递推算法

合集下载

递推算法、顺推、逆推概念

递推算法、顺推、逆推概念

递推算法、顺推、逆推概念在计算机科学中,递推算法、顺推、逆推是非常重要的概念。

这些概念在算法设计、程序编写等方面都有着广泛的应用。

本文将详细介绍这些概念的含义、应用以及实现方法。

一、递推算法递推算法是一种基于已知的初始条件和递推公式来计算未知项的算法。

在递推算法中,我们需要根据问题的特点,找到递推公式,然后通过递推公式来推导出后续的解。

递推算法通常用于计算数列、矩阵、图形等数学问题,也可以用于解决计算机科学中的一些问题。

例如,斐波那契数列就是一个典型的递推算法问题。

斐波那契数列的递推公式如下:F(n) = F(n-1) + F(n-2)其中,F(0)=0,F(1)=1。

这个递推公式的意思是,斐波那契数列的第n个数等于前两个数之和。

我们可以通过递推公式来计算斐波那契数列的任意一项。

例如,我们可以通过递推公式计算出斐波那契数列的前10项:F(0) = 0F(1) = 1F(2) = F(1) + F(0) = 1 + 0 = 1F(3) = F(2) + F(1) = 1 + 1 = 2F(4) = F(3) + F(2) = 2 + 1 = 3F(5) = F(4) + F(3) = 3 + 2 = 5F(6) = F(5) + F(4) = 5 + 3 = 8F(7) = F(6) + F(5) = 8 + 5 = 13F(8) = F(7) + F(6) = 13 + 8 = 21F(9) = F(8) + F(7) = 21 + 13 = 34递推算法的优点是简单、易于理解和实现。

但是,递推算法的时间复杂度可能会很高,因为在计算每一项时都需要计算前面的项。

因此,在使用递推算法时,需要注意时间复杂度的问题。

二、顺推和逆推顺推和逆推是递推算法中的两种常见实现方法。

顺推是从已知的初始条件开始,按照递推公式依次计算每一项的值,直到计算出所需的项。

而逆推则是从所需的项开始,倒推出前面的所有项。

顺推通常用于计算数列、矩阵等递推算法问题。

递推法算法

递推法算法

递推法算法递推法算法是一种常用的数学和计算机科学中的算法思想,它通过利用问题中的已知信息,通过递推关系来求解未知信息。

在实际应用中,递推法算法广泛用于解决递推问题、数列问题、动态规划等。

本文将介绍递推法算法的基本原理和应用场景。

一、递推法算法的基本原理递推法算法的基本原理是通过已知信息推导出未知信息的方法。

它利用问题中的递推关系,通过逐步迭代计算,将已知信息不断传递到后续的未知信息中,从而求解整个问题。

在递推法算法中,首先确定初始条件,也就是已知的起始信息。

然后,根据递推关系,计算出下一个未知信息。

接着,将这个未知信息作为已知信息,再次利用递推关系计算下一个未知信息。

如此反复,直到得到问题的最终解。

递推法算法在数学和计算机科学中有广泛的应用场景。

下面分别介绍几个常见的应用场景。

1.递推问题递推问题是指通过前一项或前几项的信息,推导出下一项的信息的问题。

例如斐波那契数列,每一项都是前两项的和。

利用递推法算法,可以通过已知的前两项计算出后续的所有项。

2.数列问题数列问题是指通过已知的数列前几项的信息,推导出数列的通项公式或后续的项。

例如等差数列和等比数列,通过递推法算法可以快速求解出数列的通项公式,从而计算出数列的任意一项。

3.动态规划动态规划是一种通过将一个复杂问题分解为多个子问题来求解的方法。

递推法算法在动态规划中起到了关键的作用。

通过递推法算法,可以将大问题分解为多个小问题,并通过已知的小问题的解来计算出大问题的解。

三、递推法算法的优势递推法算法具有以下几个优势。

1.简单易懂递推法算法的思想简单易懂,适用于各种问题的求解。

只要找到递推关系和初始条件,就可以通过简单的迭代计算得到问题的解。

2.高效快捷递推法算法通过利用已知信息和递推关系,避免了重复计算和不必要的操作,从而提高了计算效率。

在实际应用中,递推法算法常常能够大幅减少计算时间。

3.灵活性强递推法算法的灵活性强,适用于各种形式的问题。

只要能够找到递推关系和初始条件,就可以使用递推法算法来解决问题。

稳定的递推算法

稳定的递推算法

稳定的递推算法1 稳定的递推算法是什么?稳定的递推算法是指一种通过已知的初始值和递推公式计算后续值的数学算法。

这种算法不仅能够正确和快速地计算出数列中每一项的值,而且其计算过程是稳定可靠的,不会出现数据不准确或计算错误的情况。

2 递推算法的基本原理递推算法是一种基于数学归纳法的算法。

具体地说,其基本原理是依据已知的初值和递推关系式,逐步推导出数列中的每一项的值。

递推算法的一般形式为:f(n) = g(f(n-1))其中,f(n) 是数列中第 n 项的值,g 是递推关系式,f(n-1) 是数列中的前一项。

3 稳定递推算法的特点稳定递推算法有以下特点:1. 不会出现“死循环”:这是因为递推公式和初值的限制条件能够确保计算过程的唯一性和有限性。

2. 对于相同的初值和递推公式,计算结果的可复现性非常好,而且速度较快。

3. 稳定递推算法的计算量较小,适用于大型数列的计算。

4 稳定递推算法在计算机科学中的应用稳定递推算法在计算机科学中有着广泛的应用,特别是在数据结构和算法领域。

下面介绍其中两个经典的例子:1. 斐波那契数列斐波那契数列是指这样一个数列:0、1、1、2、3、5、8、13、21、34、… 其中每一项都是前两项的和。

这个数列可以使用递推算法进行计算,而且计算速度很快。

2. 动态规划算法动态规划算法是一种递推算法,其应用广泛,涵盖了很多领域,比如图像处理、自然语言处理、人工智能等。

动态规划算法通常是在递归的基础上进行计算,但是由于递推公式的稳定性,其速度通常会比递归算法快得多。

5 稳定递推算法的实现方式稳定递推算法的实现方式通常是使用循环结构,在每一次循环中,根据递推公式和前一项的值计算出当前项的值,并赋值给当前项。

循环的次数就是要求的数列的项数。

6 稳定递推算法的优化稳定递推算法的优化主要是通过改善递推公式和优化循环结构来提高算法的效率和稳定性。

一些文献指出,使用矩阵乘法等方法可在一定程度上提高递推算法的计算速度。

递推算法

递推算法
递推算法
引例:Fibonacci数列
• Fibonacci数列的代表问题是由意大利著名 数学家Fibonacci于1202年提出的“兔子繁 殖问题”(又称“Fibonacci问题”)。
• 问题: 一个数列的第0项为0,第1项为1,以
后每一项都是前两项的和,这个数列就是 著名的裴波那契数列,求裴波那契数列的 第N项。
cin>>x>>y>>z;a[1]=1; for(i=1;i<=z+1;i++)
for(k=1;k<=z+1;k++) a[i+k*x+2]+=y*a[i];
for(i=1;i<=z+1;i++)sum+=a[i]; cout<<sum<<endl; return 0; }
顺推举例3——杨辉三角1547
迭代举例5——楼梯走法
问题描述:设有一个N级楼梯,某人每步可以走1级、2级、或者 3级,求某人从底层开始走完全部楼梯的走法。
n=1 f(1)=1: 1 n=2 f(2)=2: 1 1; 2 n=3 f(3)=4: 1 1 1 ; 2 1; 1 2; 3 n=4 f(4)=7: 1 1 1 1 ; 2 1 1; 1 2 1; 3 1 ; 1 1 2; 2 2 ; 1 3
• 对一个试题,我们要是能找到后一项与前一项的关系并清 楚其起始条件(或最终结果),问题就可以递推了,接下 来便是让计算机一步步了。让高速的计算机从事这种重复 运算,真正起到“物尽其用”的效果。
递推概念
给定某些项Hi(0<i<n)联系起来, 这样的式子就叫做递推关系。

递推算法(C++版)

递推算法(C++版)

int main()
{
int n,i,j,a[101];
cout<<"input n:";
//输入骨牌数
cin>>n;
a[1]=1;a[2]=2;
cout<<"x[1]="<<a[1]<<endl;
cout<<"x[2]="<<a[2]<<endl;
for (i=3;i<=n;i++)
//递推过程
{
int n,m; cin>>m>>n; int m1=m,n1=n,s1=m*n; while (m1!=0&&n1!=0) {
m1--;n1--; s1+=m1*n1; } int s2=((m+1)*(n+1)*m*n)/4-s1; cout<<s1<<" "<<s2<<endl; }
//计算正方形的个数s1 // 计算长方形的个数s2
其实,本题稍加分析就能发现,要到达棋盘上的一个点,只能从左边过 来(我们称之为左点)或是从上面过来(我们称之为上点),所以根据加 法原理,到达某一点的路径数目,就等于到达其相邻的上点和左点的路径 数目之和,因此我们可以使用逐列(或逐行)递推的方法来求出从起点到 终点的路径数目。障碍点(马的控制点)也完全适用,只要将到达该点的 路径数目设置为0即可。
个正方形、多少个长方形(不包括正方形)。
例如:当 N=2, M=3时:
正方形的个数有8个:即边长为1的正方形有6个;边长为2的正方形有2个。

递推算法概念

递推算法概念

递推算法概念
递推算法是一种基于已知结果推导出后续结果的算法。

它是一种比较常用的计算机编程思路,在各种场景下都能发挥出良好的效果。

递推算法的基本思路是从已知的初始值开始,根据递推关系式,求解下一个结果,最终得到所需的结果。

递推算法的优点在于它可以大大减少计算量。

在许多计算问题中,递推算法都能用更少的时间和空间复杂度得到正确的结果。

同时,递推算法的思路简单,对于初学者来说也比较容易理解和实现。

递推算法有多种形式,如斐波那契数列、杨辉三角等等。

在实践中,递推算法常常用于动态规划、计算几何、图论等领域,它们大大提高了算法效率,能够有效解决许多实际问题。

在使用递推算法时,我们需要注意一些问题。

首先,我们必须准确地描述递推关系式,这是正确求解下一个结果的关键。

其次,我们必须确定好递推的边界条件,避免出现无效或死循环的情况。

最后,在实现过程中,我们还需要考虑算法的效率和精度,避免出现由于计算过程中的误差而影响结果的情况。

综上所述,递推算法是一种非常有用的计算机编程思路。

它能够大大
提高算法效率,有效地解决许多实际问题。

在使用递推算法时,我们需要注意一些问题,如准确描述递推关系式、确定递推的边界条件、考虑算法的效率和精度等。

只有在正确理解和使用递推算法时,我们才能充分发挥它的优点,有效地解决实际问题。

04.递推算法(C++版包括习题参考答案)

04.递推算法(C++版包括习题参考答案)
min{m , n}1 i 0
s 1=
(n i ) * (m i )
2.长方形和正方形的个数之和s 宽为1的长方形和正方形有m个,宽为2的长方形和正方形有 m-1个,┉┉,宽为m的长方形和正方形有1个; 长为1的长方形和正方形有n个,长为2的长方形和正方形有n1个,┉┉,长为n的长方形和正方形有1个; 根据乘法原理
【参考程序】 #include<iostream> using namespace std; int main() { int f[1001][2],n,i,x; cin>>n; f[1][1]=1;f[1][0]=9; for(i=2;i<=n;i++) { x=f[1][0]; if(i==n)x--; f[i][0]=(f[i-1][0]*x+f[i-1][1])%12345; f[i][1]=(f[i-1][1]*x+f[i-1][0])%12345; } cout<<f[n][0]; return 0; }
下面是输入n,输出x1~xn的c++程序: #include<iostream> using namespace std; int main() { int n,i,j,a[101]; cout<<"input n:"; //输入骨牌数 cin>>n; a[1]=1;a[2]=2; cout<<"x[1]="<<a[1]<<endl; cout<<"x[2]="<<a[2]<<endl; for (i=3;i<=n;i++) //递推过程 { a[i]=a[i-1]+a[i-2]; cout<<"x["<<i<<"]="<<a[i]<<endl; } } 下面是运行程序输入 n=30,输出的结果: input n: 30 x[1]=1 x[2]=2 x[3]=3 ........ x[29]=832040 x[30]=1346269

递推算法

递推算法

联系题目:1290 献给杭电五十周年校庆的礼物1297 Children’s Queue1438 钥匙计数之一1465 ~14661480 钥匙计数之二2013 蟠桃记2018 母牛的故事2041~20422044~2050 (10/5专题练习)所谓递推思想,如何开始自己的递推思路是十分重要的!针对不同的递推题目,就递推的源头而言,可以分解为两类:倒推法和顺推法。

递推进阶案例:1-------基本递推案例:有5人坐在一起,当问第5个人多少岁,他说比第4个人大2岁,问第4个人多少岁,他说比第3个人大2岁,依此下去,问第一个人多少岁,他说他10岁,最后求第5个人多少岁?递推公式:()()⎪⎩⎪⎨⎧≥+-==22)1(110)(n n f n n f2-------递推进阶案例:在一个平面上有一个圆和n 条直线,这些直线中每一条在圆内同其他直线相交,假设没有3条直线相交于一点,试问这些直线将圆分成多少区域? 递推公式:F(1)=2;F(n) = F(n-1)+n; 化简后:F(n) = n(n+1)/2 +1;3-------递推进阶案例:折线分割平面问题描述:平面上有n 条折线,问这些折线最多能将平面分割成多少块?样例输入12样例输出27递推公式:Zn = 2n ( 2n + 1 ) / 2 + 1 - 2n= 2 n^2 – n + 14------递推进阶案例:问题的提出:设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数?递推公式及图解:5------高阶递推案例:经典错排问题某人写了n封信和n个信封,如果所有的信都装错了信封。

求所有的信都装错信封,共有多少种不同情况?分析思路:1、当N=1和2时,易得解~,假设F(N-1)和F(N-2)已经得到,重点分析下面的情况:当有N封信时,则有两种情况:首先:可以从前N-1封信中任取第K封和第N封错装,但是不将第N封信放入第K个信箱,故=F(N-1) * (N-1) 或者:将第K封信和第N封信交换信封,则以后对剩余的N-2封信进行错排,故= F(N-2) * (N-1).基本形式:d[1]=0; d[2]=1递归式:d[n]= (n-1)*( d[n-1] + d[n-2])。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


课堂小结
递推算法就是指从前面的已知结果推出后面 的未知结果;或由后面的已知结果推出前 面的未知结果。 解决递推问题必须具备两个条件: 1、初始条件 2、递推关系
经典:斐波那契数列
☺ 兔子繁殖问题
假设有一对新生兔子,从第二个月开始它们每个月都生一 对兔子。按此规律,如果所有兔子都不死,那么一年后共 有多少对兔子。人们发现每月的兔子数组成如下数列: 1,1,2,3,5,8,13,21,34,……并把它称为Fibonacci数列
VB递推实现 VB递推实现
Private Sub command1_Click() Dim s As Long, n As Integer s=1 For n = 9 To 1 Step -1 s = 2 * (s + 1) Next n Label1.Caption = s End Sub Private Sub command1_Click() Dim s As Long, n As Integer 若由用户指定是第n s=1 天只剩下一个桃子, For n求第一天的桃子总 = val(text1.text) -1To 1 Step -1 数。 s = 2 * (s + 1) Next n Label1.Caption = s End Sub
干个桃子,当即吃了 一半还觉得不过瘾, 又多吃了一个。第二 天接着吃剩下桃子的 一半,仍觉得不过瘾 又多吃了一个,以后 小猴子都是吃剩下的 桃子一半多一个。
☺用循环结构实现这个算法,需要定义几个 变量,循环体和循环条件?
For 循环变量=初值 to 终值 step 步长值 循环体 Next 循环变量
VB循环结构中的 VB循环结构中的 算法
推算
பைடு நூலகம்
一步步
答案
结束 顶端
把问题推上去 结束
一步步的推
答案一步步返回
“递推”算法 递推”算法
猴子吃桃
☺ 有一天小猴子摘了若干个桃子,当即吃了一半还觉得不 过瘾,又多吃了一个。第二天接着吃剩下桃子的一半, 仍觉得不过瘾又多吃了一个,以后小猴子都是吃剩下的 桃子一半多一个。 ☺ 到第3天小猴子再去吃桃子的时候,看到只剩下一个桃 子,则小猴子第一天共摘了多少桃子?
天数 桃子树
1
2
3
10
4 1
猴子吃桃
问题二:到第10天小猴子再去吃桃子的时候,看到只
剩下一个桃子,则小猴子第一天共摘了多少桃子? 天数 桃子树 1 2 3 4 5 6 7 8 9 10
10
4 1
递推关系
☺有一天小猴子摘了若
猴子第n天吃桃子前的桃子总数为Sn,吃 桃子后的桃子总数为Xn,请问Sn与Xn的关 系?(n=1、2、3、4……) 猴子第n+1天吃桃子前的桃子总数为Sn+1 ,那么Sn+1与前一天的Xn的关系?(n=1 、2、3、4……) Sn与Sn+1的关系?写出当n=1、2、3、4 、5、6、7、8、9时,S1与S2、S2与S3 、S3与S4、……S8与S9的关系。
月份 第一月 第二月 第三月 第四月 第五月 第六月 …… 新生兔 成熟 子 兔子 1
0 1 1 2 3
兔子 总数 1
1 2 3 5 8
0
1 1 2 3 5
☺ 1、斐波那契数列的规律是 什么? ☺ 2、递推公式? ☺ 3、在循环中需要定义几个 变量,每个变量的功能是什 么? ☺ 4、循环条件是什么?循环 体? ☺ 5、写出程序
相关文档
最新文档