2020年内蒙古呼和浩特市和林格尔三中中考数学一模试卷
2020年内蒙古呼和浩特市中考数学一模试卷

中考数学一模试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.在实数-3,,0,-1中,最小的数是()A. -3B. 0C. -1D.2.下列说法正确的是()A. “任意画一个三角形,其内角和为360°”是随机事件B. 已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C. 抽样调查选取样本时,所选样本可按自己的喜好选取D. 检测某城市的空气质量,采用抽样调查法3.中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A. 0.96×107km2B. 960×104km2C. 9.6×106km2D. 9.6×105km24.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A. (a-10%)(a+15%)万元B. a(1-90%)(1+85%)万元C. a(1-10%)(1+15%)万元D. a(1-10%+15%)万元5.下列运算正确的是()A. a2+a3=a5B. (-2a2)3÷()2=-16a4C. 3a-1=D. (2a2-a)2÷3a2=4a2-4a+16.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A. B. C. D.7.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A. 60πB. 70πC. 90πD. 160π8.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A. 2010年至2014年间工业生产总值逐年增加B. 2014年的工业生产总值比前一年增加了40亿元C. 2012年与2013年每一年与前一年比,其增长额相同D. 从2011年至2014年,每一年与前一年比,2014年的增长率最大9.若点A(-3,y1),B(-2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y110.下列说法正确的是()①函数y=中自变量x的取值范围是x≥.②若等腰三角形的两边长分别为3和7,则第三边长是3或7.③一个正六边形的内角和是其外角和的2倍.④同旁内角互补是真命题.⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.A. ①②③B. ①④⑤C. ②④D. ③⑤二、填空题(本大题共6小题,共18.0分)11.使式子有意义的x的取值范围是______.12.如图,以正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C、F在x轴上,顶点A的坐标为(1,),则顶点D的坐标为______.13.若抛物线y=-x2-6x+m与x轴没有交点,则m的取值范围是______.14.分解因式:a3(x-3)+(3-x)a=______.15.已知a,b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为____.16.对任意实数a,若多项式2b2-5ab+3a2的值总大于-3,则实数b的取值范围是______.三、计算题(本大题共1小题,共10.0分)17.计算:(1)(-)-2--(-2)0+tan30°.(2)先化简,再求值:•-(+1),其中x=-6.四、解答题(本大题共8小题,共64.0分)18.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.19.已知关于x的不等式组有四个整数解,求实数a的取值范围.20.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)A150≤x<155B155≤x<160C160≤x<165D165≤x<170E170≤x<175根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在______组(填组别序号),女生身高在B 组的有______人;(2)在样本中,身高在170≤x<175之间的共有______人,人数最多的是______组(填组别序号)(3)已知该校共有男生500人,女生480人,请估计身高在160≤x<170之间的学生有多少人?21.某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?22.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)23.如图,直线y=mx+n与双曲线y=相交于A(-1,2)、B(2,b)两点,与y轴相交于点C.(1)求m,n的值;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)在坐标轴上是否存在异于D点的点P,使得S△PAB=S△DAB若存在,直接写出P点坐标;若不存在,说明理由.24.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D.(1)求证:AC平分∠DAB;(2)求证:AC2=AD•AB;(3)若AD=,sin B=,求线段BC的长.25.如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-,)答案和解析1.【答案】A【解析】解:∵-3<-1<0<,∴在实数-3,,0,-1中,最小的数是-3.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】D【解析】解:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选:D.根据概率是事件发生的可能性,可得答案.本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.3.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将9600000用科学记数法表示为:9.6×106.故选:C.4.【答案】C【解析】解:由题意可得:4月份的产值为:a(1-10%),5月份的产值为:a(1-10%)(1+15%),故选:C.由题意可得:4月份的产值为:a(1-10%),5月份的产值为:4月的产值×(1+15%),进而得出答案.此题主要考查了列代数式,正确理解增长率的定义是解题关键.5.【答案】D【解析】解:A、a2+a3,无法计算,故此选项错误;B、(-2a2)3÷()2=-8a6÷=-32a4,故此选项错误;C、3a-1=,故此选项错误;D、(2a2-a)2÷3a2=4a2-4a+1,正确.故选:D.分别利用合并同类项法则以及整式的除法运算法则和负整指数指数幂的性质分别化简求出答案.此题主要考查了合并同类项以及整式的除法运算和负整指数指数幂的性质等知识,正确掌握相关运算法则是解题关键.6.【答案】B【解析】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,∴S△ABC=AC•BC=×12×9=54,S圆=9π,∴小鸟落在花圃上的概率==,故选:B.由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.本题考查了几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半.同时也考查了勾股定理的逆定理.7.【答案】B【解析】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π-32π)=70π,故选:B.易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.本题考查了由三视图判断几何体的知识,解决本题的关键是得到此几何体的形状,易错点是得到计算此几何体所需要的相关数据.8.【答案】D【解析】【分析】根据题意结合折线统计图确定正确的选项即可.本题考查了折线统计图,计算增长率是解题关键.【解答】解:A.2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B.2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C.2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D.从2011年至2014年,每一年与前一年比,2012年的增长率最大,错误,故D符合题意;故选:D.9.【答案】B【解析】【分析】本题考查了反比例函数图象上点的坐标特征,属于基础题.分别计算出自变量为-3、-2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=-3,y1=-=4;当x=-2,y2=-=6;当x=1,y3=-=-12,所以y3<y1<y2.故选:B.10.【答案】D【解析】解:①函数y=中自变量x的取值范围是x>-,故错误.②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根,正确,故选:D.利用等腰三角形的性质、正多边形的性质、平行线的性质及一元二次方程根的判别式分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、正多边形的性质、平行线的性质及一元二次方程根的判别式,难度不大.11.【答案】x【解析】【分析】此题主要考查了二次根式有意义的条件,分式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1-2x>0,再解不等式即可.【解答】解:由题意得:1-2x>0,解得:x<,故答案为:x.12.【答案】(-1,-)【解析】解:根据图形得:D(-1,-),故答案为:(-1,-)根据图形,利用对称的性质计算即可求出D的坐标.此题考查了正多边形和圆,以及坐标与图形性质,熟练掌握对称的性质是解本题的关键.13.【答案】m<-9【解析】解:∵抛物线y=-x2-6x+m与x轴没有交点,∴当y=0时,0=-x2-6x+m,∴△=(-6)2-4×(-1)×m<0,解得,m<-9故答案为:m<-9.根据抛物线y=-x2-6x+m与x轴没有交点,可知当y=0时,0=-x2-6x+m,△<0,从而可以求得m的取值范围.本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.14.【答案】a(x-3)(a+1)(a-1)【解析】解:a3(x-3)+(3-x)a=a(x-3)(a2-1)=a(x-3)(a+1)(a-1).故答案为:a(x-3)(a+1)(a-1).直接提取公因式a(x-3),进而利用平方差公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.【答案】23【解析】解:∵a,b是方程x2-x-3=0的两个根,∴a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5=2a2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.故答案为:23.根据一元二次方程解的定义得到a2-a-3=0,b2-b-3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2-11a-b+5=2a(a+3)+b+3+3(a+3)-11a-b+5,整理得2a2-2a+17,然后再把a2=a+3代入后合并即可.本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.16.【答案】-6<b<6【解析】解:由题意可知:2b2-5ab+3a2>-3,∴3a2-5ab+2b2+3>0,∵对任意实数a,3a2-5ab+2b2+3>0恒成立,∴△=25b2-12(2b2+3)=b2-36<0,∴-6<b<6;故答案为-6<b<6;将已知转化为对任意实数a,3a2-5ab+2b2+3>0恒成立,利用△<0即可求解;本题考查一元二次函数与一元二次不等式的关系;熟练掌握判别式与一元二次不等式值的关系是解题的关键.17.【答案】解:(1)(-)-2--(-2)0+tan30°=4-(-3)-1+×=4+3-1+1=7;(2)•-(+1)=-===,当x=-6时,原式==-.【解析】(1)根据负整数指数幂、零指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的乘法和加减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值、负整数指数幂、零指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.18.【答案】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS);(2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.【解析】(1)先证出OE=OF,再由SAS即可证明△BOE≌△DOF;(2)由对角线互相平分证出四边形EBFD是平行四边形,再由对角线相等,即可得出四边形EBFD是矩形.本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.19.【答案】解:解不等式组,解不等式①得:x>-,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴不等式组的解集再数轴上表示为:∴1≤a+4<2,解得:-3≤a<-2.【解析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a的范围.此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.【答案】D12 10 C【解析】解:(1)∵在样本中,男生共有2+4+8+12+14=40人,∴中位数是第20和第21人的平均数,∴男生身高的中位数落在D组,女生身高在B组的人数有40×(1-35%-20%-15%-5%)=12人,故答案为:D、12;(2)在样本中,身高在170≤x<175之间的人数共有8+40×5%=10人,∵A组人数为2+40×20%=10人,B组人数为4+12=16人,C组人数为12+40×35%=26人,D组人数为14+40×10%=18人,E组人数为8+40×5%=10人,∴C组人数最多,故答案为:10、C;(3)500×+480×(35%+10%)=541(人),故估计身高在160≤x<170之间的学生约有541人.(1)先求出男生总人数,再根据中位数的定义解答即可,总女生总人数乘以B组的百分比可得;(2)将位于这一小组内的频数相加,分别计算出各组人数之和即可求得结果;(3)分别用男、女生的人数乘以对应的百分比,相加即可得解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】解:(1)该出租公司这批对外出租的货车共有x辆,根据题意得,,解得:x=20,经检验:x=20是分式方程的根,∴1500÷(20-10)=150(元),答:该出租公司这批对外出租的货车共有20辆,淡季每辆货车的日租金150元;(2)设每辆货车的日租金上涨a元时,该出租公司的日租金总收入为W元,根据题意得,W=[a+150×(1+)]×(20-),∴W=-a2+10a+4000=-(a-100)2+4500,∵-<0,∴当a=100时,W有最大值,答:每辆货车的日租金上涨100元时,该出租公司的日租金总收入最高.【解析】(1)根据题意可以列出方程,进而求得结论;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.22.【答案】解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH-EH=tan55°•x-10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x-10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=63,答:塔杆CH的高为63米.【解析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AH tan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-10,根据BE=DE可得关于x的方程,解之可得.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.23.【答案】解:(1)∵点A(-1,2)在双曲线y=上,∴2=,解得,k=-2,∴反比例函数解析式为:y=-,∴b==-1,则点B的坐标为(2,-1),∴,解得,m=-1,n=1;(2)对于y=-x+1,当x=0时,y=1,∴点C的坐标为(0,1),∵点D与点C关于x轴对称,∴点D的坐标为(0,-1),∴△ABD的面积=×2×3=3;(3)对于y=-x+1,当y=0时,x=1,∴直线y=-x+1与x轴的交点坐标为(1,0),当点P在x轴上时,设点P的坐标为(a,0),S△PAB=×|1-a|×2+×|1-a|×1=3,解得,a=-1或3,当点P在y轴上时,设点P的坐标为(0,b),S△PAB=×|1-b|×2+×|1-b|×1=3,解得,b=-1或3,又∵P点异于D点,∴P点坐标为(-1,0)或(3,0)或(0,3).【解析】(1)利用待定系数法求出m,n的值;(2)根据关于x轴对称的点的坐标特征求出点D的坐标,利用三角形面积公式计算即可;(3)分点P在x轴上和点P在y轴上两种情况,利用三角形面积公式计算即可.本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、函数图象上点的坐标特征是解题的关键.24.【答案】(1)证明:连接OC,如图所示:∵CD切⊙O于C,∴CO⊥CD,又∵AD⊥CD,∴AD∥CO.∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,∴AC平分∠BAD.(2)证明:∵AB为⊙O的直径,∴∠ACB=90°=∠ADC,∵∠DAC=∠CAO,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AD•AB;(3)解:由(2)得:△ADC∽△ACB,∴∠ACD=∠B,∴sin∠ACD==sin B=,∴AC=AD=×=2,∵AC2=AD•AB,∴AB===,在Rt△ABC中,BC==.【解析】此题主要考查了切线的性质、平行线的性质、等腰三角形的性质、相似三角形的判定与性质、三角函数、勾股定理等知识;熟练掌握切线的性质,证明三角形相似是解决问题的关键.(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,证出AD∥OC,由平行线的性质证出∠DAC=∠OCA,即可得出结论;(2)由圆周角定理证出∠ACB=90°=∠ADC,证明△ADC∽△ACB,得出对应边成比例,即可得出结论;(3)由相似三角形的性质得出∠ACD=∠B,得出sin∠ACD==sin B=,求出AC=2,AB=,在Rt△ABC中,由勾股定理即可求出BC的长.25.【答案】解:(1)由点A(-1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=-x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=-x2+2x+3=-(x-1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),,,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴-x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【解析】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.。
内蒙古呼和浩特市2019-2020学年中考一诊数学试题含解析

内蒙古呼和浩特市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在▱ABCD 中,∠DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE2.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=-B .4504504050x x -=-C .4504502503x x -=+D .4504502503x x -=- 3.cos30°的相反数是( )A .33-B .12-C .32-D .22- 4.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )A .①B .②C .③D .④5.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 6.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒7.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是( )A .7B .8C .9D .108.7的相反数是( ) A .7 B .-7 C .77 D .-779.若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:x ﹣2 ﹣1 0 1 2y 8 3 0 ﹣1 0则抛物线的顶点坐标是( )A .(﹣1,3)B .(0,0)C .(1,﹣1)D .(2,0)10.下列各式正确的是( )A .0.360.6±=±B .93=±C .33(3)3-=D .2(2)2-=-11.如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,AC =8,BC =6,则∠ACD 的正切值是( )A .43B .35C .53D .3412.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )A .35.578×103B .3.5578×104C .3.5578×105D .0.35578×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数2x y x=-中自变量x 的取值范围是_____;函数26y x =-x 的取值范围是______. 14.分解因式:m 2n ﹣2mn+n= .15.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.①“若a>b,则ac>bc.”是真命题.②六边形的内角和是其外角和的2倍.③函数y=1xx的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.17.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.18.如图,在△ABC中,AB=AC=25,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF 与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:+=1.20.(6分)计算:4cos30°+|3﹣12|﹣(12)﹣1+(π﹣2018)021.(6分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tanA=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.22.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.23.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.24.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?25.(10分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.26.(12分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.27.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可证EC=CG.∵DH=CG,∴DF=CE,故B正确.2.D 【解析】解:设动车速度为每小时x千米,则可列方程为:45050x-﹣450x=23.故选D.3.C【解析】【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∵cos30°∴cos30°的相反数是2-,故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.4.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.5.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得120180=,【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.6.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.A【解析】【分析】设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】设这个多边形的边数为n,依题意得:180(n-2)=360×3-180,解之得n=7.故选A.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.8.B)=0,故选B .9.C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:Q 当0x =或2x =时,0y =,当1x =时,1y =-,04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩,解得120a b c =⎧⎪=-⎨⎪=⎩ ,∴二次函数解析式为222(1)1y x x x =-=--,∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.10.A【解析】3=,则B3=-,则C2=,则D 错,故选A .11.D【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD =AD ,再根据等边对等角的性质可得∠A =∠ACD ,然后根据正切函数的定义列式求出∠A 的正切值,即为tan ∠ACD 的值.【详解】∵CD 是AB 边上的中线,∴CD =AD ,∴∠A =∠ACD ,∵∠ACB =90°,BC =6,AC =8,∴tan ∠A =6384BC AC ==, ∴tan ∠ACD 的值34.【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A =∠ACD 是解本题的关键.12.B【解析】【分析】科学计数法是a×10n ,且110a ≤<,n 为原数的整数位数减一.【详解】解:35578= 3.5578×410,故选B .【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠2 x≥3【解析】【分析】根据分式的意义和二次根式的意义,分别求解.【详解】解:根据分式的意义得2-x≠0,解得x≠2;根据二次根式的意义得2x-6≥0,解得x≥3.故答案为: x≠2, x≥3.【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.n (m ﹣1)1.【解析】【分析】先提取公因式n 后,再利用完全平方公式分解即可【详解】故答案为n(m﹣1)1.15.2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16.②④⑤【解析】【分析】根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.【详解】①“若a>b,当c<0时,则ac<bc,故①是假命题;②六边形的内角和是其外角和的2倍,根据②真命题;③函数的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;故答案为②④⑤【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.17.4【解析】【分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.18.当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=255,再根据勾股定理即可得到EF的长.【详解】解:如图,当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=12BC=2,又∵5∴AE=1,EG=AE CEAC⨯=455∴22CE EG-255,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴255,设EF=x,则45 5∵Rt△EFH中,EH2+FH2=EF2,∴(255)2+(455)2=x2,解得5故答案为5【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-3【解析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.20.134-【解析】【分析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21.(1)答案见解析;(2)AB=1BE;(1)1.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tanA=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为1.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.22.(1)证明见解析(2)【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD 是菱形.考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理. 23.:(1) 30º;(2)33ABCD S 梯形= 【解析】 分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD 平分∠ABC 和CD ∥AB 即可求得∠CDB=30°; (2)过点D 作DH ⊥AB 于点H ,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,3式求出梯形ABCD 的面积了. 详解:(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°, ∴∠CBA=∠A=60º, ∵BD 平分∠ABC , ∴∠CDB=∠ABD=12∠CBA=30º, (2)在△ACD 中,∵∠ADB=180º–∠A –∠ABD=90º. ∴BD=AD tan ⋅A=2tan60º3过点D 作DH ⊥AB ,垂足为H , ∴AH=AD sin ⋅A=2sin60º3∵∠CDB=∠CBD=12∠CBD=30º, ∴DC=BC=AD=2 ∵AB=2AD=4 ∴()(ABCD 11S AB CD DH 4233322=+⋅=+=梯形.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.24.(1)10750;(2)220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩;(3)最大利润为10750元. 【解析】 【分析】(1)根据“利润=销售总额-总成本”结合两种T 恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论. 【详解】(1)∵甲种T 恤进货250件∴乙种T 恤进货量为:400-250=150件故由题意得,()()7550250906015010750-⨯+-⨯=;(2)①()()()20200,0.2120600.1400100504000.390+4000x y x x x x x x <<=-+-+⎡--+-⎤-=-+⎣⎦②()()26000200400,0.14001005040050600.12010000x y x x x x x x ⎛⎫≤≤=⎡--+-⎤-++-=-++⎪⎣⎦⎝⎭; 故220.3904000(0200)0.12010000(200400)x x x y x x x ⎧-++<<=⎨-++≤≤⎩. (3)由题意,100300x ≤≤,①100200x ≤<,()20.315010750y x =--+,max 150,10750x y ∴== ②()2200400,0.110011000,10000x y x y ≤≤=--+∴≤, 综上,最大利润为10750元. 【点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键. 25.(1)答案见解析;(2)答案见解析. 【解析】 【分析】(1)根据邻补角的定义得到∠BDE=∠ACE ,即可得到结论;(2)根据相似三角形的性质得到BE EDAE EC= ,由于∠E=∠E ,得到△ECD ∽△EAB ,由相似三角形的性质得到AE AB AC CD = ,等量代换得到BE ABED CD=,即可得到结论. 本题解析: 【详解】证明:(1)∵∠ADB=∠ACB ,∴∠BDE=∠ACE ,又∵∠E=∠E ,∴△ACE ∽△BDE ; (2)∵△ACE ∽△BDE ∴BE ED AE EC =,∵∠E=∠E ,∴△ECD ∽△EAB ,∴BE AB ED CD=,∴BE•DC=AB•DE . 【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键. 26.(1)(1)A (a ,0),B (3,0),D (0,3a ).(2)a 的值为73.(3)当a=5时,D 、O 、C 、B 四点共圆. 【解析】【分析】(1)根据二次函数的图象与x 轴相交,则y=0,得出A (a ,0),B (3,0),与y 轴相交,则x=0,得出D (0,3a ).(2)根据(1)中A 、B 、D 的坐标,得出抛物线对称轴x=32a +,AO=a ,OD=3a ,代入求得顶点C (32a +,-232a -⎛⎫ ⎪⎝⎭),从而得PB=3- 32a +=32a -,PC=232a -⎛⎫ ⎪⎝⎭;再分情况讨论:①当△AOD ∽△BPC 时,根据相似三角形性质得233322a aa a =--⎛⎫ ⎪⎝⎭, 解得:a=3(舍去);②△AOD ∽△CPB ,根据相似三角形性质得233322aaa a =--⎛⎫⎪⎝⎭,解得:a 1=3(舍),a 2=73; (3)能;连接BD ,取BD 中点M ,根据已知得D 、B 、O 在以BD 为直径,M (32,32a )为圆心的圆上,若点C 也在此圆上,则MC=MB ,根据两点间的距离公式得一个关于a 的方程,解之即可得出答案.【详解】(1)∵y=(x-a )(x-3)(0<a<3)与x 轴交于点A 、B (点A 在点B 的左侧),∴A (a ,0),B (3,0), 当x=0时,y=3a , ∴D (0,3a );(2)∵A (a ,0),B (3,0),D (0,3a ).∴对称轴x=32a +,AO=a ,OD=3a ,当x=32a+时,y=-232a-⎛⎫⎪⎝⎭,∴C(32a+,-232a-⎛⎫⎪⎝⎭),∴PB=3-32a+=32a-,PC=232a-⎛⎫⎪⎝⎭,①当△AOD∽△BPC时,∴AO ODBP PC=,即233322a aa a=--⎛⎫⎪⎝⎭,解得:a= 3(舍去);②△AOD∽△CPB,∴AO ODCP PB=,即233322a aaa=--⎛⎫⎪⎝⎭,解得:a1=3(舍),a2=73.综上所述:a的值为73;(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(32,32a),若点C也在此圆上,∴MC=MB,∴22222 3333333222222a a a a⎡⎤+-⎛⎫⎛⎫⎛⎫⎛⎫-++=-+⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,化简得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=5,a2=-5,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=5,∴当a=5时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.27.(1)证明见解析;(2)3 2【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC 的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE ⊥AC , ∴OD ⊥DE , ∵D 点在⊙O 上, ∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,,∴,∴S △ABC =12AB•CD=12×× ∵DE ⊥AC ,∴DE=12AD=12×, AE=AD•cos30°=3,∴S △ODE =12OD•DE=12×S △ADE =12AE•DE=12∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE 2。
内蒙古呼和浩特市2020版中考数学一模试卷D卷

内蒙古呼和浩特市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020九上·桂林期末) 下列各组长度的线段(单位:)中,成比例线段的是()A . 1,2,3,4B . 1,2,3,6C . 2,3,4,5D . 1,3,5,102. (2分) (2019九上·江汉月考) 将抛物线 y=-2(x-1)2-1向左平移3个单位,再向上平移2个单位,得到的抛物线是()A . y=-2(x-4)2+1B . y=-2(x+2)2+1C . y=-2(x-4)2-3D . y=-2(x+2)2-33. (2分) (2020八下·武汉月考) 如图,∠MON=90°,矩形 ABCD 在∠MON 的内部,顶点 A,B 分别在射线 OM,ON 上,AB=4,BC=2,则点 D 到点O最大距离是()A .B .C .D .4. (2分)在坐标系中,已知A(﹣3,0),B(0,﹣4),C(0,1),过点C作直线L交x轴于点D,使得以点D,C,O为顶点的三角形与△AOB相似,这样的直线一共可以作出()A . 6条B . 3条C . 4条D . 5条5. (2分)(2020·长宁模拟) 下列命题正确是()A . 如果| |=| |,那么=B . 如果、都是单位向量,那么=C . 如果=k (k≠0),那么∥D . 如果m=0或=,那么m =06. (2分)(2019·白云模拟) 若一次函数y=kx+b的图象如图所示,则下列结论中,正确的有()①二次函数y=x2+kx+b的图象一定经过点(0,2);②二次函数y=x2+kx+b的图象开口向上;③二次函数y=x2+kx+b 的图象对称轴在y轴左侧;④二次函数y=x2+kx+b的图象不经过第二象限.A . 1个B . 2个C . 3个D . 4个二、填空题 (共12题;共18分)7. (1分)已知,则的值是________8. (1分) (2020九上·五华期末) 已知点P是线段AB的黄金分割点,AP>PB.若AB=10.则AP=________(结果保留根号).9. (1分) (2019九上·黄浦期末) 如图,平行四边形ABCD中,点E是BC边上的点,BE:EC=1:2,AE与BD交于点O,如果,,那么=________(用向量、表示).10. (1分)(2017·玄武模拟) 二次函数y=a(x﹣b)2+c(a<0)的图象经过点(1,1)和(3,3),则b 的取值范围是________.11. (2分)如图,在平行四边形ABCD中,点M是CD的中点,AM与BC相交于点N,那么S ACN:S四边形BDMN等于________ .12. (1分)如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=________.13. (1分) (2019八下·哈尔滨期中) 如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE与PC的和的最小值为__.14. (1分)一个梯形下底长是6cm,中位线长5cm,则上底长是________ cm.15. (1分) (2019八上·和平月考) 问题背景:在△ABC中,AB,BC,AC三边的长分别为,求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示,这样不需要求高,而借用网格就能计算出它的面积.请将△ABC的面积直接填写在横线上________.思维拓展:我们把上述求△ABC面积的方法叫做构图法,若△ABC中,AB,BC,AC三边长分别为,2(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,直接写出此三角形最长边上的高是________.16. (2分) (2019八下·北京期中) 矩形的两条对角线的夹角为,较短的边长为,则对角线长为________ .17. (1分) (2019九上·房山期中) 如图,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1 , B1 , C1 ,三点都在格点上).则这个三角形的面积是________18. (5分)(2018·余姚模拟) 如图,将△ABC沿着CE翻折,使点A落在点D处,CD与AB交于点F,恰好有CE=CF,若DF=6,AF=14,则tan∠CEF=________.三、解答题 (共7题;共55分)19. (5分) (2018九上·灵石期末) 按要求完成下列各题:(1)解方程x2-6x-4=0(用配方法)(2)计算:tan260°-2cos60°- sin45°20. (6分)(2019八下·静安期末) 如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.(1)用向量表示下列向量: ;(2)求作: (保留作图痕迹,写出结果,不要求写作法)21. (10分) (2016九上·宾县期中) 如图,直线y=﹣ x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,)(1) k的值是________;(2)求抛物线的解析式;(3)不等式x2+bx+c>﹣ x+1的解集是________.22. (2分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)23. (15分)(2017·苏州模拟) 如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F两点在BC边上,DE、DF两边分别与AB边交于点G、H.固定△ABC不动,△DEF从点F与点B 重合的位置出发,沿BC边以每秒1个单位的速度向点C运动;同时点P从点F出发,在折线FD﹣DE上以每秒2个单位的速度向点E运动.当点E到达点C时,△DEF和点P同时停止运动.设运动时间为t(秒).(1)当t=2时,PH=________cm,DG=________cm;(2)当t为何值时,△PDG为等腰三角形?请说明理由;(3)当t为何值时,点P与点G重合?写出计算过程.24. (2分) (2018·武汉) 在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB 的值.25. (15分) (2019七下·丰泽期末) 如图1,线段AB、CD相交于点O,连接AD、CB.(1)请说明:∠A+∠D=∠B+∠C;(2)点M在OD上,点N在OB上,AM与CN相交于点P,且∠DAP=∠DAB.∠DCP=∠DCB,其中n 为大于1的自然数(如图2).①当n=2时,试探索∠P与∠D、∠B之间的数量关系,并请说明理由;②对于大于1的任意自然数n,∠P与∠D、∠B之间存在着怎样的数量关系?请直接写出你的探索结果,不必说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共18分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共55分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。
2020年呼和浩特市数学中考第一次模拟试卷(及答案)

22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的 个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名;
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;
该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;
该组数据的平均数是 不是30,所以选项D不正确.
故选B.
点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.
12.A
解析:A
【解析】
从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,
故本题答案应为:A
【点睛】
熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.
9.B
解析:B
【解析】
【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 , , ,然后解不等式组即可.
【详解】
解:根据题意得
,
,
,
解得m≤ 且m≠2.
故选B.
10.A
解析:A
【解析】
试题分析:根据CD:AD=1:2,AC=3 米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD= =8米,则BC=BD-CD=8-3=5米.
A. B. C. D.
4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()
内蒙古呼和浩特市2020年中考数学一模试卷解析版

(填组别序号) (3)已知该校共有男生 500 人,女生 480 人,请估计身高在 160≤x<170 之间的学 生有多少人?
21. 某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季
两种价格标准,旺季每辆货车的日租金比淡季上涨 .据统计,淡季该公司平均每
天有 10 辆货车未出租,日租金总收入为 1500 元;旺季所有的货车每天能全部租出 ,日租金总收入为 4000 元. (1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元 ? (2)经市场调查发现,在旺季如果每辆货车的日租金每上涨 20 元,每天租出去的 货车就会减少 1 辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公 司的日租金总收入最高?
B. 70π
C. 90π
D. 160π
8. 如图,是根据某市 2010 年至 2014 年工业生产总值绘制的折线统计图,观察统计图
获得以下信息,其中信息判断错误的是()
第 1 页,共 15 页
A. 2010 年至 2014 年间工业生产总值逐年增加 B. 2014 年的工业生产总值比前一年增加了 40 亿元 C. 2012 年与 2013 年每一年与前一年比,其增长额相同 D. 从 2011 年至 2014 年,每一年与前一年比,2014 年的增长率最大
.
三、计算题(本大题共 1 小题,共 10.0 分)
17. 计算:
(1)(- )-2-
-(-2)0+ tan30°.
(2)先化简,再求值: •
-( +1),其中 x=-6.
第 2 页,共 15 页
四、解答题(本大题共 8 小题,共 64.0 分) 18. 如图,▱ABCD 的对角线 AC、BD 相交于点 O,AE=CF
2020年内蒙古呼和浩特市中考一模数学试卷含答案

密 封 线 班级 姓名 考号密 封 线 内 不 得 答 题2020呼和浩特市初三年级质量普查调研考试(一模)数 学注意事项:1. 考生务必将自己的姓名、准考证号填涂在试卷和答题纸的规定位置。
2. 考生要将答案写在答题纸上,在试卷上答题一律无效。
考试结束后,本试卷和答题纸一并交回。
3. 本试卷满分120分。
考试时间120分钟。
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.方程230x -+=的解是 A.23 B. 23- C. 32 D. 32- 2.如图,直线//a b ,直线e 与直线a 、b 相交,已知120∠= ,则2∠的度数是 A. 120° B. 60° C.30° D . 80°3.一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为 A . 6 B . 12 C . 24 D . 234.若0a >且2,3x y a a ==,则2x y a -的值为 A.13 B. 13- C. 23 D. 295.右图是某几何体的三视图,根据图中数据,求得该几何体的体积为 A. 40π B. 50π C. 90π D. 130π6.在数轴上任取一个比5-大比7小的实数a 对应的点,则取到的点对应的实数a 满足||2a >的概率为A.27 B. 13 C. 611 D. 237.函数2(0)y ax a =-≠与2(0)y ax a =≠在同一平面直角坐标系中的图象可能是8.数轴上表示12的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 所表示的数的相反数是A. 12-B. 12-C. 22-D. 22- 9.下列运算正确的是 A.128142= B. 21()1a b a b-=- C. 2235(1)(25)x x x x --+=-+D. 734()a a a -÷=10.以下四个函数,其图象一定关于原点对称的是 A. 2016y x m =+ B. 221xmy x x=++密 封 线 内 不 得 答 题C. 22016y x =- D. 2||x y x =二、填空题(本大题共6小题,每小题3分,共18分,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.已知某孢子的直径为0.00093毫米,用科学记数法写为 毫米。
2020年中考数学模拟试卷(内蒙古自治区专用)(一)(参考答案及评分标准)

••• BC =3, AC=4 .1. AB =5. (4分)2020年中考数学全真模拟试卷(内蒙古)(一)参考答案及评分标准、选择题(每小题3分,共36分)、填空题(每小题分,共分)16. 65 °17.4n 2三、解答题(每小题6分,共24分)... 1 _ _ _ .18 .解:原式=6 — 1 2J3 2----- ( 4分)2=6 2 <3----- (6 分)19 .解:方程两边同时乘以 3x得 3x 9 2 3x-------- ( 2 分)11 x 一6,一 11检验:把x 一代入3x 06,原方程的解为 x U.620 .解:2,313. x 2 14. y (x y )15.而 (4分) (5分)(1)如图:(2分)(2)旋转过程中动点B所经过的路径为一段圆弧.••• BC =3, AC=4 .1. AB =5. (4分)又 BAB 1= 90°, ••弧长 l =90 5180,动点B 所经过的路径长为 - ............ (6分)2其中出现奇数的情况有 4种四、解答题22.(本题7分)证明ABC 沿射线BC 方向平移10cm,得到△ DEFAD//CF AD=CF=10 cm-----(2 分)(方法一), 四边形ACFD 是平行四边形 3分)又「 B 90 , ACB 30 , AB=5cmAC=2AB=10 cm ——(5 分)AC=CF——(6 分),四边形ACFD 是菱形. 7分)(方法二)又「 B 90 , ACB 30 , AB=5cmAC=2AB=10 cm ——(4 分)•.AD=CF=AC=DF21.解:(1)依题意列表如下:故所组成的两位数有:13、14、15、23、24、25.(3分)(2分)(2)由(1)可知所有可能出现的结果有 6种,且它们出现的可能性相等. 答:所组成的两位数是奇数的概率为(6分)(4分)(6分)五、解答题23.(本题满分7分)(1)200;(2)200-120-50=30 (人).(3)C所占圆心角度数3600 (1 25% 60%) 54°.(4)1500 (25% 60%) 1275 .,该校学生中大约有1275名学生不需要参加培训。
2019-2020年呼和浩特市初三中考数学第一次模拟试题【含答案】

2019-2020年呼和浩特市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数(k>0)的图象上,∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k,∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF=1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k=﹣k2+1;②当k=2时,由(1)知,△OEF不存在;③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD 为矩形.∵PF⊥PE,∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE=•k﹣﹣(k2﹣k+1)﹣=k2﹣1;(3)当k>0时,存在点E使△OEF的面积为△PEF面积的2倍.理由如下:①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=,S△OEF=﹣k2+1,则×2=﹣k2+1,解得,k=2(舍去),或k=;②由(1)知,k=2时,△OEF与△PEF不存在;③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1,则2(﹣k2+k﹣1)=k2﹣1,解得k=(不合题意,舍去),或k=2(不合题意,舍去),则E点坐标为:(3,2).中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共20页)
2020年内蒙古呼和浩特市和林格尔三中中考数学一模试卷
一、选择题(本大题共10小题,共30.0分)
1.(3分)在实数3-,3,0,
1-中,最小的数是( ) A .3-
B .0
C .1-
D .3
2.(3分)下列说法正确的是( )
A .“任意画一个三角形,其内角和为360︒”是随机事件
B .已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次
C .抽样调查选取样本时,所选样本可按自己的喜好选取
D .检测某城市的空气质量,采用抽样调查法
3.(3分)中国的陆地面积约为29600000km ,将这个数用科学记数法可表示为( ) A .720.9610km ⨯
B .4296010km ⨯
C .629.610km ⨯
D .529.610km ⨯
4.(3分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( ) A .(10%)(15%)a a -+万元 B .(190%)(185%)a -+万元 C .(110%)(115%)a -+万元 D .(110%15%)a -+万元
5.(3分)下列运算正确的是( ) A .235a a a += B .2324(2)()162
a
a a -÷=-
C .11
33a a
-=
D .2222(233)3441a a a a a -÷=-+
6.(3分)如图,ABC ∆是一块绿化带,将阴影部分修建为花圃,已知15AB =,9AC =,
12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,
则小鸟落在花圃上的概率为( )
A .
1
6
B .
6
π C .
8
π D .
5
π 7.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )
第2页(共20页)
A .60π
B .70π
C .90π
D .160π
8.(3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )
A .2010年至2014年间工业生产总值逐年增加
B .2014年的工业生产总值比前一年增加了40亿元
C .2012年与2013年每一年与前一年比,其增长额相同
D .从2011年至2014年,每一年与前一年比,2014年的增长率最大 9.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12
y x
=-的图象上,则1y ,2y ,3y 的大小关系是( )
A .213y y y <<
B .312y y y <<
C .123y y y <<
D .321y y y <<
10.(3分)下列说法正确的是( ) ①函数131y x =
+x 的取值范围是1
3
x …. ②若等腰三角形的两边长分别为3和7,则第三边长是3或7. ③一个正六边形的内角和是其外角和的2倍. ④同旁内角互补是真命题.
⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根. A .①②③
B .①④⑤
C .②④
D .③⑤
二、填空题(共6小题,每小题3分,满分18分)
11.(3
分)使式子
1
12x
-
有意义的x的取值范围是.
12.(3分)如图,以正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C、F在x轴上,顶点A的坐标为(1,3),则顶点D的坐标为.
13.(3分)若抛物线26
y x x m
=--+与x轴没有交点,则m的取值范围是.
14.(3分)分解因式:3(3)(3)
a x x a
-+-=.
15.(3分)已知a,b是方程230
x x
--=的两个根,则代数式322
23115
a b a a b
++--+的值为.
16.(3分)对任意实数a,若多项式22
253
b ab a
-+的值总大于3
-,则实数b的取值范围是.
三、计算题(本大题共1小题,共10.0分)
17.(10分)计算:
(1)20
3
1
()27(2)3tan30
2
-
-----+︒.
(2)先化简,再求值:
2
2
3211
(1)
131
x x x
x x x
-++
-+
---
g,其中6
x=-.
四、解答题(本大题共8小题,共61.0分)
18.如图,ABCD
Y的对角线AC、BD相交于点O,AE CF
=.
(1)求证:BOE DOF
∆≅∆;
(2)若BD EF
=,连接DE、BF,判断四边形EBFD的形状,无需说明理由.
19.已知关于x的不等式组
523(1)
13
82
22
x x
x x a
+>-
⎧
⎪
⎨
-+
⎪⎩…
有四个整数解,求实数a的取值范围.
第3页(共20页)。