大学物理实验实验32 太阳能电池实验
大学物理研究性实验报告_太阳能电池的特性测量

在正文的第一部分,我从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料补充了部分电学的必要知识(例如禁带宽度的定义),同时我还根据自己的理解写出了太阳能电池的基本原理和太阳能电池器件的等效电路。
在正文的第二部分,本文详细介绍了操作需要用到的仪器并细致地描述了实验操作的各个流程。
在正文的第三部分,本文重新进行了数据处理,并初步分析了实验误差,标注了实验注意事项以及对实验课后思考题做出了自己的回答。
在正文的第四部分,也就是讨论部分,我做了大量的工作。
先分析了影响太阳能电池转换效率的因素,然后提出了两种实验改进方法,接着提出了禁带宽度的测量方法,最后探索了实际P-N结与理想模型之间的差别以及对实验数据的影响。
并且在第四部分的最后我还写了两年来自己学习物理实验的实验感想以及收获。
关键词:太阳能电池开路电压短路电流输出特性AbstractIn the first part of the text, from the perspective of a sophomore undergraduate experimental principle rephrase supplemented with some electrical knowledge necessary (for example, the band gap of the definition), access to information, at the same time I also according to their understanding to write the equivalent circuit of the basic principles of solar cells and solar cell devices.In the second part of the text, this article details the operation requires the use of instruments and detailed description of the experimental operation of the various processes.In the third part of the text, re-processing, and a preliminary analysis of the experimental error, marked experimental Notes and Questions experimental after-school made its own answer.In the fourth part of the text, that is, the discussion section, I have done a lot of work. First analyze the factors affecting the conversion efficiency of the solar cell, and then the two experimental improved method, followed by the forbidden bandwidth of the measuring method, and the last explore the difference between the actual PN junction with the ideal model and the experimental data. And I also wrote in the fourth part of the last two years studying physics experiment experimental feelings and harvest.Key word: Solar cell Open-circuit voltage Short-circuit current Output Characteristics第一部分实验原理的重新表述 (1)一、实验要求 (1)二、实验原理 (1)1.太阳能电池的分类 (1)2.P-N结 (1)3.禁带宽度 (2)4.太阳能电池的伏安特性曲线及相关特性参数 (2)5.太阳能电池的基本原理 (4)6.太阳能电池器件的等效电路 (4)第二部分实验内容及操作详细流程 (5)三、仪器介绍 (5)四、实验内容及操作详细流程 (7)1.硅太阳能电池的暗伏安特性测量 (7)2.开路电压,短路电流与光强关系测量 (7)3.太阳能电池输出特性实验 (8)4.注意事项 (8)第三部分数据的重新处理与深入思索 (9)五、太阳能电池基本特性测量 (9)1.硅太阳能电池的暗伏安特性测量 (9)2.开路电压、短路电流与光强关系测量 (10)3.太阳能输出特性试验 (12)六、实验误差分析 (14)七、实验课后思考题 (14)第四部分讨论 (15)八、影响太阳能电池转换效率的因素 (15)九、实验方法的比较与改进 (15)1.传统的太阳能电池伏安特性测量方法 (15)2.利用计算机和Labcoder数据采集分析系统改进实验 (16)3.利用C8051F020单片机改进实验 (18)十、禁带宽度的测量 (19)1.测量原理 (19)2.测量方法 (19)十一、实际P-N结与理想模型之间的差别 (20)P-N结的伏安特性分析及等效电路 (20)十二、实验感想与体会 (22)1.课前认真地预习 (22)2.做好课堂操作 (23)3.掌握好一些基本的数据处理方法。
太阳能电池特性的测量实验报告

竭诚为您提供优质文档/双击可除太阳能电池特性的测量实验报告篇一:太阳能电池特性测量实验本科学生实验报告学号姓名学院物电学院专业、班级12级光电子班实验课程名称太阳能电池特性测量实验教师及职称开课学期学期填报时间日云南师范大学教务处编印一、实验设计方案篇二:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.。
太阳能电池输出特性的研究

太阳能电池可以吸收太阳光中的部分能量 ,并将吸收的太阳能转化为电能 。太阳能电池的输出特性是指 它吸收了太阳能量后 ,能够转化为多少电能与其它因素之间的关系 。太阳能电池的输出特性是一个很复杂的 性质 ,它和电池本身 、光照强度 、外接电路性质等等因素有关 。太阳能电池的输出特性有电压输出 、电流输出 、 功率输出 ,我们研究的是功率输出和电压 、电流 、外接电阻之间的关系以及最大输出功率和光照强度之间的关 系[3 ] 。实验装置于图 1 :
图 1 太阳能电流实验装置图
当光照强度一定时 ,也就是当 d 一定时 ,改变变阻箱的阻值 ,用数字万用表测量其两端的电压 ,这样就可以 得到输出功率与电阻 、输出电流 、输出电压之间的关系[1] 。改变光照强度 ,也就是调节太阳能电池与光源的距 离 d 值 ,测量几组不同的电压值 ,可以得到在不同的光照下的最大输出功率 ,以及最大输出功率和光照强度的 关系 。
太阳能电池的输出特性有电压输出电流输出功率输出我们研究的是功率输出和电压电流外接电阻之间的关系以及最大输出功率和光照强度之间的关太阳能电流实验装置图当光照强度一定时也就是当d一定时改变变阻箱的阻值用数字万用表测量其两端的电压这样就可以得到输出功率与电阻输出电流输出电压之间的关系
第1期
太阳能电池输出特性的研究
利用表 1 的数据计算得到输出功率和电阻关系如图 2 所示 ,从图 2 中可以看到 ,开始阶段输出功率随电阻
增大而增大 ,增大到一定值时 ,输出功率随电阻增大反而减少 ,当 R = 4100Ω 时 ,输出功率最大 , P = 0. 295mW 。
图 2 输出功率与电阻的关系曲线
根据表 1 数据计算得到输出功率 P 与输出电流 I 的关系如图 3 所示 :
实验32 太阳能电池实验_大学物理实验_[共12页]
![实验32 太阳能电池实验_大学物理实验_[共12页]](https://img.taocdn.com/s3/m/c8a094dd79563c1ec5da71f7.png)
218大学物理实验⑤如何获得高电压、大电流输出的光电池?实验32 太阳能电池实验太阳能是指太阳辐射的能量。
我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应。
反应过程中伴随着巨大的能量向宇宙空间的释放。
所有太阳释放到宇宙空间的能量都属于太阳能的范畴。
科学研究已经表明太阳的热核反应可以持续百亿年左右,能量辐射功率约3.8 × 1023kW。
根据地球体积、地球与太阳的距离等数据可以计算出地球被辐照到的太阳能大致为全部太阳能量辐射量的20亿分之一。
考虑到地球大气层对太阳辐射的反射和吸收等因素,实际到达地球表面的太阳辐照功率为80亿kW,折合500万吨标准煤的能量。
太阳能给人无限的遐想,但需要我们对太阳能有一个全面、客观的认识。
任何的事物总是具有两面性的。
就太阳能而言,其优势在于“普遍”,地球的任何角落都存在;“巨大”,太阳能是地球可供开采的最大能源;“无害”,不污染环境;“持续”,可稳定供应时间超过100亿年。
太阳能的缺点在于它具备的分散性、不稳定性、高成本。
分散性和不稳定性是地球地理特征决定的。
高成本是工艺技术水平的不足导致的。
太阳能是非常活跃的研究和应用领域,前景广阔,回报丰厚。
这个领域也充满问题和挑战,对相关人才的需求量巨大。
人类对硅材料的认识及固体理论、半导体理论的发展和成熟,是太阳能利用的关键推动力,具有里程碑意义的事件是1945年美国Bell实验室研制出实用性硅太阳能电池。
近年来,太阳能成为研究、技术、应用、贸易的热点。
太阳能潜在的市场为全世界所关注。
除了人类能源需求量的增大、化石能源储量的下降和价格的提升、理论和工艺技术水平的提高等因素外,环保意识、可持续发展意识的提升也是一个重要的因素。
太阳能电池是目前太阳能利用中的关键环节,核心概念是PN结和光生伏特效应。
理解太阳能电池的工作原理、基本特性表征参数和测试方法是必要和重要的。
一、实验目的①了解PN结的基本结构与工作原理。
太阳能电池__大学物理实验

太阳能电池特性的测量能源短缺和地球生态环境污染已经成为人类面临的最大问题,新能源利用迫在眉睫。
太阳能是一种取之不尽、用之不竭的新能源。
太阳电池可以将太阳能转换为电能,随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。
太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。
根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。
其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。
本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。
实验目的1. 学习太阳能电池的发电的原理 2. 了解太阳电池测量原理 3. 对太阳电池特性进行测量实验原理太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。
P 型半导体中有相当数量的空穴,几乎没有自由电子。
N 型半导体中有相当数量的自由电子,几乎没有空穴。
当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。
势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。
在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。
当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。
在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。
太阳能电池特性测量实验

由半导体理论知,二极管主要是由如图1-1所示的能隙为 的半导体所构成。 为半导体导电带, 为半导体价电带。当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。
(3)调节负载电阻,列表记录对应的电压值及负载大小;
(4)拆除实验连线,还原实验仪器。
注意事项:
1、实验过程中严禁用导体接触实验仪裸露元器件及其引脚;
2、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,方可打开电源进行实验;
3、若照度计、电流表或电压表显示为“1_”时说明超出量程,选择合适的量程再测量;
(3)调节负载电阻,列表记录对应的电压值及电流值;
(4)完成步骤3后,移走太阳能电池板,然后将照度表探头放置在太阳能电池板初始位置,测量其光照度并记录;
(5)重复步骤3、4,进行多次测量;
(6)拆除实验连线,还原实验仪器。
5、负载特性的测试
(1)移动太阳能电池板,将其置于灯(模拟太阳光源)正下方;
(2)连接电路同实验1-4;
1、了解太阳能电池的工作原理和使用方法;
2、掌握开路电压和短路电流及与相对光强的函数关系的测试方法;
3、掌握太阳能电池特性及其测试方法。
2.实验原理、实验流程或装置示意图
太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时,可将太阳能电池视为一个二极管,其正向偏压 与通过的电流 的关系为:
(4)列表记录电压值及电流值,大致以5cm为间距,由近至远移动太阳能电池板,测量10次;
大学物理研究性实验报告_太阳能电池的特性测量

大学物理研究性实验报告_太阳能电池的特性测量摘要:本实验旨在通过特性测量方法研究太阳能电池的工作机理和特性参数,并验证太阳能电池的光伏效应。
在实验中,使用太阳能电池组分别测量其短路电流、开路电压、最大功率输出和填充因子等参数,并绘制出其伏安特性曲线和功率曲线。
实验结果表明,太阳能电池的输出电流、输出电压和输出功率都随光照强度的增加而增加,但是衰减左右场景不同,衰减较快的为室外光照强度较强场景。
太阳能电池的最大功率输出点需根据不同光照强度下自行求解,而填充因子对太阳能电池的输出功率有显著影响。
关键词:太阳能电池;特性测量;伏安特性曲线;功率曲线;光伏效应;填充因子 1. 实验原理太阳能电池是一种将光能直接转换为电能的装置,其工作原理是基于光伏效应。
当光照射在半导体材料上时,会在材料内部产生电子-空穴对,即通过光照,半导体材料内的电子从价带跃升到导带,留下空穴。
由于这些电子和空穴在电场作用下会分别向相反的电极移动,因此在同一方向引出电流,形成光生电动势。
太阳能电池的主要参数包括短路电流$I_{sc}$、开路电压$V_{oc}$、最大功率输出$P_{max}$和填充因子$FF$。
短路电流是在电池组端口短路状态下的输出电流,而开路电压是在电池组端口开路状态下的电压。
最大功率输出是在负载电阻为某一特定值时,电池组所输出的最大功率。
填充因子是指在最大功率输出条件下,电池组实际输出功率与在同等照射强度下能产生的最大功率之比,即$FF=P_{max}/(V_{oc}\times I_{sc})$。
2. 实验方法(1)测量太阳能电池的短路电流$I_{sc}$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,记录短路电流的数值。
此时,太阳能电池组端口暂时不接任何负载电阻。
(图1)(3)测量太阳能电池的最大功率输出$P_{max}$和填充因子$FF$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,依次接入不同大小的负载电阻,并记录每种电阻下的电池组输出电压和输出电流的数值,计算输出功率。
[太阳能电池特性实验讲义]
![[太阳能电池特性实验讲义]](https://img.taocdn.com/s3/m/0efe1cd733d4b14e85246879.png)
(2) 测量太阳能电池接受不同相对光强度( J J0 )光照射时,相应的 I SC 和U OC 的值。
(3) 描绘 I SC 与相对光强( J J0 )之间的关系曲线,求 I SC 与相对光强( J J0 )之间的
近似关系函数。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
P(mV )
U (V )
0
恒定光照不 加偏压的伏安特 性曲
外推求出 I SC 和U OC
选作:在恒定光照下,不加 偏压时的太阳能电池输出功 率与负载电阻关系曲线。
0
R (Ω) L
恒定光照不加偏 压的输出
功率与负载电阻 关系曲线
3. 学生可自行设计在不加偏压时,用白色光照射,测量太阳能电池并联时特性。(注意此时 光源到太阳能电池距离保持为20cm),比较太阳能电池串并联区别。 4.测量太阳能电池的光电效应与电光性质
【实验目的】
大学物理实验教程(第二分册)
实验 13 太阳能电池特性研究
1.在没有光照时,测量太阳能电池在正向偏压时的伏安特性曲线,并求得电压和电流关系
的经验公式。2. 测量太阳能电池的短路电流 ISC 、开路电压UOC 、最大输出功率 Pm 及填
充因子 FF ,〔FF= Pm ∕( ISC ·UOC ,填充因子是代表太阳能电池性能优劣的一个重要
0
J / J0
U OC 与相对光强( J J 0 )关系曲线
5. 在不加偏压时,用不同颜色光对太阳能电池板进行照
射,测量太阳能电池一些特性,比较其对太阳能电池输出电流的影响。(注意此时光源到太
阳能电池距离保持为 20cm ,在距光源10cm 处添加滤光片)
6. 在不加偏压时,通过控温模块调节太阳能电池的温度,测绘出太阳能电池在室温、45℃、 60℃三种不同温度时的伏安特性曲线,并比较出三条曲线的不同,验证太阳能电池的温度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验仪器
仪器组成:测试主机、氙灯电源、氙灯光源、滤光片 组和电池片组。实验操作和显示由计算机软件完成。 整机图片如下:
1、光路部分内部示意图 本设备光路简洁,有光源、凸透镜、滤 色片构成。
8
2、测试主机 (1)面板介绍:(见下图) ①.紧急停机按钮:直接按下为关顺时针旋转自动归位 ②.关机按钮: 正常关机按钮。③.开机按钮。 ④.PC接口:与计算机通信的USB接口。 ⑤.光源通信接口:与氙灯电源通信,接收氙灯光源的状态信息。 ⑥.故障灯:红色闪烁表示有故障,绿色表示工作正常。 ⑦.工作状态:红色闪烁表示腔内温度调整中,绿色表示未进行温度调整 ⑧. 电源:红色闪烁表示关机中,红色表示工作正常。
9
(2) 电路部分 电路部分包括温度控制电路和测试电路两个部分。温控电路用于太 阳能电池片所在的控温室的温度控制,在一定范围内,可使控温室 达到指定温度。测试电路用于测试太阳能电池片各性能的数据,该 电路将测得数据传送给计算机,由计算机进行数据的处理和显示。 (3) 控温室:给太阳能电池片提供一个-10℃——40℃的太阳能 电池片的测试环境。 3、氙灯电源:氙灯电源用于氙灯的点燃、轴流风冷以及光源腔体内 除湿。
P N 结 结 构 示 意 图
当有入射光垂直入射到PN结,只要PN结结深比较浅,入射光子 会透过PN结区域甚至能深入半导体内部。如下图所示,如果入射光子 能量满足关系 (Eg为半导体材料的禁带宽度),那么这些光子会被材 料本征吸收,在PN结中产生电子空穴对。光照条件下材料体内产生电 子空穴对是典型的非平衡载流子光注入作用。在均匀半导体中光照射 下也会产生电子空穴对,它们很快又会通过各种复合机制复合。这种 作用有两方面的体现,第一是光生少子在内建电场驱动下定向运动产 生电流,这就是光生电流,它由电子电流和空穴电流组成,方向都是 由N区指向P区,与内建电场方向 一致;第二,光生少子的定向运动与 扩散运动方向相反,减弱了扩散运动的强度,PN结势垒高度降低,甚 至会完全消失。宏观的效果是在PN结两端产生电动势,也就是光生电 动势。 光 辐 照 下 的 P N 结
无机太阳能电池
实验目的
1、了解pn结基本结构与工作原理; 2、了解太阳能电池的基本结构,理解其工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法, 理解光源波长、温度等因素对太阳能电池特性的影 响; 5、通过分析PN结、太阳能电池基本特性参数测试 数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。
10
实验原理
1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们的导电能力 在导体和绝缘体之间,其导电能力随外界环境,如温度、光照等,而发 生显著的变化。半导体材料具有负的带电阻温度系数。从材料结构特点 说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以 使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对 半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性 能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器 件的核心结构通常是pn结。pn结简单说就是p型半导体和n型半导体的基 础区域。太阳能电池,本质上就是pn结。
2、太阳能电池无光照情况下的电流电压关系-(暗 特性) 太阳能电池是依据光生伏特效应把太阳能或者光能 转化为电能的半导体器件。如果没有光照,太阳能 电池等价于一个pn结。通常把无光照情况下太阳能 电池的电流电压特性叫做暗特性。近似地,可以把 无光照情况下的太阳能电池等价于一个理想pn结。 其电流电压关系为肖克莱方程:
其中
为反向饱和电流。A、D、n
p和L分别为结面积、扩散系数、平衡电子浓度、平衡空穴浓流电压关系-(光亮特性) 光生少子在内建电场驱动下定向的运动在PN结内部产生了n区指向p区 的光生电流IL,光生电动势等价于加载在PN结上的正向电压V,它使得 PN结势垒高度降低qVD-qV。开路情况下光生电流与正向电流相等时 ,PN结处于稳态,两端具有稳定的电势差VOC,这就是太阳能电池的 开路电压Voc。如图4所示,在闭路情况下,光照作用下会有电流流过 PN结,显然PN结相当于一个电源。光电流IL在负载上产生电压降,这 个电压降可以使pn结正偏。如图3所示,正偏电压产生正偏电流IF。在 反偏情况下,pn结电流为:
太阳能电池的发展
1954年美国贝尔实验室制成了世界上第一个实用的太阳 能电池,效率为4%,于1958年应用到美国的先锋1号人 造卫星上。
由于材料、结构、工艺等方面的不断改进,太阳能电池逐 渐由航天等特殊的用电场合进入到地面应用中。现在太阳 能电池的价格不到20世纪70年代的1%。预期10年内太阳 能电池能源在美国、日本和欧洲的发电成本将可与火力发 电竞争。目前,年均增长率35%,是能源技术领域发展最 快的行业。
太阳能电池实验
物理实验教学中心 马红
实验背景
太阳能是指太阳辐射的能量。我们知道在太阳内部无时无刻的在进 行着氢转变为氦的热核反应。反应过程中伴随着巨大的能量向宇宙空间 的释放。所有太阳释放到宇宙空间的能量都属于太阳能的范畴。科学研 究已经表明太阳的热核反应可以持续百亿年左右,能量辐射功率约 3.8×1023Kw。根据地球体积、及地球与太阳的距离等数据可以计算出 地球被辐照到的太阳能大致为全部太阳能量辐射量的20亿分之一左右。 考虑到地球大气层对太阳辐射的反射和吸收等因素,实际到达地球表面 的太阳辐照功率为80亿千瓦,折合500万吨标准煤的能量。 人类对硅材料的认识及固体理论、半导体理论的发展和成熟,是太 阳能利用的关键推动力,具有里程碑意义的事件是1945年美国Bell实验 室研制出实用性硅太阳能电池。近年来,太阳能成为研究、技术、应用 贸易的热点。太阳能潜在的市场为全世界所关注。除了人类能源需求量 的增大、化石能源储量的下降和价格的提升、理论和工艺技术水平的提 高等因素外,环保意识、可持续发展意识的提升也是一个重要的因素 太阳能电池是目前太阳能利用中的关键环节,核心概念是pn结和光 生伏特效应。理解太阳能电池的工作原理、基本特性表征参数和测试方 法是必要和重要的。