小学数学常用解题思路(11种)

小学数学常用解题思路(11种)
小学数学常用解题思路(11种)

小学数学常用的十一种解题思路

“直接思路”是解题中的常规思路。它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?

分析(按顺向综合思路探索):

(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?

可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?

可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?

可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?

狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?

可以求出这时狗总共跑了多少距离?

这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?

分析(仍可用综合思路考虑):

我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?

有AB AC AD AE AF AG共6条。

(2)左端点是B的线段有哪些?

有BC、BD、BE、BF、BG共5条。

(3)左端点是C的线段有哪些?

有CD、CE、CF、CG共4条。

(4)左端点是D的线段有哪些?

有DE、DF、DG共3条。

(5)左端点是E的线段有哪些?

有EF、EG共2条。

(6)左端点是F的线段有哪些?

有FG共1条。

然后把这些线段加起来就是所要求的线段。

二、逆向分析思路

从题目的问题入手,根据数量关系,找出解这个问题所需要的两个条件,然后把其中的一个(或两个)未知的条件作为要解决的问题,再找出解这一个(或两个)问题所需的条件;这样逐步逆推,直到所找的条件在题里都是已知的为止,这就是逆向分析思路,运用这种思路解题的方法叫分析法。

例1 两只船分别从上游的A地和下游的B地同时相向而行,水的流速为每分钟30米,两船在静水中的速度都是每分钟600米,有一天,两船又分别从A、B两地同时相向而行,但这次水流速度为平时的2倍,所以两船相遇的地点比平时相遇点相差60米,求A、B两地间的距离。

分析(用分析思路考虑):

(1)要求A、B两地间的距离,根据题意需要什么条件?

需要知道两船的速度和与两船相遇的时间。

(2)要求两船的速度和,必要什么条件?

两船分别的速度各是多少。题中已告之在静水中两船都是每分钟600米,那么不论其水速是否改变,其速度和均为(600+600)米,这是因为顺水船速为:船速+水速,逆水船速为:船速-水速,故顺水船速与逆水船速的和为:船速+水速+船速-水速=2个船速(实为船在静水中的速度)

(3)要求相遇的时间,根据题意要什么条件?

两次相遇的时间因为距离相同,速度和相同,所以应该是相等的,这就是说,尽管水流的速度第二次比第一次每分钟增加了30米,仍不会改变相遇时间,只是改变了相遇地点:偏离原相遇点60米,由此可知两船相遇的时间为60÷30=2(小时)。

此分析思路可以用下图(图2.3)表示:

例2 五环图由内径为4,外径为5的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等(如图2.4),已知五个圆环盖住的总面积是122.5,求每个小曲边四边形的面积(圆周率π取3.14)

分析(仍用逆向分析思路探索):

(1)要求每个小曲边四边形的面积,根据题意必须知道什么条件?

曲边四边形的面积,没有公式可求,但若知道8个小曲边四边形的总面积,则只要用8个曲边四边形总面积除以8,就可以得到每个小曲边四边形的面积了。

(2)要求8个小曲边四边形的总面积,根据题意需要什么条件?

8个小曲边四边形恰好是圆环面积两两相交重叠一次的部分,因此只要把五个圆环的总面积减去五个圆环盖住的总面积就可以了。

(3)要求五个圆环的总面积,根据题意需要什么条件?

求出一个圆环的面积,然后乘以5,就是五个圆环的总面积。

(4)要求每个圆环的面积,需要什么条件?

已知圆环的内径(4)和外径(5),然后按圆环面积公式求就是了。

圆环面积公式为:

S圆环=π(R2-r2)

=π(R+r)(R-r)

其思路可用下图(图2.5)表示:

三、一步倒推思路

顺向综合思路和逆向分析思路是互相联系,不可分割的。在解题时,两种思路常常协同运用,一般根据问题先逆推第一步,再根据应用题的条件顺推,使双方在中间接通,我们把这种思路叫“一步倒推思路”。这种思路简明实用。

例1 一只桶装满10千克水,另外有可装3千克和7千克水的两只空桶,利用这三只桶,怎样才能把10千克水分为5千克的两份?

分析(用一步倒推思路考虑):

(1)逆推第一步:把10千克水平分为5千克的两份,根据题意,关键是要找到什么条件?

因为有一只可装3千克水的桶,只要在另一只桶里剩2千克水,利用3+2=5,就可以把水分成5千克一桶,所以关键是要先倒出一个2千克水。

(2)按条件顺推。第一次:10千克水倒入7千克桶,10千克水桶剩3千克水,7千克水倒入3千克桶,7千克水桶剩4千克水,3千克水桶里有水3千克;第二次:3千克桶的水倒入10千克水桶,这时10千克水桶里有水6千克,把7千克桶里的4千克水倒入3千克水桶里,这时7千克水桶里剩水1千克,3千克水桶里有水3千克;第三次:3千克桶里的水倒入10千克桶里,这时10千克桶里有水9千克,7千克桶里的1千克水倒入3千克桶里,这时7

千克桶里无水,3千克桶里有水1千克;第四次:10千克桶里的9千克水倒入7千克桶里,10千克水桶里剩下2千克水,7千克桶里的水倒入3千克桶里(原有1千克水),只倒出2千克水,7千克桶里剩水5千克,3千克桶里有水3千克,然后把3千克桶里的3千克水倒10千克桶里,因为原有2千克水,这时也正好是5千克水了。

其思路可用下图(图2.6和图2.7)表示:

问题:

例2 今有长度分别为1、2、3……9厘米的线段各一条,可用多少种不同的方法,从中选用若干条线段组成正方形?

分析(仍可用一步倒推思路来考虑):

(1)逆推第一步。要求能用多少种不同方法,从中选用若干条线段组成正方形必须的条件是什么?

根据题意,必须知道两个条件。一是确定正方形边长的长度范围,二是每一种边长有几种组成方法。

(2)从条件顺推。

①因为九条线段的长度各不相同,所以用这些线段组成的正方形至少要7条,最多用了9条,这样就可以求出正方形边长的长度范围为(1+2+……

②当边长为7厘米时,各边分别由1+6、2+5、3+4及7组成,只有一种组成方法。

③当边长为8厘米时,各边分别由1+7、2+6、3+5及8组成,也只有一种组成方法。

④当边长为9厘米时,各边分别由1+8、2+7、3+6及9;1+8、2+7、4+5及9;2+7、3+6、4+5及9;1+8、3+6、4+5及9;1+8、2+7、3+6及4+5共5种组成方法。

⑤当边长为10厘米时,各边分别由1+9、2+8、3+7及4+6组成,也只有一种组成方法。

⑤当边长为11厘米时,各边分别由2+9、3+8、4+7及5+6组成,也只有一种组成方法。

⑥将上述各种组成法相加,就是所求问题了。

此题的思路图如下(图2.8):

问题:

四、还原思路

从叙述事情的最后结果出发利用已知条件,一步步倒着推理,直到解决问题,这种解题思路叫还原思路。解这类问题,从最后结果往回算,原来加的用减、原来减的用加,原来乘的用除,原来除的用乘。运用还原思路解题的方法叫“还原法”。

例1 一个数加上2,减去3,乘以4,除以5等于12,你猜这个数是多少?

分析(用还原思路考虑):

从运算结果12逐步逆推,这个数没除以5时应等于多少?没乘以4时应等于多少?不减去3时应等于多少?不加上2时又是多少?这里分别利用了加与减,乘与除之间的逆运算关系,一步步倒推还原,直找到答案。

其思路图如下(图2.9):

条件:

例2 李白街上走,提壶去打酒;遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。试问酒壶中,原有多少酒?

分析(用还原思路探索):

李白打酒是我国民间自古以来广为流传的一道用打油诗叙述的著名算题。题意是:李白提壶上街买酒、喝酒,每次遇到酒店,便将壶中的酒量增添1倍,而每次见到香花,便饮酒作诗,喝酒1斗。这样他遇店、见花经过3次,便把所有的酒全喝光了。问:李白的酒壶中原有酒多少?

下面我们运用还原思路,从“三遇店和花,喝光壶中酒”开始推算。

见花前——有1斗酒。

第三次:见花后——壶中酒全喝光。

第三次:遇店前——壶中有酒半斗。

第一次:见花前——壶中有酒为第二次遇店前的再加1斗。

遇店前——壶中有酒为第一次见花前的一半。

其思路图如下

五、假设思路

在自然科学领域内,一些重要的定理、法则、公式等,常常是在“首先提出假设、猜想,然后再进行检验、证实”的过程中建立起来的。数学解题中,也离不开假设思路,尤其是在解比较复杂的题目时,如能用“假设”的办法去思考,往往比其他思路简捷、方便。我们把先提出假设、猜想,再进行检验、证实的解题思路,叫假设思路。

例1 中山百货商店,委托运输队包运1000只花瓶,议定每只花瓶运费0.4元,如果损坏一只,不但不给运费,而且还要赔偿损失5.1元。结果运输队获得运费382.5元。问:损坏了花瓶多少只?

分析(用假设思路考虑):

(1)假设在运输过程中没有损坏一个花瓶,那么所得的运费应该是多少?

0.4×1000=400(元)。

(2)而实际只有383.5元,这当中的差额,说明损坏了花瓶,而损坏一只花瓶,不但不给运费,而且还要赔偿损失5.1元,这就是说损坏一只花瓶比不损坏一只花瓶的差额应该是多少元?

0.4+5.1=5.5(元)

(3)总差额中含有一个5.5元,就损坏了一只花瓶,含有几个5.5元,就是损坏了几只花瓶。由此便可求得本题的答案。

例2 有100名学生在车站准备乘车去离车站600米的烈士纪念馆搞活动,等最后一人到达纪念馆45分钟以后,再去离纪念馆900米的公园搞活动。现在有中巴和大巴各一辆,它们的速度分别是每分钟300米和150米,而中巴和大巴分别可乘坐10人和25人,问最后一批学生到达公园最少需要多少时间?

分析(用假设思路思索);

假设从车站直接经烈士纪念馆到公园,则路程为(600+900)米。把在最后1人到达纪念馆后停留45分钟,假设为在公园停留45分钟,则问题将大大简化。

(1)从车站经烈士纪念馆到达公园,中巴、大巴往返一次各要多少时间?

中巴:(600+900)÷300×2=10(分钟)

大巴:(600+900)÷150×2=20(分钟)

(2)中巴和大巴在20分钟内共可运多少人?

中巴每次可坐10人,往返一次要10分钟,故20分钟可运20人。

大巴每次可坐25人,往返一次要20分钟,故20分钟可运25人。

所以在20分钟内中巴、大巴共运45人。

(3)中巴和大巴20分钟可运45人,那么40分钟就可运45×2=90(人),100人运走90人还剩下10人,还需中巴再花10分钟运一次就够了。

(4)最后可求出最后一批学生到达公园的时间:把运90人所需的时间,运10人所需的时间,和在纪念馆停留的时间相加即可。

六、消去思路

对于要求两个或两个以上未知数的数学题,我们可以想办法将其中一个未知数进行转化,进而消去一个未知数,使数量关系化繁为简,这种思路叫消去思路,运用消去思路解题的方法叫消去法。二元一次方程组的解法,就是沿着这条思路考虑的。

例1 师徒两人合做一批零件,徒弟做了6小时,师傅做了8小时,一共做了312个零件,徒弟5小时的工作量等于师傅2小时的工作量,师徒每小时各做多少个零件?

分析(用消去思路考虑):

这里有师、徒每小时各做多少个零件两个未知量。如果以徒弟每小时工作量为1份,把师傅的工作量用徒弟的工作量来代替,那么师傅8小时的工作量相当于这样的几份呢?很明显,师傅2小时的工作量相当于徒弟5小时的工作量,那么8小时里有几个2小时就是几个5小时工作量,这样就把师傅的工作量换成了徒弟的工作量,题目里就消去了师傅工作量这个未知数;然后再看312个零件里包含了多少个徒弟单位时间里的工作量,就是徒弟应做多少个。求出了徒弟的工作量,根据题中师博工作量与徒弟工作量的倍数关系,也就能求出师傅的工作量了。

例2 小明买2本练习本、2枝铅笔、2块橡皮,共用0.36元,小军买4本练习本、3枝铅笔、2块橡皮,共用去0.60元,小庆买5本练习本、4枝铅笔、2块橡皮,共用去0.75元,问练习本、铅笔、橡皮的单价各是多少钱?

分析(用消去法思考):

这里有三个未知数,即练习本、铅笔、橡皮的单价各是多少钱?我们要同时求出三个未知数是有困难的。应该考虑从三个未知数中先去掉两个未知数,只留下一个未知数就好了。

如何消去一个未知数或两个未知数?一般能直接消去的就直接消去,不能直接消去,就通过扩大或缩小若干倍,使它们之间有两个相同的数量,再用加减法即可消去,本题把小明小军、小庆所购买的物品排列如下:

小明2本2枝2块0.36元

小军4本3枝2块0.60元

小庆5本4枝2块0.75元

现在把小明的各数分别除以2,可得到1本练习本、1枝铅笔、1块橡皮共0.18元。

接着用小庆的各数减去小军的各数,得1本练习本、1枝铅笔为0.15元。

再把小明各数除以2所得的各数减去上数,就消去了练习本、铅笔两个未知数,得到1块橡皮0.03元,采用类似的方法可求出练习本和铅笔的单价。

七、转化思路

解题时,如果用一般方法暂时解答不出来,就可以变换一种方式去思考,或改变思考的角度,或转化为另外一种问题,这就是转化思路。运用转化思路解题就叫转化法。

各养兔多少只?

分析(用转化思路思索):

题中数量关系比较复杂,两个分率的标准量不同,为了简化数量关系,

只呢?这时两人养的总只数该是多少只呢?假设后的数量关系,两人养的总只数应是:100-16×3=52(只)

分析(用转化思路分析):

本题求和,题中每个分数的分子都是1,分母是几个连续自然数的和,好像不能把每个分数分成两个分数相减,然后相加抵消一些数。但是只要我们按等差数列求和公式,求出分母就会发现,可将上面各分数的分母转化为两个连续自然数积的形式。

然后再相加,抵消中间的各个分数即可。

八、类比思路

类比就是从一个问题想到了相似的另一个问题。例如从等差数列求和公式想到梯形面积公式,从矩形面积公式想到长方体体积公式等等;类比是一个重要的思想方法,也是解题的一种重要思路。

例1 有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完;钟敲12下,几秒敲完?

分析(用类比思路探讨):

有人会盲目地由倍数关系下结沦,误认为10秒钟敲完,那就完全错了。其实此题只要运用类比思路,与植树问题联系起来想一想就通了:一条线路植树分成几段(株距),如果不包括两个端点,共需植(n-1)棵树,如果包括两个端点,共需植树(n+1)棵,把钟点指数看作是一棵棵的树,把敲的时间看作棵距,此题就迎刃而解了。

例2 从时针指向4点开始,再经过多少分钟,时针正好与分钟重合。

分析(用类比思路讨论):

本题可以与行程问题进行类比。如图2.11,如果用时针1小时所走的一格作为路程单位,那么本题可以重新叙述为:已知分针与时针相距4格,分

如果分针与时针同时同向出发,问:分针过多少分钟可追上时针?这样就与行程问题中的追及问题相似了。4为距离差,速度差为,重合的时间,就是追上的时间。

九、分类思路

把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。这种思路在解决数图形个数问题中经常用到。

例1 如图2.12,共有多少个三角形?

分析(用分类思路考虑):

这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。怎么办?可以把图中所有三角形按大小分成几类,然后分类去数,再相加就是总数了。本题根据条件,可以分为五类(如图2.13)。

例 2 如图 2.14,象棋棋盘上一只小卒过河后沿着最短的路走到对方“将”处,这小卒有多少种不同的走法?

分析(运用分类思路分析):

小卒过河后,首先到达A点,因此,题目实际上是问:从A点出发,沿最短路径有多少种走法可以到达“将”处,所谓最短,是指不走回头路。

因为“将”直接相通的是P点和K点,所以要求从A点到“将”处有多少种走法,就必须是求出从A到P和从A到K各有多少种走法。

分类。一种走法:A到B、C、D、E、F、G都是各有一种走法。

二种走法:从A到H有两种走法。

三种走法:从A到M及从A到I各有三种走法。

其他各类的走法:因为从A到M、到I各有3种走法,所以从A到N 就有3+3=6种走法了,因为从A到I有3种走法,从A到D有1种走法,所以从A到J就有3+1=4种走法了;P与N、J相邻,而A到N有6种走法,A 到J有4种走法,所以从A到P就有6+4=10种走法了;同理K与J、E相邻,而A到J有4种走法,到E有1种走法,所以A到K就有4+1=5种走法。

再求从A到“将”处共有多少种走法就非常容易了。

十、等量代换思路(本文选自:小学数学解题方法、思路、技巧汇编

点击)

有些题的数量关系十分隐蔽,如果用一般的分析推理,难于找出数量之间的内在联系,求出要求的数量。那么我们就根据已知条件与未知条件相等的关系,使未知条件转化为已知条件,使隐蔽的数量关系明朗化,促使问题迎刃而解。这种思路叫等量代换思路。

例1 如图2.15的正方形边长是6厘米,甲三角形是正方形中的一部分,乙三角形的面积比甲三角形大6平方厘米,求CE长多少厘米?

分析(用等量代换思路思考):

按一般思路,要求CE的长,必须知道乙三角形的面积和高,而这两个条件都不知道,似乎无法入手。用等量代换思路,我们可以求出三角形ABE的面积,从而求出CE的长,怎样求这个三角形的面积呢?设梯形为丙:

已知乙=甲+6

丙+甲=6×6=36

用甲+6代换乙,可得丙+乙=丙+甲+6=36+6=42

即三角形ABE的面积等于42平方厘米,这样,再来求CE的长就简单了。

例2 有三堆棋子,每堆棋子数一样多,并且都只有黑白两色棋子。第一

这三堆棋子集中一起,问白子占全部棋子的几分之几?

分析(用等量代换的思路来探讨):

这道题数量关系比较复杂,如果我们把第一堆里的黑子和第二堆的白子对换一下,那么这个问题就简单多了。出现了下面这个等式。

第一堆(全部是白子)=第二堆(全部是黑子)

=第三堆(白子+黑子)(这里指的棋子数)

份,则第二堆(全部黑子)为3份,这样就出现了每堆棋子为3份,3堆棋子的总份数自然就出来了。而第三堆黑子占了2份,白子自然就只有3—2=1份了。第一堆换成了全部白子,所以白子总共是几份也可求出。最后去解决白子占全部棋子的几分之几就非常容易了。

十一、对应思路

分数、百分数应用题的特点是一个数量对应着一个分率,也就是一个数量相当于单位“1”的几分之几,这种关系叫做对应关系。找对应关系的思路,我们把它叫做对应思路。

例1 有一块菜地和一块麦地,菜地的一半和麦地的三分之一放在一起是91公亩,麦地的一半和菜地的三分之一放在一起是84公亩,那么,菜地是几公亩?

分析(用对应思路分析):

这是一道复杂的分数应用题,我们不妨用对应思路去思索。如能找出9 1公亩、84公亩的对应分率,此题就比较容易解决了。但题中有对应分率两个,究竟相当于总公亩数的几分之几呢?这是解题的关键。而我们一时还弄不清楚,现将条件排列起来寻找。

求出总公亩数后,我们仍未找到菜地或麦地占总公亩数的几分之几,故还不能直接求出菜地或麦地的公亩数。但我们把条件稍作组合,就可以求出

分析到这一步,那么再去求菜地有多少公亩,则就变成了一道很简单的分数应用题了。

例2 蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排完一池水,单开乙管

顺序,循环各开水管,每次每管开一小时,问多少时间后水开始溢出水池?

分析(用对应思路考虑):

本题数量关系复杂,但仍属分数应用题,所以仍可用对应思路寻找解题途径。

首先要找出甲、丙两管每小时灌水相当于一池水的几分之几,乙、丁两管每小时排水相当于一池水的几分之几,然后才能计算。

通过转化找到了对应分率就容易计算了。假设甲、乙、丙、丁四个水管按顺序各开1小时,共开4小时,池内灌进的水是全池的:

也就是20小时以后,池内有水

小学数学重点知识点与解题技巧汇总

小学数学重点知识点与解题技巧汇总 一、小学数学几何形体周长面积体积计算公式 长方形正方形 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽S=ab 正方形的面积=边长×边长S=a.a 三角形平行四边形梯形 三角形的面积=底×高÷2。公式S= a×h÷2 平行四边形的面积=底×高S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 圆形 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径 角度体积 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 表面积 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 分数 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 二、单位换算 距离换算 1公里=1千米 1千米=1000米 1米=10分米

1分米=10厘米 1厘米=10毫米 面积换算 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1公顷=10000平方米 1亩=666.666平方米 体积换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1立方分米=1000毫升 1毫升=1立方厘米 重量、货币换算 1吨=1000千克 1千克= 1000克= 1公斤= 2市斤1元=10角1角=10分1元=100分

小学数学解题思路技巧(一、二年级用)-10

调整法趣谈 本系列贡献者:与你的缘[知识要点] 1.调整法的意义。 我们看下面的点子图: ●●●●●●● 图3-16 它一共有二组,一组有5个点子,另一组有两个点子,图中一共有多少个点子? 算式:5+2 = 7(个)。现在问:怎样改变点子图,来表示算式2+5呢?我们可用交换点子位置或移动点子位置来改变。如图所示: 这种通过交换点子位置或移动点子位置的操作过程,我们较做调整法。 2.调整法的用途,我们通过举例来说明。 [范例解析] 例1右面正方形方格中的数字,怎样移动才能使横行和竖行三个数相加的和相等? 分析我们可从图中观察到:竖行三数的和都是6,它们相等,打上“√”号,而横行三数的和都不相等,因此,要调整位置的是横行的数字。我们只要按照下面图3-19箭头所示进行交换调整,问题就得到解决。 说明凡是符合条件的横行或竖行打上“√”,可使问题一目了然,方便调整。 例2图中有“+”、“-”、“×”、“÷”四种运算符号。移动这些符号,使每行每列的四种符号不相同。 分析通过观察,发现3-20中只有从左数第二列符号与题目要求不同,因此我们先考虑列的情况,第一列多“+”号,缺“÷”号,而第三列多“÷”号缺“+”,如下图交换后,把符合条件的行与列打上“√”。

经过第一次交换后,图3-21中只有第一行和第二行以及第三列和第四列不符合条件,而第三列多“×”号,缺“-”号,第四列多“-”号,缺“×”号,只要再按如图3-22交换就完全符合条件。 说明较复杂的方阵游戏,多调整几次,是可解决问题的,调整中不想走弯路,这就要靠智慧了。 例3把1~7这七个数填在图3-23中的小圆圈中,使每一 个圆周上四个数字的和都等于17。 分析此题有两种做法。 第一种做法:开始在小圆圈里任填1~7这七个数, 并且两个大圆周上的四个数的和都不等于17。如图3-24 的填法。 我们观察到,只要首先将2与7交换,就能使右边大圆周上四个数字的和等于17。 这时,左边大圆周上四个数的和是:1+3+7+4 = 15比17少2,要使右边圆周上的四个数字的和不变,只要4与6交换即可。 第二种做法:首先在1~7这7个数字中选四个数字, 并且四个数的和等于17。例如选(1+3+6+7 = 17)1, 3,6,7四数填在一个圆周上,其他三数任填在另一圆 周上的小圆圈里。如果另一圆周上四个数字之和不等于 17,只要按前面调整的方法,只经过一此调整就行了。 如图3-25所示。 [思路技巧] 调整不是拼凑,它是充分利用我们已有的知识技能,充分发挥我们的观察能力,有计划、有目的的进行解题的重要手段。

小学数学解题思路技巧二年级用

小学数学解题思路技巧 二年级用 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

余数的妙用 本系列贡献者:[知识要点] 1.被除数=除数×商+余数; 2.余数要比除数小; 3.会解有余数除法的应用题。 [范例解析] 例1如图1-1。把14个乒乓球平均分给三个班,每班分得几个?还余下几个? 解 14÷3 = 4余2 每班分得4个还余2个。 例2下面三个竖式,哪个对?哪个不对?为什么不对? 解第一个竖式不对,它的余数8比除数5还大,还可商1,即商应为8; 第二个竖式也不对,因商和除数的积不能大于被除数; 第三个竖式是对的,余数3小于除数5。 说明计算有余数的除法,余数一定要比除数小。这时被除数、除数、商和余数的关系是: 被除数 = 除数×商+余数

被除数-余数 = 除数×商 例3把11、12、13、14、15、16、17分别除以3时,各得哪些余数? 解 11÷3 = 3余2; 12÷3 = 4余0; 13÷3 = 4余1; 14÷3 = 4余2; 15÷3 = 5余0; 16÷3 = 5余1; 17÷3 = 5余2。 说明一串连续数除以同一个数,因为它们的余数小于除数,所以余数重复出现。 “余数”在我们生活中还有不少的用处呢! 例4国庆节挂彩灯,用六种颜色的灯泡,按红、黄、蓝、白、绿、紫的次序装配,总共要装50只灯,每种颜色的灯泡各需要多少只? 解可以这样想,六种颜色的灯泡作为一组,50只灯泡可以分成 50÷6 = 8(组)余2(只) 于是,其中有四种颜色的灯泡各配8只,另两种颜色的灯泡各配9只。 例5今天是星期三,再过20天是星期几? 解今天是星期三,因为一个星期有7天,以星期一为星期的第一天计算,因已经过了3天。所以有 (20+3)÷7 = 3余2 即再过20天是星期二。 例6把4、7、18、2四个数填入下式的括号中。 ()÷() = ()余()

小学生必背公式大全

小学必背公式大全 1每份数×份数=总数eg . 有3盘水果,每盘有5个,一共有多少个水果?(3×5=15)总数÷每份数=份数eg . 有15个水果,如果每盘装5个的话,可以装几盘?(15÷5=3)总数÷份数=每份数eg . 有15个水果,平均装在3个盘子里,可以装几盘?(15÷3=5)21倍数×倍数=几倍数eg . 篮子里有7个梨,苹果的个数是梨的8倍,苹果有几个?几倍数÷1倍数=倍数eg . 篮子里有56个苹果和7个梨,苹果的个数是梨的几倍? 几倍数÷倍数=1倍数eg . 篮子里有56个苹果,苹果的个数是梨的8倍,梨有多少个?3速度×时间=路程eg . 小明在散步,他每分钟走50米,7分钟后,他走了多少米? 路程÷速度=时间eg . 小明要走35米,如果他每分钟走5米的话,需要用多少分钟? 路程÷时间=速度eg . 小明走了56米,用了7分钟,问,他每分钟走多少米? 4单价×数量=总价eg . 圆珠笔两元一支,买7支要花多少钱? 总价÷单价=数量eg . 小明买圆珠笔用了14元,圆珠笔2元一支,小明买了几支? 总价÷数量=单价eg . 买7支圆珠笔用了14元,每支多少钱? (工作效率)(时间)(工作总量)?5工作效率×工作时间=工作总量eg . 小明每分钟写60个字,7分钟后他写了几个字? 工作总量÷工作效率=工作时间eg . 一本书有56页,小明每天看8页,需要看几天 工作总量÷工作时间=工作效率eg . 一本书有56 页,小明要在7天内看完,那他每天需要看几页? 6加数+加数=和eg . 橙汁3元一瓶,可乐2元一瓶,买一瓶可乐和一瓶橙汁,一共花了多少元? 和-一个加数=另一个加数eg . 小明买可乐和橙汁一共花了5元钱,其中买可乐花了2元,问,买橙汁花了多少元? 7 被减数-减数=差eg . 小明要看一本50页的书,他已经看了30页,还有几页没有看?被减数-差=减数eg . 小明要看一本50页的书,看了一部分之后还有20页没看,问,他已经看了多少页? 差+减数=被减数eg . 小明要看一本书,看了30页后还有20页没有看,问,这本书一共几页? 8 因数×因数=积eg . 8×9=72 积÷一个因数=另一个因数eg . 72÷9=8 9 被除数÷除数=商eg . 72÷9=8 被除数÷商=除数eg。72÷8=9 商×除数=被除数eg。8×9=72

小学数学解题思路巧解妙算大全2

【小学数学解题思路大全】巧解妙算(二) 1.特殊数题(1)21-12 当被减数和减数个位和十位上的数字(零除外)交叉相等时,其差为被减数与减数十位数字的差乘以9。 因为这样的两位数减法,最低起点是21-12,差为9,即(2-1)×9。减数增加1,其差也就相应地增加了一 个9,故31-13=(3-1)×9=18。减数从12—89,都可类推。 被减数和减数同时扩大(或缩小)十倍、百倍、千倍……,常数9也相应地扩大(或缩小)相同的倍数,其差不变。如 210-120=(2-1)×90=90, 0.65-0.56=(6-5)×0.09=0.09。 (2)31×51 个位数字都是1,十位数字的和小于10的两位数相乘,其积的前两位是十位数字的积,后两位是十位数字的 和同1连在一起的数。 若十位数字的和满10,进1。如 证明:(10a+1)(10b+1) =100ab+10a+10b+1 =100ab+10(a+b)+1 (3)26×86 42×62 个位数字相同,十位数字和是10的两位数相乘,十位数字的积与个位数字的和为积的前两位数,后两位是个 位数的积。若个位数的积是一位数,前面补0。 证明:(10a+c)(10b+c) =100ab+10c(a+b)+cc =100(ab+c)+cc (a+b=10)。 (4)17×19 十几乘以十几,任意一乘数与另一乘数的个位数之和乘以10,加个位数的积。 原式=(17+9)×10+7×9=323 证明:(10+a)(10+b) =100+10a+10b+ab =[(10+a)+b]×10+ab。 (5)63×69 十位数字相同,个位数字不同的两位数相乘,用一个乘数与另个乘数的个位数之和乘以十位数字,再乘以10,加个位数的积。 原式=(63+9)×6×10+3×9 =72×60+27=4347。 证明:(10a+c)(10a+d) =100aa+10ac+10ad+cd =10a[(10a+c)+d]+cd。 (6)83×87 十位数字相同,个位数字的和为10,用十位数字加1的和乘以十位数字的积为前两位数,后两位是个位数的 积。如 证明:(10a+c)(10a+d) =100aa+10a(c+d)+cd =100a(a+1)+cd(c+d=10)。

小学数学解题思路技巧(三年级用)

小学数学解题思路技巧 (三年级用) 第一章整数的计算 整数的计算,不仅要掌握整数的加、减、乘、除的四则运算,而且还要掌握各种运算定律和性质,更要掌握各种计算技巧,只有这样才能快速、准确地求出结果。 §1.1 凑整速求和 [知识要点] 加法的运算定律有: 1.加法的交换律。两个数树相加,交换它们的位置,和不变。 2.加法的结合律。三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,它们的和不变。 [范例解析] 例1计算:8+23+44+92+56+77。 分析如果将此题从头到尾逐项相加,也可得到答案,但不如分组求和相加简单。首先注意到:8+92 = 100,23+77 = 100,44+56 = 100,于是很快就有答案了。 解答原式=(8+92)+(23+77)+(44+56) = 100+100+100 = 300。 例2计算:3+68+22+31+69+97。 分析注意到:3+97 = 100,68+22 = 90,31+69 = 100。先分组,再求和。 解答原式=(3+97)+(68+22)+(31+69) = 100+90+100 = 290。 例3计算:7+71+642+1025+3+975+358+29。 分析此题中7+3 = 10,71+29 = 100,642+358 = 100,1025+975 = 2000。先分组,再求和。 解答原式=(7+3)+(71+29)+(642+358)(1025+975) = 10+100+1000+2000 = 3110。 例4计算:1081+398+295+19+7。 分析此题除了1081+19 = 1100外,不好分组凑整了。但我们可以把7拆成2+5,并注意到398+2 = 400,295+5 = 300,仍可得到快速求解。 解答原式=(1081+19)+(398+2)+(295+5) = 1100+400+300

小学数学解题思路技巧:移动火柴棒改变图形

小学数学解题思路技巧:移动火柴棒改变图形 [知识要点] 1.移动火柴棒,改变图形; 2.用火柴棒组图。 [范例解析] 例1图4-4是由9根火柴摆成的三个正三角形,请移动其中一个 三角形,使图形中有5个正三角形。 分析三根火柴可组成一个正三角形,将每边加一根火柴,就可组 成每边由二根火柴组成的正三角形,这时只要移动一个三角形就可组成 一个大的正三角形内含有四个小正三角形,共有五个正三角形。 解移动一个正三角形内含有四个小正三角形,共有五个正三角形。 例2图4-6是由12根火柴组成的“品”状的三个正方 形,现在请你移动其中一个正方形的位置,使图形中出现七个正方形。 分析由三变七,必有一个由一变四,这是可能的。 解移动一个成图4-7即可。 说明移动部分图形重组图形,一般是给定一个已排好的图形,要求移动其中某一部分,达到一个新的要求。这里面渗透了图形平移的观点。在图形平移时,有时会出现重合的边,就要从重合的地方取出一根或几根火柴,又到别处添补。 例3图4-8中是由24根火柴摆成的图,图内有7个正方形(三个大的、四个小的),请你移动四根火柴,使图中只含有长方形,而不含任何其他图形(图形要封闭)。 解如图4-9所示。 例4图4-10中是由十二根火柴摆成的正方形,它共含有五个正方形。请

你只移动两根火柴,使图形中分别含有六个正方形和七个正方形。 解如图4-11所示。 例5用20根火柴摆成一个长方形或正方形,摆出的这些图形,周长相等吗? 解摆成的长方形或正方形如图4-12。 这些图形的周长都是相等的。 例6用12根火柴摆成一个直角三角形。怎样摆法?如果用24根火柴怎样摆法? 解12根的摆法如图4-13所示。 24根的摆法如图4-14所示。 例7下图是用4根火柴摆成的“抓住一只苍蝇的苍蝇拍”。请你只移动两根火柴,将“苍蝇拍”移到“苍蝇”旁边(“苍蝇”不准动)。 解 [思路技巧]

小学生必背常用数学公式之欧阳数创编

▲乘法定律: 乘法交换律:a×b = b×a乘法 结合律:a×b×c = a×(b×c) 乘法分配律:a×c + b×c=c×(a + b)a×c - b×c=c×(a - b) ▲除法性质:a÷b÷c = a÷(b×c) ▲减法性质:a –b - c = a - (b + c) ▲解方程定律:◇加数 +加数 = 和;加数 = 和–另一个加数。◇被减数–减数 = 差;被减数=差+减数;减数=被减数–差。 ◇因数×因数 = 积;因数 = 积

÷另一个因数。 ◇被除数÷除数 = 商;被除数=商×除数;除数=被除数÷商。 ◆行程问题: 路程=速度×时间;时间=路程÷速度;速度=路程÷时间。 ◆相遇问题: 相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度); 甲速度=相遇路程÷相遇时间–乙速度;乙速度=相遇路程÷相遇时间–甲速度。 ◆工程问题:

工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;工作总量=计划工作效率×计划工作时间; 工作总量=实际工作效率×实际工作时间; 实际工作时间=工作总量÷实际工作效率; 实际工作效率=工作总量÷实际工作时间; ◆买卖问题: 总金额=单价×数量;数量=总金额÷单价;单价=总金额÷数量。 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+ b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

小学数学解题思路技巧:找规律填数字

小学数学解题思路技巧:找规律填数字 [知识要点] 1.数列填数; 2.阵图填数。 [范例解析] 例1找规律填出后面三个数: ⑴ 3,4,6,9,13,18,______,______,______; ⑵ 56,61,47,44,______,______,______; ⑶ 3,9,27,______,______,______; ⑷ 7,14,21,28,______,______,______; ⑸ 0,1,1,2,3,5,8,______,______,______。 解⑴这一列数,从第二个数开始,逐渐增大,那它是按什么规律变化的呢?我们仔细观察,第二个数4比第一个数3大1;第三个数比第二个数大2;第四个数比第三个数大3;第五个数比第四个数大4;第六个数比第五个数大5。如图3-1所示。 即是按照加1、加2、加3、加4、……的规律加下去。因此,应填24,31,39。 ⑵这一列数正好⑴相反,它们是逐渐减少。其中,第二个数51比第一个数56少5;第三个数又比第二个数少4;第四个数比第三个数少3。如图3-2所示。 即是按照减5、减4、减3、……的规律减下去。因此,应填42,41,40。 ⑶这一列数中,第二个数是第一个数的3倍;第三个数又是第二个数的3倍,如图3-3所示。

图3-3 即是按照前一个数扩大3倍,得后一个数的规律算下去。因此,应填81,243,729。 ⑷ 我们观察发现,这一列数中的第二个数是第一个数的2倍,第三个数又是第一个数的3倍,第四个数是第一个数的4倍,如图3-4所示。 即是按照把第一个数扩大2倍、3倍、4倍……的规律酸下去因此,应填35,42,49。 ⑸ 这一列数的变化规律较复杂一点,要仔细地观察。我们改变一下观察研究的顺序,即从8起往左看,可看出:8是3+5的和,5又是它的前两个数2+3的和,3则是1+2的和,2是1+1的和,1是0+1的和。如图3-5所示。 即是按照后一个数是前两个数的和的规律算下去。因此,应填13,21,34。 说明 在一列数中填数,关键是要找出这列数中各数之间的变化规律,按规律酸下去,才能正确填才其中的缺数。 例2 你能把空缺的数填出来吗? 2 分析 我们发现,这已知的7个数字之间找不出它们的变化规律。因此,我们应该变换观察的角度,即分单双位上的数考虑,这就将一列数分才人下的两列数: 前一列数是按照后一个数是前一个数加1的规律算下去,因此,空缺数应填5。 2

必背小学数学公式大全

必背小学数学公式大全 一、图形计算公式: 1、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh 5、三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高

6、平行四边形 s面积 a底 h高 面积=底×高 s=ah 7、梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形 S面积 C周长 d=直径 r=半径 周长=直径×π=2×π×半径 C=πd=2πr 面积=半径×半径×π 9、圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高 表面积=侧面积+底面积×2 体积=底面积×高 体积=侧面积÷2×半径 10、圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 二、应用题公式: 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价

学生学习方法小学数学解题思路大全

1.想数码 例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。某同学的答数是16246。试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。 思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。 相应位数两数码之和,个、十、百、千位分别是17、13、11、15。所以该同学的加法做错了。正确答案是 思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。这样个位上的两个数码,8+9=16是不可能的。 不要把“数码调换了位置”误解为“数码顺序颠倒了位置。” 2.尾数法 例1比较 1222×1222和 1221×1223的大小。 由两式的尾数2×2=4,1×3=3,且4>3。 知 1222×1222>1221×1223 例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。求这两个数。 由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。 由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。 甲数是348,乙数是34。 例3请将下式中的字母换成适当的数字,使算式成立。 由3和a5乘积的尾数是1,知a5只能是7; 由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为 142857×3=428571。 3.从较大数想起 例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法? 思路一:较大数不可能取5或比5小的数。 取6有6+5; 取7有7+4,7+5,7+6;

小学数学解题方法解题技巧之比例法

小学数学解题方法解题技巧之比例法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

小学数学解题方法解题技巧之比例法 比和比例是传统算术的重要内容,在较早的年代,许多实际问题都是应用比和比例的知识来解答的。近年来,小学数学教材中比和比例的内容虽然简化了,但它仍是小学数学教学的重要内容之一,是升入中学继续学习的必要基础。 用比例法解应用题,实际上就是用解比例的方法解应用题。有许多应用题,用比例法解简单、方便,容易理解。 用比例法解答应用题的关键是:正确判断题中两种相关联的量是成正比例还是成反比例,然后列成比例式或方程来解答。 (一)正比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 如果用字母x、y表示两种相关联的量,用k表示比值(一定),正比例的数量关系可以用下面的式子表示: 例1 一个化肥厂4天生产氮肥32吨。照这样计算,这个化肥厂4月份生产氮肥多少吨?(适于六年级程度) 解:因为日产氮肥的吨数一定,所以生产氮肥的吨数与天数成正比例。 设四月份30天生产氮肥x吨,则: 答略。 例2 某工厂要加工1320个零件,前8天加工了320个。照这样计算,其余的零件还要加工几天?(适于六年级程度) 解:因为每一天加工的数量一定,所以加工的数量与天数成正比例。

还需要加工的数量是: 1320-320=1000(个) 设还需要加工x天,则: 例3 一列火车从上海开往天津,行了全程的60%,距离天津还有538千米。这列火车已行了多少千米?(适于六年级程度) 解:火车已行的路程∶剩下的路程=60%∶(1-60%)=3∶2。 设火车已行的路程为x千米。 答略。 米。这时这段公路余下的长度与已修好长度的比是2∶3。这段公路长多少米?(适于六年级程度) 解:余下的长度与已修好长度的比是2∶3,就是说,余下的长度是已 这段公路的长度是: 答略。 (二)反比例 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。 如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的数量关系可以用下面的式子表达: x×y=k(一定) 例1 某印刷厂装订一批作业本,每天装订2500本,14天可以完成。如果每天装订2800本,多少天可以完成?(适于六年级程度)

小学数学解题思路技巧 一 二年级用

加减巧算 本系列贡献者:与你的缘[知识要点] 1.加法的交换律与结合律,用字母表示则有: α+b = b +α, α+(b+c) = (α+b)+c 2.减法的性质,用字母表示则有: α-(b+c) = α-b-c 反之,α-b-c = α-(b+c) [范例解析] 例1简便计算下列各题。 ⑴ 129+84+71 ⑵ 83+135+65 ⑶ 34+75+66 ⑷ 128+73+27+17 解⑴ 129+84+71 = (129+71)+84 = 200+84 = 284⑵ 83+135+65 = 83+(135+65) = 83+200 = 283 ⑶ 34+75+66 =(34+66)+75 = 100+75 = 175⑷ 128+73+27+17 = (128+17)+(73+27) = 145+100 = 245 例2你能巧算297+65的和吗? 分析我们发现,第一个加数只要加上数3就凑成整数300,这样计算就方便多了。 解法一 297+65 = 297+65+3-3 = (297+3)+(65-3) = 300+62 = 362解法二 297+65 = 297+62+3 = (297+3)+62 = 300+62 = 362 说明“凑整”是速算中最常见、简单易行的方法,计算时,若凑成10、100、1000、……计算自然方便。但“凑整”不是任意凑,而是有目的地进行,才能起到速算的效果。再看例3。 例3速算下面两题。 ⑴ 3471+5899 ⑵ 3891-1992 解⑴ 3471+5899 = 3471+(5899+101)-101 = 3471+6000-101 = 9471-101 = 9370⑵ 3891-1992 = (3891-2000)+8 = 1891+8 = 1899 例4速算下面两题。 ⑴ 280-(80+92)⑵ 297-173-27 解⑴ 280-(80+92) = 280-80-92 = 200-92 ⑵ 297-173-27 = 297-(173+27) = 297-200

小学数学解题思路技巧

余数的妙用 本系列贡献者:[知识要点] 1.被除数=除数×商+余数; 2.余数要比除数小; 3.会解有余数除法的应用题。 [范例解析] 例1如图1-1。把14个乒乓球平均分给三个班,每班分得几个?还余下几个? 解14÷3 = 4余2 每班分得4个还余2个。 例2下面三个竖式,哪个对?哪个不对?为什么不对? 解第一个竖式不对,它的余数8比除数5还大,还可商1,即商应为8; 第二个竖式也不对,因商和除数的积不能大于被除数; 第三个竖式是对的,余数3小于除数5。 说明计算有余数的除法,余数一定要比除数小。这时被除数、除数、商和余数的关系是: 被除数= 除数×商+余数 被除数-余数= 除数×商 例3把11、12、13、14、15、16、17分别除以3时,各得哪些余数?

解11÷3 = 3余2;12÷3 = 4余0;13÷3 = 4余1;14÷3 = 4余2; 15÷3 = 5余0;16÷3 = 5余1;17÷3 = 5余2。 说明一串连续数除以同一个数,因为它们的余数小于除数,所以余数重复出现。 “余数”在我们生活中还有不少的用处呢! 例4国庆节挂彩灯,用六种颜色的灯泡,按红、黄、蓝、白、绿、紫的次序装配,总共要装50只灯,每种颜色的灯泡各需要多少只? 解可以这样想,六种颜色的灯泡作为一组,50只灯泡可以分成 50÷6 = 8(组)余2(只) 于是,其中有四种颜色的灯泡各配8只,另两种颜色的灯泡各配9只。 例5今天是星期三,再过20天是星期几? 解今天是星期三,因为一个星期有7天,以星期一为星期的第一天计算,因已经过了3天。所以有 (20+3)÷7 = 3余2 即再过20天是星期二。 例6把4、7、18、2四个数填入下式的括号中。 ()÷()= ()余() 分析第一个括号是被除数,它必须填最大的一个数18。其次,除数比余数要大,因此,第二个括号中的数必须比最后一个括号中的数要大,但是7×4大于18,所以最后一个括号中只能填数4。即题中式子填数如下: (18 )÷(7 )= (2 )余(4 )

小学数学必备公式大全27858

小学数学公式大全 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积=长×宽×高V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度

6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a 2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积s:面积a:长b: 宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积a底h高

小学数学解题思路技巧(一、二年级用)-12.

复杂的变式游戏 本系列贡献者:与你的缘[知识要点] 1.用火柴棒组成计算器显示数字; 2.用“去”、“添”、“移”进行组数游戏和变式游戏。 [范例解析] 例1如“”是由4根火柴棒组成的计算器显示的数字,你能用不同的火柴棒组成0~9各个数字吗? 解二根四根五根六根七根 图4-3 例2用20根火柴组成以下各数: ⑴组成一个三位数,最大的是_______,最小的是_______; ⑵组成一个四位数,最大的是_______,最小的是_______。 分析三位数中最大的是999,但组成一个9只需要6根火柴,三个9共用18根火柴,按题目要求,还有两根火柴没用,要加火柴,就要变数,8是用七根火柴组成,故有两个9要变成8,要保持最大,只能是十位和个位上两个9变成8,因此,最大是988,同样的道理,可得出三位数中最小是688,四位数中最大是9991,最小是1000。 解⑴最大是:(20根火柴)

最小是:(20根火柴) ⑵ 由解⑴的分析,可得出⑵的结果如下: 最大是:(20根火柴) 最小是: (20根火柴) 说明 此例是组数游戏,完成这样的游戏,不但要求学生掌握数字、数位、位数及比较数的大小方法等数学基础知识和基本技能,而且还要求认真分析、合理计算、严密推理、灵活摆布、否则是无法下手的。 在游戏时,可以改变所给火柴根数,改变组数要求 。 例3 移动两根火柴使等式成立: 分析 1985与61是绝对不相等的,要使它们成等式,只有把一边去掉火柴二根,移到适当的位置变成运算符号,成一个等式。我们观察发现,19-8-5 = 6,正好将右边的“1”(二根火柴)去掉,移到左边的8前,5前成“—”号。 解 例4 移动一根、二根、三根、四根火柴,使等式成立,各有多少种移法? 解 移一根: 移二根: 移三根:

小学数学常用的19种解题方法总结

小学数学常用的19种解题方法总结 良好的方法能使我们更好地发挥运用天赋的才能,而拙劣的方法则可能阻碍才能的发挥。------[英]贝尔纳 “数学为其他科学提供了语言、思想和方法”,“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题”。(小学数学课程标准) 数学思维方法分为两种,形象思维方法和抽象思维方法。 小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础。 一、形象思维方法 形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。 形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。 1、实物演示法 利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。 这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。 二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

1-6年级数学公式大全

小学数学1-6年级公式大全 必背定义、定理公式 三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

小学数学解题思路技巧二年级用

找规律填数 本系列贡献者:与你的缘[知识要点] 1.数列填数; 2.阵图填数。 [范例解析] 例1找规律填出后面三个数: ⑴3,4,6,9,13,18,______,______,______; ⑵56,61,47,44,______,______,______; ⑶3,9,27,______,______,______; ⑷7,14,21,28,______,______,______; ⑸0,1,1,2,3,5,8,______,______,______。 解⑴这一列数,从第二个数开始,逐渐增大,那它是按什么规律变化的呢?我们仔细观察,第二个数4比第一个数3大1;第三个数比第二个数大2;第四个数比第三个数大3;第五个数比第四个数大4;第六个数比第五个数大5。如图3-1所示。 即是按照加1、加2、加3、加4、……的规律加下去。因此,应填24,31,39。 ⑵这一列数正好⑴相反,它们是逐渐减少。其中,第二个数51比第一个数56少5; 第三个数又比第二个数少4;第四个数比第三个数少3。如图3-2所示。 即是按照减5、减4、减3、……的规律减下去。因此,应填42,41,40。

⑶ 这一列数中,第二个数是第一个数的3倍;第三个数又是第二个数的3倍,如图3-3所示。 图3-3 即是按照前一个数扩大3倍,得后一个数的规律算下去。因此,应填81,243,729。 ⑷ 我们观察发现,这一列数中的第二个数是第一个数的2倍,第三个数又是第一个数的3倍,第四个数是第一个数的4倍,如图3-4所示。 即是按照把第一个数扩大2倍、3倍、4倍……的规律酸下去因此,应填35,42,49。 ⑸ 这一列数的变化规律较复杂一点,要仔细地观察。我们改变一下观察研究的顺序,即从8起往左看,可看出:8是3+5的和,5又是它的前两个数2+3的和,3则是1+2的和,2是1+1的和,1是0+1的和。如图3-5所示。 即是按照后一个数是前两个数的和的规律算下去。因此,应填13,21,34。 说明 在一列数中填数,关键是要找出这列数中各数之间的变化规律,按规律酸下去,才 能正确填才其中的缺数。 例2 你能把空缺的数填出来吗? 分析 我们发现,这已知的7个数字之间找不出它们的变化规律。因此,我们应该变换观 察的角度,即分单双位上的数考虑,这就将一列数分才人下的两列数: 前一 列数是按照后一个数是前一个数加1的规律算下去,因此,空缺数应填5。 说明 有时一列数是由两个有规律的数串混合组成的。在填空缺数时,应注意这一点。 例3 找规律,很快把图3-6 中小圆圈里的数填出来。

小学数学解题思路大全

小学数学解题思路大全 1.想平均数 例如,美国小学数学奥林匹克,第三次(1982年1月)题3:求三个连续自然数,使第一个和第三个之和等于118。( ) 由于三个数是连续自然数,所以第一个和第三个数的平均数是第二个数,即118÷2=59。另两个数是58和60。 2.想中间数 判断方法: 3.接近某数法 两个分数与1的差大的分数小;被减数不变,减数越大差数越小。

例2 下面的正确排列是( )。 只有(B)正确。 4.拆数 例如,99999992+19999999的和是( )。 原式=9999999×9999999+19999999 =9999999×(10000000—1)+ (10000000+9999999) =99999990000000—9999999+ 10000000+9999999 =100000000000000 5.插数 就是把两个分数的分子、分母各扩大2倍,使原来分子和分母都“相挨” 这种方法简便,一次成功,正确率高,所填分数的分子分母又最小。 6.奇偶数法 基本关系:

奇数±奇数=偶数 奇数±偶数=奇数 偶数±偶数=偶数 奇数×奇数=奇数。奇数的任何次方,幂是奇数。 奇数×偶数=偶数。n(n+1)必是偶数,因为n和(n+1)必为一奇一偶。 偶数×偶数=偶数。偶数的任何次方,幂是偶数。 在整除的前提下: 奇数÷奇数=奇数 偶数÷偶数=偶数 偶数÷奇数=偶数 例1 30个饺子五碗装,装单不装双( )。 因为奇数×奇数=奇数,故无解。 例2 两个连续偶数的和是82,这两个数是( )。(1)相邻的两偶数相差2。由和差问题解依次为 (82—2)÷2=40,40+2=42。 (2)相邻的两个自然数相差1。82÷2—1=40,40+2=42。或者41+1=42。 例3 1+3+5+……+25=( )。 由“从1开始的连续奇数的和,等于所有奇数个数的平方”。知

相关文档
最新文档