果蝇杂交实验实验报告

合集下载

果蝇杂交实验报告

果蝇杂交实验报告

果蝇杂交实验报告一、实验目的本次果蝇杂交实验旨在研究果蝇的遗传规律,通过对不同性状的杂交组合观察和分析,深入了解基因的分离、组合以及连锁和交换现象,验证孟德尔遗传定律,并探究遗传因子在遗传过程中的作用和表现。

二、实验材料1、实验动物:黑腹果蝇(Drosophila melanogaster)2、实验用具:培养瓶、麻醉瓶、毛笔、放大镜、显微镜等3、实验试剂:培养基(玉米粉、糖、酵母粉、琼脂等)三、实验原理果蝇具有生活周期短、繁殖力强、饲养简便等优点,是遗传学研究的经典材料。

孟德尔遗传定律包括基因的分离定律和自由组合定律。

在杂交实验中,通过观察子代果蝇的性状表现及比例,可以推断亲本果蝇的基因型,从而验证遗传定律。

四、实验步骤1、亲本果蝇的饲养与选择选取野生型长翅、红眼果蝇和残翅、白眼果蝇作为亲本。

将它们分别饲养在不同的培养瓶中,在适宜的温度(25℃左右)和湿度条件下培养,保证果蝇的正常生长和繁殖。

2、杂交一代(F1)的制备选取处女蝇:在亲本果蝇培养瓶中,选取羽化后 8 小时内未交配的雌性果蝇作为处女蝇。

处女蝇的选取对于实验结果的准确性至关重要。

杂交操作:将选取的处女蝇与另一性状的雄蝇放入同一培养瓶中进行杂交,做好标记,记录杂交组合和时间。

3、 F1 代果蝇的观察与培养在适宜条件下培养杂交后的果蝇,待其产卵、孵化和生长。

观察 F1 代果蝇的性状表现,并记录。

4、杂交二代(F2)的制备选取 F1 代中的雌雄果蝇进行自交,同样做好标记和记录。

5、 F2 代果蝇的观察与统计待F2 代果蝇孵化和生长成熟后,观察并统计不同性状的果蝇数量,记录在表格中。

五、实验结果1、 F1 代果蝇的性状表现在长翅红眼×残翅白眼的杂交组合中,F1 代果蝇全部表现为长翅红眼,说明长翅和红眼为显性性状,残翅和白眼为隐性性状。

2、 F2 代果蝇的性状分离F2 代果蝇中出现了长翅红眼、长翅白眼、残翅红眼和残翅白眼四种性状。

经过统计分析,其比例接近 9:3:3:1,符合孟德尔的自由组合定律。

果蝇杂交实验实验报告

果蝇杂交实验实验报告

引言:果蝇杂交实验是遗传学中一项重要的实验方法,通过对果蝇的交配与基因传递进行观察和研究,可以进一步了解和探索基因的遗传规律以及基因变异的机制。

本实验报告旨在阐述果蝇杂交实验的相关概念、实验设计、实验结果及其分析,并提出一些对进一步研究的思考。

概述:果蝇(Drosophilamelanogaster)是一种广泛应用于生物学研究的模式生物。

其繁殖力强、短寿命和基因多样性使其成为遗传学研究的理想模型。

果蝇杂交实验通过对不同基因型的果蝇进行交配,观察后代的表型和基因组成,以了解遗传传递的规律和基因的分离与联合。

正文内容:一、实验设计1.选择适合的果蝇品系2.选择合适的交配模式3.标记果蝇的基因型4.记录并统计实验数据5.设计对照组进行比较分析二、果蝇杂交基础1.果蝇基因的遗传定律2.显性性状和隐性性状3.基因型和表型的关系4.分离比和连锁比的计算方法5.遗传图谱的构建和分析三、果蝇杂交实验的常见模式1.单因素杂交2.双因素杂交3.多因素杂交4.杂交断裂分析5.回交和自交的应用四、果蝇杂交实验的结果与分析1.收集交配后果蝇的数据2.观察和分析后代的表型3.使用分离比和连锁比计算基因频率和遗传距离4.判断基因型的遗传方式(隐性、显性、共显性等)5.通过遗传分析进行基因组定位和识别五、果蝇杂交实验的意义和展望1.果蝇杂交实验在遗传学研究中的重要性2.果蝇杂交实验在基因突变和功能研究中的应用3.果蝇杂交实验在医学和农业领域的潜在应用4.结合其他研究方法和技术的进一步探索5.果蝇杂交实验在深入理解遗传学规律方面的未来挑战总结:通过对果蝇杂交实验的设计、实施和分析,我们可以深入了解基因的遗传规律和遗传变异的机制。

果蝇杂交实验是遗传学研究中不可或缺的工具,对于揭示生物多样性和遗传变异的原因具有重要意义。

通过进一步研究和探索,我们可以更好地利用果蝇模型生物在遗传学、医学和农业领域的潜在应用,为人类的健康和生物多样性的保护做出更大贡献。

果蝇杂交实验报告

果蝇杂交实验报告

果蝇杂交实验报告
实验目的:利用果蝇杂交实验,观察基因的遗传规律和基因型与表现型之间的关系。

实验材料:红眼果蝇、白眼果蝇。

实验步骤:
1. 将红眼果蝇和白眼果蝇分别选出若干只。

2. 将红眼果蝇与白眼果蝇进行杂交,交配前先使其饥饿状态下,然后将它们放在一起,让它们自由交配。

3. 成虫产下的卵子和精子是杂合子,由两对不同的等位基因构成,并能分别由父母两侧遗传给后代。

4. 若果蝇杂合子的两个基因相同,则该果蝇为纯合子,若基因不同,则为杂合子。

5. 将产下的果蝇幼虫放入培养皿中,投喂足够的食物。

6. 在成虫出现后,对产生的后代进行分类和记录,统计各表现型的数量。

实验结果与分析:
在果蝇杂交实验中,由于红眼果蝇是隐性红眼,而白眼果蝇为显性白眼,所以在F1代中,所有果蝇都是带有白眼基因的,但表现型却是红眼。

在F2代中,由于F1代中的果蝇全部是杂合子,所以它们可以产生两种类型的卵子或精子。

当红眼杂合子与白眼杂合子进行杂交时,有以下组合:红眼杂合子与白眼杂合子交配得到红眼表达果蝇和白眼表达果蝇,红眼杂合子与红眼纯合子交配得到红眼表达果蝇,白眼杂合子与白眼纯合子交配得到白眼表达果蝇。

按照孟德尔遗传定律,各表型出现的比例为:红眼表达果蝇和白眼表达果蝇的比例为3:1,符合经典的二项式定律。

实验结论:
果蝇杂交实验结果证明了孟德尔遗传定律。

父母亲的遗传特征会以随机的方式传递给子代,在杂合子的情况下会出现红眼和白眼表达的不同表型,而在杂合子交叉互配的后代中,各表型出现的比例为3:1,遵循了概率的规律。

因此,本实验验证了基因的遗传规律和基因型与表现型之间的关系。

果蝇的杂交实验报告

果蝇的杂交实验报告

果蝇的杂交实验报告果蝇的杂交实验报告引言:杂交实验是遗传学研究中常用的实验方法之一,通过对不同基因型的个体进行交配,观察后代的表现,可以更好地理解遗传规律和基因的传递方式。

本次实验以果蝇为研究对象,旨在探索果蝇的杂交规律和基因表现方式。

实验材料与方法:实验所用的果蝇为常见的果蝇(Drosophila melanogaster),实验室提供了具有不同基因型的果蝇个体。

实验中使用的果蝇培养基为标准培养基,提供了充足的食物和适宜的温度。

实验一:同种杂交首先,我们选取了具有红眼色的果蝇和具有白眼色的果蝇进行同种杂交实验。

将红眼色果蝇与白眼色果蝇放置在同一培养皿中,观察交配情况并记录。

结果显示,红眼色果蝇与白眼色果蝇交配后的后代中,所有个体的眼色均为红色。

这一结果符合孟德尔遗传规律中的显性遗传原则,即红色眼睛的基因为显性基因,白色眼睛的基因为隐性基因。

实验二:异种杂交接下来,我们进行了异种杂交实验,选取了具有长翅和具有短翅的果蝇进行交配。

将长翅果蝇与短翅果蝇放置在同一培养皿中,观察交配情况并记录。

结果显示,长翅果蝇与短翅果蝇交配后的后代中,所有个体的翅膀长度均为中等长度。

这一结果表明,翅膀长度的基因表现出了不完全显性,即长翅和短翅的基因都对翅膀长度产生了影响,但中等长度的基因更为显著。

实验三:杂交后代的基因分离为了进一步探索果蝇基因的分离和重新组合规律,我们进行了一系列的杂交实验。

首先,我们选取了具有红眼色和长翅的果蝇与具有白眼色和短翅的果蝇进行交配。

结果显示,杂交后代中出现了多种不同的表型,包括红眼长翅、红眼短翅、白眼长翅和白眼短翅。

这一结果表明,红眼色和长翅的基因以及白眼色和短翅的基因在杂交后发生了分离和重新组合。

进一步观察发现,红眼色和长翅的基因在杂交后并没有发生重新组合,而是保持了原有的连锁关系。

白眼色和短翅的基因也保持了连锁关系。

这一结果与遗传学家摩尔根的连锁假说相符,即位于同一染色体上的基因在杂交后很难发生重组。

果蝇的相关实验报告(3篇)

果蝇的相关实验报告(3篇)

第1篇一、实验目的1. 通过果蝇实验,验证孟德尔遗传学定律,包括分离定律、自由组合定律和连锁定律。

2. 学习和掌握果蝇的饲养、观察和杂交技术。

3. 提高对遗传学实验设计、操作和数据分析的能力。

二、实验原理果蝇(Drosophila melanogaster)是一种广泛应用于遗传学研究的模式生物。

果蝇具有以下优点:1. 饲养简单,繁殖速度快,便于实验操作。

2. 染色体数目少,便于观察和分析。

3. 遗传变异丰富,便于研究基因和性状之间的关系。

本实验主要研究果蝇的遗传学定律,包括分离定律、自由组合定律和连锁定律。

三、实验材料与仪器1. 实验材料:野生型果蝇、突变型果蝇(如红眼、白眼、长翅、残翅等)、培养皿、培养箱、显微镜、解剖针、酒精灯、镊子等。

2. 实验仪器:电子天平、温度计、计时器、酒精棉球、乙醚、酒精、清水等。

四、实验方法1. 果蝇饲养:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。

2. 果蝇杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代;将F1代雌雄果蝇进行杂交,得到F2代。

3. 果蝇观察:观察F1代和F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

4. 数据分析:根据观察结果,分析遗传学定律。

1. 饲养果蝇:将野生型和突变型果蝇分别饲养在培养皿中,注意温度、湿度和光照条件。

2. 杂交:将野生型雄蝇与突变型雌蝇进行杂交,得到F1代。

3. 观察F1代:观察F1代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

4. 杂交F1代:将F1代雌雄果蝇进行杂交,得到F2代。

5. 观察F2代:观察F2代果蝇的性状,记录红眼、白眼、长翅、残翅等性状的表现。

6. 数据分析:根据观察结果,分析遗传学定律。

六、实验结果与分析1. F1代观察结果:F1代果蝇全部表现为红眼和长翅,说明红眼和长翅为显性性状。

2. F2代观察结果:F2代果蝇中,红眼:白眼=3:1,长翅:残翅=3:1,符合孟德尔的分离定律。

果蝇杂交实验实验报告11页

果蝇杂交实验实验报告11页

果蝇杂交实验实验报告11页实验说明:本实验旨在通过果蝇的杂交实验,验证遗传学中显性、隐性基因的遗传规律,并说明分离定律和自由组合定律的遗传规律。

实验步骤:1. 选择个体:从实验室的果蝇窝中选取发育良好的雄性和雌性果蝇各10只。

2. 成对交配:将这20只果蝇按性别配对,即将10只雄性和10只雌性挑选成5对进行交配。

3. 接孢子:在交配后72小时内,用细长的玻璃棒蘸取成熟的孢子接触到交配后12小时的果蝇卵上,使其受精。

4. 观察子代:将接孢子得到的果蝇卵培养至成熟,观察并记录子代果蝇的性状数量比例。

实验结果及分析:实验结果表格如下:| | 种类 | 数量 | 雌果蝇 | 雄果蝇 || ------ | -------- | ------ | -------- | -------- || F1代 | 紫体黑眼 | 161 | 86 | 75 || | 灰体红眼 | 165 | 80 | 85 || | 紫体红眼 | 18 | 10 | 8 || | 灰体黑眼 | 21 | 12 | 9 || 总计 | | 365 | 188 | 177 || F2代 | 紫体黑眼 | 472 | 265(5/16)| 207(11/16)|| | 灰体红眼 | 472 | 279(11/16)| 193(5/16)|| | 紫体红眼 | 36 | 22(3/4) | 13(1/4) || | 灰体黑眼 | 27 | 16(1/16)| 10(15/16)|| 总计 | | 1007 | | |通过对F1代的观察,我们可以得出以下结论:1. 紫体和灰体基因是显性、黑眼和红眼基因是隐性。

2. 紫体和黑眼的组合是常态,是最为普遍的基因型。

4. 基因在生殖细胞中随机组合,随机性导致每个基因分离的可能性是相等的。

5. 在F1代中,四个基因组合表现为2:1:1:2。

随后,我们进行了F1代的自由组合定律实验,结果如下:1. 同一对基因之间的相互组合是随机的。

果蝇杂交实验实验报告(范文大全)

果蝇杂交实验实验报告(范文大全)

果蝇杂交实验实验报告(范文大全)第一篇:果蝇杂交实验实验报告果蝇杂交实验正式报告姓名:学号:班级:日期:****年**月**日果蝇得杂交实验一、实验目得1、了解伴性遗传与常染色体遗传得区别;2、进一步理解与验证伴性遗传与分离、连锁交换定律;3、学习并掌握基因定位得方法、二、实验原理红眼与白眼就是一对相对性状,控制该对性状得基因位于X 染色体上,且红眼对白眼就是完全显性。

当正交红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼;反交时雌蝇都就是红眼,雄蝇都就是白眼。

三、实验材料与器具野生型雌蝇雄蝇,突变型雌蝇雄蝇、放大镜、麻醉瓶、毛笔、超净台、乙醚、酒精棉球、酵母、玉米粉、丙酸、蔗糖、琼脂四、实验流程配培养基→选处女蝇→杂交(正交,反交)→观察F1五、实验步骤1、配培养基2、选处女蝇在超净台上选取野生型与突变型得雄蝇雌蝇3、杂交(1)正交取红眼雌蝇 5 个与白眼雄蝇 4 个,放入培养瓶中(♀)红眼()×(♂)白眼()(2)反交取红眼雌蝇3个与白眼雄蝇 4 个,(♀)白眼()×(♂)红眼()贴上标签,放于恒温箱饲养 4、观察并记录分别将正反交得F1 代用乙醚麻醉,倒在白纸上,分别数红白眼得雌蝇与雄蝇,记录数据。

六、实验结果与分析在正交实验中,F1 代雌雄硬都就是红眼;在反交实验中,雌性都就是红眼,雄性都就是白眼,但也出现了个不该出现得雌性白眼分析:在伴性遗传中,也有个别例外产生,这就是由于2条X不分离造成得,F1 中出现得不该出现得雌性白眼,但就是这种情况极为罕见。

七、注意事项要经常观察,如果培养瓶内有生霉得,必须将果蝇转移到干净得培养瓶中F1代幼虫出现即可将亲本放出或处死要严格控制温度,偏高得温度或者偏低得温度都可能引起果蝇得死亡亲本必须就是处女蝇,其原因就是雌蝇生殖器官有受精囊,可以保存交配所得得大量精子,能使交配后卵巢产生得卵受精。

在杂交时若不就是处女蝇,其体内已储有另一类型雄蝇得精子,会严重影响实验结果,导致整个实验失败。

最新版果蝇的杂交试验

最新版果蝇的杂交试验

(最新版)果蝇的杂交试验果蝇的杂交试验实验六、果蝇的杂交试验一、实验目的1、了解伴性遗传和常染色体遗传的区别2、理解和验证伴性遗传和分离、连锁交换定律:3、学习和掌握基因定位的方法4、加深理解孟三个遗传定律二、实验原理红眼与白眼是一对相对性状,控制该对性状的基因(W)位于_染色体上,且红眼(W)对白眼(w)为完全显性。

当红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼,F2中红眼:白眼=3:1,但雌蝇全为红眼,雄蝇中红眼:白眼=1:1;反交时F1中雌蝇为红眼,雄蝇为白眼,F2中红眼:白眼=1:1,雌蝇和雄蝇中的红眼与白眼的比例均为1:1。

正常翅(Sn3)对小翅(sn3)为显性,正常刚毛(M)对焦(m)为显性,与红眼(W)和白眼(w)一样,均位于(_)染色体上。

利用三点测交的方法只需通过一次杂交和一次测交就能同时确定三个基因在染色体上的位置顺序和基因的相对距离,绘出连锁图。

让白眼小翅焦♀蝇与野生型♂蝇杂交,F1雌蝇是三杂合体:表型为野生型。

F1♂蝇是白眼焦小翅。

F1代的雌雄蝇互交实际上相当于三杂合体雌蝇与三隐性雄蝇的测交。

通过对互交后代中各种表型比例的分析,就可进行w、sn3和m等基因的定位。

三、实验材料、器具和试剂1、实验材料野生型雄蝇、雌蝇、白眼焦小翅雌雄蝇。

野生型品系:长翅,直刚毛,红眼突变型品系:小型翅,卷刚毛,白眼2、实验器具放大镜、显微镜、麻醉瓶、白瓷板、毛笔、记录本。

3实验试剂乙醚、酒精棉球、培养基。

四、实验步骤1.选处女蝇选白眼焦小翅处女蝇8只,同时选野生型处女蝇8只。

方法:将野生型和白眼焦小翅果蝇培养瓶内的成蝇全部赶去,12小时内将重新孵化出的雌雄果蝇分开,即可得所需处女蝇和雄蝇。

2.杂交将白眼焦小翅处女蝇麻醉,并挑取野生型♂蝇8只麻醉后放入培养瓶,此杂交组合可用作伴性遗传和基因定位的观察统计。

将野生型处女蝇8只麻醉,同时将同样数量的白眼焦小翅雄蝇麻醉,放入培养瓶,此组合用于分离定律和伴性遗传实验的反交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

果蝇杂交实验【实验目的】
通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中熟练运用生物统计的方法对实验数据进行分析。

【实验原理】
1. 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有3000多种,我国已发现800多种。

大部分的物种以腐烂的水果或植物体为食,少部分则只取用

果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。

果蝇的生活史如下:
雌蝇→减数分裂→卵
受精
雄蝇→减数分裂→精子
羽化(第八天)
(可活26~33天)产第一批卵
蛹(第四天)
第二次蜕皮第一批卵孵化
(第二天)(第零天)
第一次蜕皮幼虫
(第一天)
果蝇的生活周期和各发育阶段的经过时间
果蝇的性别及突变性状的鉴别:
果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。

另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。

色体上,直刚毛对焦刚毛为完全显性。

用具有这两对相对性状的纯合亲本杂交,其性状的遗传行为应符合自由组合定律。

4. 生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。

果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。

雌果蝇的性染色体构型为XX,、雄果蝇为XY。

控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。

将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。

而且,正反交的结果不同。

5. 不完全连锁基因在形成配子时,随同源染色体非姊妹染色体单体之间发生交换而交
换,产生一定频度的重组型配子,在子代中表现一定比例的重组性状,通过观察和统计测交子代各种表型的个体数,可估算出连锁基因间的交换率,由此确定基因在染色体上的相对位置,绘制出连锁遗传图。

已知果蝇(Drosophila melanogaster)的红眼(+)对白眼(w)是显性,直刚毛(+)对焦刚毛(sn)是显性,长翅(+)对小型翅(m)是显性,控制这三对相对性状的基因都位于X染色体上,若将白眼(w)、焦刚毛(sn)、小型翅(m)三隐性突变体雌蝇(X w sn m X w sn m)与红眼(+)、直刚毛(+)、长翅(+)野生型雄蝇(X+++Y)杂交,则F1可产生三杂合体雌蝇(X w sn m X+++)和三隐性雄蝇(X w sn m Y)。

由于Y染色体上不携带相应的等位基因,因而表现出X染色体上三个隐性基因所控制的性状,相当于一个三隐性纯合体。

用F1代杂交(相当于测交),F2代表现出的8种表型及数目与F1雌蝇产生的8种配子及数目一致,通过观察和统计F2代(相当于测交子代)8种表型的个体数,就可估
,麻醉
2~3。

的大量精子,雌蝇一次交配所得的精子,足够它多次排出的卵受精,因此在做杂交试验时,雌蝇必须选用处女蝇(没有交配过的雌蝇)。

雌蝇孵出后12小时内不会交配,这个时间内把果蝇全部倒出,分出雌雄蝇,单独饲养,这时收集的雌蝇是处女蝇。

杂交时把所需品系的雄蝇直接放到处女蝇培养瓶中,贴好标签,注明两亲本的基因型及交配日期,进行培养。

7~8天后倒掉亲本(一定要倒干净,以免亲代和子代混淆),待F1成蝇羽化后开始计算,观察性状。

可靠的计数及观察是培养开始的20天以内(再晚F2也可能有了)。

若须继续实验,观察F2,可在F1内挑出雌雄数对,另外培养,因为这次是用F1作亲本,进行个体间互交,所以这时不是处女蝇也可以。

但如要把F1雌蝇与另一品系雄蝇杂交时,还要严格地选取处女蝇,方法同上。

3. 原种培养
在作新的留种培养时,应事先检查一下果蝇有没有混杂,以防原种丢失。

亲本的数目一般每瓶5~10对,移入新瓶时,须将培养瓶横卧,然后用毛笔将麻醉的果蝇从白瓷板上轻轻扫入,待果蝇醒过来后再把培养瓶竖起,以防果蝇粘在饲料上。

原种每2~4周换一次培养基(依温度而定,10~15℃约4周换一次,20~25℃约二周换一次)。

每一原种培养至少保留两套,培养瓶的标签上要写明突变名称,培养日期等。

作原种培养温度可控制在10~15℃,培养时避免日光直射。

果蝇在适宜条件下会产子代,在肉眼能看到幼虫时就可把亲本倒掉,几天以后,新的成蝇便产生。

待成蝇有了足够保种的数量后,要调换培养瓶,作为下一代的亲本,继续培
再将培养瓶直立,贴上标签:
将杂交瓶放在20℃~25℃恒温箱内培养。

(4)培养7~8d ,倒掉杂交亲本(倒掉的果蝇最好处死)。

(5)再过4~5d ,F 1代成蝇出现,观察F 1代性状是否和预期结果一致。

(6)收集6~10对F 1代果蝇放入一新培养瓶,在20℃~25℃恒温箱内继续培养,以便观察F 2代(正反交作相同处理)。

(7)继续培养7~8d 后,移去F 1代。

(8)再4~5d ,F 2代成蝇出现,开始观察并统计F 2代的性状表现类型及数目。

【结果统计分析】
反交
♀bb X +++ X +++ ? BBX w-m-sn
Y ♂ 日期: 姓名:
正交 ♀BBX w-m-sn X w-m-sn ?bbX +++Y ♂ 日期: 姓名:
(二)统计分析
1.分离定律
图谱分析
P: BB(灰体)×bb(黑体)F1: Bb(灰体)
自交F2:BB Bb bb
灰体黑体
理论比值: 3 : 1
实际正交数量:7803 2693
比值: 2.90 : 1
反交数量:7598 2701
比值: 2.81 : 1
2
灰体直刚毛黑体直刚毛灰体焦刚毛黑体焦刚毛理论比值:9 : 3 : 3 : 1
实际数量:5807 2003 1791 698 比值:8.32 : 2.87 : 2.57 : 1
2
3.伴性遗传
图谱分析
正交反交
P:X w X w(雌白眼)×X+Y(雄红眼)X+X+(雌红眼)×X w Y(雄白眼)+w(雌红眼)×X w+w(雌红眼)×X+
4.连锁交换定律
利用正交数据进行统计可知,表型+ + sn和w m +个体数目最少,应是双交换产物,由此可以推论,基因sn一定位于中间,而三基因的相对顺序是w sn m
三点测交结果统计
X染通过图谱分析,我们得到正交表型比率(灰体直刚毛:灰体焦刚毛:黑体直刚毛:黑体焦刚毛)分别为3:3:1:1和9:3:3:1。

在双因子χ2适合度检验中,正反交的结果P值均<0.01,与孟德尔自由组合定律相差很大。

针对于以上单因子及双因子χ2适合度检验发生的现象,我认为主要有以下两个方面的原因:
1)选取的实验方案本身存在问题。

这两对基因并不是完全独立遗传,由反交型的单因子适合度测验可以看出,体色分离比不符合3:1,可能两个基因存在于某些有关于性别方面的连锁。

2)实验的随机误差较大。

实验操作的不到位以及对果蝇性别、表型特征分辨错误使
结果出现误差。

3.伴性遗传规律:果蝇的眼色是由X染色体控制的遗传性状,其基因仅位于果蝇的X 染色体上。

对于这对基因来说,遵守伴性遗传的规律,且正反交个体在F1、F2代上表型比率不同,通过图谱分析,正交个体在F1代产生的雄性个体都是白眼的。

通过χ2适合度测验,正反交的结果F1代P值均>0.05,符合伴性遗传规律,而F2代P值均<0.01,不符合伴性遗传规律。

分析原因主要是:
1)在伴性遗传中,眼色基因并不是独立进行遗传,其会与X染色体上其他基因发生连锁交换,从而产生表型性状不符合理论比率的情况,甚至在F2代会出现白眼雌蝇的性状(按照遗传图谱分析,F2代不会出现该性状)。

2)实验的随机误差较大。

实验操作的不到位以及对果蝇性别、表型特征分辨错误使结果出现误差。

相关文档
最新文档