分,则这条弦所在的直线方程是____________
10、要使直线)(1R k kx y ∈+=与焦点在x 轴上的椭圆172
2=+a
y x 总有公共点,则a 的取值范围是____________
11、点00(,)P x y 在椭圆14
92
2=+y x 上,焦点12,F F ,当12F PF ∠为钝角时,0______x ∈
12、椭圆22
1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M 与坐标原点的直线的斜率为
2,则___________m n
=
13、椭圆22221(0)x y a b a b +=>>的离心率为12
e =,右焦点(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,与圆22
2x y +=的位置关系是______
14、已知(1,1)A 为椭圆22
195
x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点.求1||||PF PA +的最大值和最小值
15、若x =2u x y =+的取值范围:
16、设b a b a b a +=+∈则,62,,2
2R 的最小值是:
17、已知椭圆)0(122
22>>=+b a b
y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满足021=⋅PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为
18、已知ABC ∆的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交
于G ,且5|GF |+|GE |=,则点G 的轨迹方程为
19、已知12,F F 是椭圆22
221(510)(10)
x y a a a +=<<-的两个焦点,B 是短轴的一个端点,则△12F BF 的面积的最大值是
20、过椭圆22
13625
x y +=的焦点1F 作直线交椭圆于A 、B 二点,2F 是此椭圆的另一焦点,则∆ABF 2的周长为 .
21、已知动点(,)P x y 在椭圆22
12516
x y +=上,若A 点坐标为(3,0),||1AM =且0PM AM ⋅=,则||PM 的最小值是
22、已知,,m n m n +成等差数列,,,m n mn 成等比数列,则椭圆221x y m n
+=的离心率是_______
23、已知椭圆22
1164
x y +=的左右焦点分别为1F 与2F ,点P
在直线:80l x ++=上.当∠12F PF 取最大值时,则
12||||
PF PF 的值为______________ 24、过椭圆14
92
2=+y x 内一点()1,1P 作弦AB ,若PB AP =,则直线AB 的方程为 .
25、若动点(,)P x y 在曲线2
214
x y +=上变化,则22x y +的最大值为
26、设AB 是椭圆22
221x y a b
+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,则AB OM k k ⋅=____________
27、设12,F F 分别是椭圆2
2
2:1(01)y E x b b +=<<的左、右焦点,过1F 的直线l 与E 相交于,A B 两点,且22||,||,||AF AB BF 成等差数列,则AB 的长为。

相关文档
最新文档